214 research outputs found
Haptic sensitivity in needle insertion: the effects of training and visual aid
International audienceThis paper describes an experiment conducted to measure haptic sensitivity and the effects of haptic training with and without visual aid. The protocol for haptic training consisted of a needle insertion task using dual-layer silicon samples. A visual aid was provided as a multimodal cue for the haptic perception task. Results showed that for a group of novices (subjects with no previous experience in needle insertion), training with a visual aid resulted in a longer time to task completion, and a greater applied force, during post-training tests. This suggests that haptic perception is easily overshadowed, and may be completely replaced, by visual feedback. Therefore, haptic skills must be trained differently from visuomotor skills
How Do Surgeon Preferences and Technique Variances Affect Outcome?
The goal of the research project is to create a blue-print of a robot-assisted hysterectomy procedure to support design and evaluation of technology to enhance system performance. To create this blue-print, we will conduct a task analysis, model the cognitive task flow and decision making, and develop a simulation of the hysterectomy procedure. The surgical simulation will be used as a platform to train surgeons on robotic-assisted hysterectomies, as well as to assess learning and performance. Additionally, it will be used to design and develop techniques and novel technology to support surgeons in their performance of the surgery. Current research efforts are focused on the task analysis step. Data collection included observations in the hospital operating room, interviews with surgeons and nurses, analysis of surgery instructional videos and textbooks. A hierarchical task decomposition has been conducted. Thus far, results of the task analysis reveal several different types of hysterectomies and large variance in surgical techniques based on each surgeon’s preference. These findings will be validated by expert surgeons, and supplemented with a cognitive task analysis. In the next phase of the research project, we will identify several critical decision points within the surgical procedure that include variations in the use of surgical tools or variations in the sequence of actions. For example, the use of a uterine manipulator during the hysterectomy procedure seems to have an impact on the surgeon’s ease, speed, and accuracy while performing the procedure. These variations will be modeled and incorporated into the surgical simulation during development. Ultimately, the simulator will be used to train and assess the physician’s performance. It will also allow us to analyze the difference in techniques and how that affects patient outcome. A surgical simulation that has been designed and developed based on a systematic task analysis and cognitive model will allow us to more accurately study the requirements and constraints of the surgical environment, and support future innovate to enhance surgical performance and patient safety.https://corescholar.libraries.wright.edu/urop_celebration/1142/thumbnail.jp
Haptic sensitivity in needle insertion: the effects of training and visual aid
International audienceThis paper describes an experiment conducted to measure haptic sensitivity and the effects of haptic training with and without visual aid. The protocol for haptic training consisted of a needle insertion task using dual-layer silicon samples. A visual aid was provided as a multimodal cue for the haptic perception task. Results showed that for a group of novices (subjects with no previous experience in needle insertion), training with a visual aid resulted in a longer time to task completion, and a greater applied force, during post-training tests. This suggests that haptic perception is easily overshadowed, and may be completely replaced, by visual feedback. Therefore, haptic skills must be trained differently from visuomotor skills
Effects of Experience and Workplace Culture in Human-Robot Team Interaction in Robotic Surgery: A Case Study
International audienceRobots are being used in the operating room to aid in surgery, prompting changes to workflow and adaptive behavior by the users. This case study presents a methodology for examining human-robot team interaction in a complex environment, along with the results of its application in a study of the effects of experience and workplace culture, for human-robot team interaction in the operating room. The analysis of verbal and non-verbal events in robotic surgery in two different surgical teams (one in the US and one in France) revealed differences in workflow, timeline, roles, and communication patterns as a function of experience and workplace culture. Longer preparation times and more verbal exchanges related to uncertainty in use of the robotic equipment were found for the French team, who also happened to be less experienced. This study offers an effective method for studying human-robot team interaction and has implications for the future design and training of teamwork with robotic systems in other complex work environments
Identifying Opportunities for Virtual Reality Simulation in Surgical Education: A Review of the Proceedings from the Innovation, Design, and Emerging Alliances in Surgery (IDEAS) Conference: VR Surgery
To conduct a review of the state of virtual reality (VR) simulation technology, to identify areas of surgical education that have the greatest potential to benefit from it, and to identify challenges to implementation
Population genetic analysis of brazilian peach breeding germplasm.
ABSTRACT Peach has great economic and social importance in Brazil. Diverse sources of germplasm were used to introduce desirable traits in the Brazilian peach breeding pool, composed mainly by local selections and accessions selected from populations developed by the national breeding programs, adapted to subtropical climate, with low chill requirement, as well as accessions introduced from several countries. In this research, we used SSR markers, selected by their high level of polymorphism, to access genetic diversity and population structure of a set composed by 204 peach selected genotypes, based on contrasting phenotypes for valuable traits in peach breeding. A total of 80 alleles were obtained, giving an average of eight alleles per locus. In general, the average value of observed heterozygosity (0.46) was lower than the expected heterozygosity (0.63). STRUCTURE analysis assigned 162 accessions splitted into two subpopulations based mainly on their flesh type: melting (96) and non-melting (66) flesh cultivars. The remaining accessions (42) could not be assigned under the 80% membership coefficient criteria. Genetic variability was greater in melting subpopulation compared to non-melting. Additionally, 55% of the alleles present in the breeding varieties were also present in the founder varieties, indicating that founding clones are well represented in current peach cultivars and advanced selections developed. Overall, this study gives a first insight of the peach genetic variability available and evidence for population differentiation (structure) in this peach panel to be exploited and provides the basis for genome-wide association studies
Vascular Endothelial Growth Factor Receptor-2 Couples Cyclo-Oxygenase-2 with Pro-Angiogenic Actions of Leptin on Human Endothelial Cells
The adipocyte-derived hormone leptin influences the behaviour of a wide range of cell types and is now recognised as a pro-angiogenic and pro-inflammatory factor. In the vasculature, these effects are mediated in part through its direct leptin receptor (ObRb)-driven actions on endothelial cells (ECs) but the mechanisms responsible for these activities have not been established. In this study we sought to more fully define the molecular links between inflammatory and angiogenic responses of leptin-stimulated human ECs../Akt/COX-2 signalling axis is required for leptin's pro-angiogenic actions and that this is regulated upstream by ObRb-dependent activation of VEGFR2. These studies identify a new function for VEGFR2 as a mediator of leptin-stimulated COX-2 expression and angiogenesis and have implications for understanding leptin's regulation of the vasculature in both non-obese and obese individuals
Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment
Table S2. Spearman correlation of the expression of four glycolytic enzymes in a cohort of 380 ovarian cancers. Spearman rho correlation values (top value) along with the respective adjusted P value (bottom value) of statistically significant correlations thresholded at FDR P < 0.01 are summarised. (DOCX 21 kb
Abnormal Wnt and PI3Kinase Signaling in the Malformed Intestine of lama5 Deficient Mice
Laminins are major constituents of basement membranes and are essential for tissue homeostasis. Laminin-511 is highly expressed in the intestine and its absence causes severe malformation of the intestine and embryonic lethality. To understand the mechanistic role of laminin-511 in tissue homeostasis, we used RNA profiling of embryonic intestinal tissue of lama5 knockout mice and identified a lama5 specific gene expression signature. By combining cell culture experiments with mediated knockdown approaches, we provide a mechanistic link between laminin α5 gene deficiency and the physiological phenotype. We show that laminin α5 plays a crucial role in both epithelial and mesenchymal cell behavior by inhibiting Wnt and activating PI3K signaling. We conclude that conflicting signals are elicited in the absence of lama5, which alter cell adhesion, migration as well as epithelial and muscle differentiation. Conversely, adhesion to laminin-511 may serve as a potent regulator of known interconnected PI3K/Akt and Wnt signaling pathways. Thus deregulated adhesion to laminin-511 may be instrumental in diseases such as human pathologies of the gut where laminin-511 is abnormally expressed as it is shown here
A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus
Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease
- …