35 research outputs found

    Quantitative informant- and self-reports of subjective cognitive decline predict amyloid beta PET outcomes in cognitively unimpaired individuals independently of age and APOE ε4

    Get PDF
    Introduction: Amyloid beta (Aβ) pathology is an Alzheimer's disease early hallmark. Here we assess the value of longitudinal self- and informant reports of cognitive decline to predict Aβ positron emission tomography (PET) outcome in cognitively unimpaired middle-aged individuals. Methods: A total of 261 participants from the ALFA+ study underwent [18F]flutemetamol PET and Subjective Cognitive Decline Questionnaire (SCD-Q) concurrently, and 3 years before scan. We used logistic regressions to evaluate the ability of SCD-Q scores (self and informant) to predict Aβ PET visual read, and repeated analysis of variance to assess whether changes in SCD-Q scores relate to Aβ status. Results: Self-perception of decline in memory (odds ratio [OR] = 1.2), and informant perception of executive decline (OR = 1.6), increased the probability of a positive scan. Informant reports 3 years before scanning predicted Aβ PET outcome. Longitudinal increase of self-reported executive decline was predictive of Aβ in women (P = .003). Discussion: Subjective reports of cognitive decline are useful to predict Aβ and may improve recruitment strategies

    Reference Data for Attentional, Executive, Linguistic, and Visual Processing Tests Obtained from Cognitively Healthy Individuals with Normal Alzheimer's Disease Cerebrospinal Fluid Biomarker Levels

    Get PDF
    BACKGROUND: Conventional neuropsychological norms likely include cognitively unimpaired (CU) individuals with preclinical Alzheimer's disease (AD) pathology (amyloid-β, tau, and neurodegeneration) since they are based on cohorts without AD biomarkers data. Due to this limitation, population-based norms would lack sensitivity for detecting subtle cognitive decline due to AD, the transitional stage between healthy cognition and mild cognitive impairment. We have recently published norms for memory tests in individuals with normal cerebrospinal fluid (CSF) AD biomarker levels. OBJECTIVE: The aim of the present study was to provide further AD biomarker-based cognitive references covering attentional, executive function, linguistic, and visual processing tests. METHODS: We analyzed 248 CU individuals aged between 50-70 years old with normal CSF Aβ, p-tau, and neurodegeneration (t-tau) biomarker levels. The tests included were the Trail Making Test (TMT), Semantic Fluency Test, Digit and Symbol Span, Coding, Matrix Reasoning, Judgement of Line Orientation and Visual Puzzles. Normative data were developed based on regression models adjusted for age, education, and sex when needed. We present equations to calculate z-scores, the corresponding normative percentile tables, and online calculators. RESULTS: Age, education, and sex were associated with performance in all tests, except education for the TMT-A, and sex for the TMT-B, Coding, and Semantic Fluency. Cut-offs derived from the current biomarker-based reference data were higher and more sensitive than standard norms. CONCLUSION: We developed reference data obtained from individuals with evidence of non-pathologic AD biomarker levels that may improve the objective characterization of subtle cognitive decline in preclinical AD

    Effects of pre-analytical procedures on blood biomarkers for Alzheimer's pathophysiology, glial activation, and neurodegeneration

    Get PDF
    Introduction: We tested how tube types (ethylenediaminetetraacetic acid [EDTA], serum, lithium heparin [LiHep], and citrate) and freeze-thaw cycles affect levels of blood biomarkers for Alzheimer's disease (AD) pathophysiology, glial activation, and neuronal injury.Methods: Amyloid beta (A beta)42, A beta 40, phosphorylated tau181 (p-tau181), glial fibrillary acidic protein, total tau (t-tau), neurofilament light, and phosphorylated neurofilament heavy protein were measured using single molecule arrays.Results: LiHep demonstrated the highest mean value for all biomarkers. Tube types were highly correlated for most biomarkers (r > 0.95) but gave significantly different absolute concentrations. Weaker correlations between tube types were found for A beta 42/40 (r = 0.63-0.86) and serum t-tau (r = 0.46-0.64). Freeze-thaw cycles highly influenced levels of serum A beta and t-tau (PDiscussion: The same tube type should be used in research studies on blood biomarkers. Individual concentration cut-offs are needed for each tube type in all tested biomarkers despite being highly correlated. Serum should be avoided for A beta 42, A beta 40, and t-tau. Freeze-thaw cycles > 3 should be avoided for p-tau181.</p

    Reactive astrogliosis is associated with higher cerebral glucose consumption in the early Alzheimer's continuum

    Get PDF
    PURPOSE: Glial activation is one of the earliest mechanisms to be altered in Alzheimer's disease (AD). Glial fibrillary acidic protein (GFAP) relates to reactive astrogliosis and can be measured in both cerebrospinal fluid (CSF) and blood. Plasma GFAP has been suggested to become altered earlier in AD than its CSF counterpart. Although astrocytes consume approximately half of the glucose-derived energy in the brain, the relationship between reactive astrogliosis and cerebral glucose metabolism is poorly understood. Here, we aimed to investigate the association between fluorodeoxyglucose ([18F]FDG) uptake and reactive astrogliosis, by means of GFAP quantified in both plasma and CSF for the same participants. METHODS: We included 314 cognitively unimpaired participants from the ALFA + cohort, 112 of whom were amyloid-β (Aβ) positive. Associations between GFAP markers and [18F]FDG uptake were studied. We also investigated whether these associations were modified by Aβ and tau status (AT stages). RESULTS: Plasma GFAP was positively associated with glucose consumption in the whole brain, while CSF GFAP associations with [18F]FDG uptake were only observed in specific smaller areas like temporal pole and superior temporal lobe. These associations persisted when accounting for biomarkers of Aβ pathology but became negative in Aβ-positive and tau-positive participants (A + T +) in similar areas of AD-related hypometabolism. CONCLUSIONS: Higher astrocytic reactivity, probably in response to early AD pathological changes, is related to higher glucose consumption. With the onset of tau pathology, the observed uncoupling between astrocytic biomarkers and glucose consumption might be indicative of a failure to sustain the higher energetic demands required by reactive astrocytes

    Brain alterations in the early Alzheimer's continuum with amyloid-β, tau, glial and neurodegeneration CSF markers

    Get PDF
    Higher grey matter volumes/cortical thickness and fluorodeoxyglucose uptake have been consistently found in cognitively unimpaired individuals with abnormal Alzheimer's disease biomarkers compared with those with normal biomarkers. It has been hypothesized that such transient increases may be associated with neuroinflammatory mechanisms triggered in response to early Alzheimer's pathology. Here, we evaluated, in the earliest stages of the Alzheimer's continuum, associations between grey matter volume and fluorodeoxyglucose uptake with CSF biomarkers of several pathophysiological mechanisms known to be altered in preclinical Alzheimer's disease stages. We included 319 cognitively unimpaired participants from the ALFA+ cohort with available structural MRI, fluorodeoxyglucose PET and CSF biomarkers of amyloid-β and tau pathology (phosphorylated tau and total tau), synaptic dysfunction (neurogranin), neuronal and axonal injury (neurofilament light), glial activation (soluble triggering receptor on myeloid cells 2, YKL40, GFAP, interleukin-6 and S100b) and α-synuclein using the Roche NeuroToolKit. We first used the amyloid-β/tau framework to investigate differences in the neuroimaging biomarkers between preclinical Alzheimer's disease stages. Then, we looked for associations between the neuroimaging markers and all the CSF markers. Given the non-negative nature of the concentrations of CSF biomarkers and their high collinearity, we clustered them using non-negative matrix factorization approach (components) and sought associations with the imaging markers. By groups, higher grey matter volumes were found in the amyloid-β-positive tau-negative participants with respect to the reference amyloid-β-negative tau-negative group. Both amyloid-β and tau-positive participants showed higher fluorodeoxyglucose uptake than tau-negative individuals. Using the obtained components, we observed that tau pathology accompanied by YKL-40 (astrocytic marker) was associated with higher grey matter volumes and fluorodeoxyglucose uptake in extensive brain areas. Higher grey matter volumes in key Alzheimer-related regions were also found in association with two other components characterized by a higher expression of amyloid-β in combination with different glial markers: one with higher GFAP and S100b levels (astrocytic markers) and the other one with interleukin-6 (pro-inflammatory). Notably, these components' expression had different behaviours across amyloid-β/tau stages. Taken together, our results show that CSF amyloid-β and phosphorylated tau, in combination with different aspects of glial response, have distinctive associations with higher grey matter volumes and increased glucose metabolism in key Alzheimer-related regions. These mechanisms combine to produce transient higher grey matter volumes and fluorodeoxyglucose uptake at the earliest stages of the Alzheimer's continuum, which may revert later on the course of the disease when neurodegeneration drives structural and metabolic cerebral changes

    Analysis of Psychological Symptoms Following Disclosure of Amyloid-Positron Emission Tomography Imaging Results to Adults With Subjective Cognitive Decline

    Get PDF
    IMPORTANCE: Individuals who are amyloid-positive with subjective cognitive decline and clinical features increasing the likelihood of preclinical Alzheimer disease (SCD+) are at higher risk of developing dementia. Some individuals with SCD+ undergo amyloid-positron emission tomography (PET) as part of research studies and frequently wish to know their amyloid status; however, the disclosure of a positive amyloid-PET result might have psychological risks. OBJECTIVE: To assess the psychological outcomes of the amyloid-PET result disclosure in individuals with SCD+ and explore which variables are associated with a safer disclosure in individuals who are amyloid positive. DESIGN, SETTING, AND PARTICIPANTS: This prospective, multicenter study was conducted as part of The Amyloid Imaging to Prevent Alzheimer Disease Diagnostic and Patient Management Study (AMYPAD-DPMS) (recruitment period: from April 2018 to October 2020). The setting was 5 European memory clinics, and participants included patients with SCD+ who underwent amyloid-PET. Statistical analysis was performed from July to October 2022. EXPOSURES: Disclosure of amyloid-PET result. MAIN OUTCOMES AND MEASURES: Psychological outcomes were defined as (1) disclosure related distress, assessed using the Impact of Event Scale-Revised (IES-R; scores of at least 33 indicate probable presence of posttraumatic stress disorder [PTSD]); and (2) anxiety and depression, assessed using the Hospital Anxiety and Depression scale (HADS; scores of at least 15 indicate probable presence of severe mood disorder symptoms). RESULTS: After disclosure, 27 patients with amyloid-positive SCD+ (median [IQR] age, 70 [66-74] years; gender: 14 men [52%]; median [IQR] education: 15 [13 to 17] years, median [IQR] Mini-Mental State Examination [MMSE] score, 29 [28 to 30]) had higher median (IQR) IES-R total score (10 [2 to 14] vs 0 [0 to 2]; P < .001), IES-R avoidance (0.00 [0.00 to 0.69] vs 0.00 [0.00 to 0.00]; P < .001), IES-R intrusions (0.50 [0.13 to 0.75] vs 0.00 [0.00 to 0.25]; P < .001), and IES-R hyperarousal (0.33 [0.00 to 0.67] vs 0.00 [0.00 to 0.00]; P < .001) scores than the 78 patients who were amyloid-negative (median [IQR], age, 67 [64 to 74] years, 45 men [58%], median [IQR] education: 15 [12 to 17] years, median [IQR] MMSE score: 29 [28 to 30]). There were no observed differences between amyloid-positive and amyloid-negative patients in the median (IQR) HADS Anxiety (-1.0 [-3.0 to 1.8] vs -2.0 [-4.8 to 1.0]; P = .06) and Depression (-1.0 [-2.0 to 0.0] vs -1.0 [-3.0 to 0.0]; P = .46) deltas (score after disclosure - scores at baseline). In patients with amyloid-positive SCD+, despite the small sample size, higher education was associated with lower disclosure-related distress (ρ = -0.43; P = .02) whereas the presence of study partner was associated with higher disclosure-related distress (W = 7.5; P = .03). No participants with amyloid-positive SCD+ showed probable presence of PTSD or severe anxiety or depression symptoms at follow-up. CONCLUSIONS AND RELEVANCE: The disclosure of a positive amyloid-PET result to patients with SCD+ was associated with a bigger psychological change, yet such change did not reach the threshold for clinical concern

    Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease

    Get PDF
    Blood biomarkers indicating elevated amyloid-β (Aβ) pathology in preclinical Alzheimer's disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient Aβ pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and Aβ42/40) were significantly changed in preclinical Alzheimer's disease. However, plasma p-tau231 reached abnormal levels with the lowest Aβ burden. Plasma p-tau231 and p-tau217 had the strongest association with Aβ positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in Aβ PET uptake in individuals without overt Aβ pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral Aβ changes, before overt Aβ plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer's disease clinical trials

    Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays

    Get PDF
    INTRODUCTION: Direct comparisons of the main blood phosphorylated tau immunoassays in memory clinic populations are needed to understand possible differences. METHODS: In the BIODEGMAR study, 197 participants presenting with cognitive complaints were classified into an Alzheimer's disease (AD) or a non-AD cerebrospinal fluid (CSF) profile group, according to their amyloid beta 42/ phosphorylated tau (Aβ42/p-tau) ratio. We performed a head-to-head comparison of nine plasma and nine CSF tau immunoassays and determined their accuracy to discriminate abnormal CSF Aβ42/p-tau ratio. RESULTS: All studied plasma tau biomarkers were significantly higher in the AD CSF profile group compared to the non-AD CSF profile group and significantly discriminated abnormal CSF Aβ42/p-tau ratio. For plasma p-tau biomarkers, the higher discrimination accuracy was shown by Janssen p-tau217 (r = 0.76; area under the curve [AUC] = 0.96), ADx p-tau181 (r = 0.73; AUC = 0.94), and Lilly p-tau217 (r = 0.73; AUC = 0.94). DISCUSSION: Several plasma p-tau biomarkers can be used in a specialized memory clinic as a stand-alone biomarker to detect biologically-defined AD. HIGHLIGHTS: Patients with an Alzheimer's disease cerebrospinal fluid (AD CSF) profile have higher plasma phosphorylated tau (p-tau) levels than the non-AD CSF profile group. All plasma p-tau biomarkers significantly discriminate patients with an AD CSF profile from the non-AD CSF profile group. Janssen p-tau217, ADx p-tau181, and Lilly p-tau217 in plasma show the highest accuracy to detect biologically defined AD. Janssen p-tau217, ADx p-tau181, Lilly p-tau217, Lilly p-tau181, and UGot p-tau231 in plasma show performances that are comparable to their CSF counterparts

    A combination of activation and repression by a colinear Hox code controls forelimb-restricted expression of Tbx5 and reveals Hox protein specificity

    Get PDF
    Tight control over gene expression is essential for precision in embryonic development and acquisition of the regulatory elements responsible is the predominant driver for evolution of new structures. Tbx5 and Tbx4, two genes expressed in forelimb and hindlimb-forming regions respectively, play crucial roles in the initiation of limb outgrowth. Evolution of regulatory elements that activate Tbx5 in rostral LPM was essential for the acquisition of forelimbs in vertebrates. We identified such a regulatory element for Tbx5 and demonstrated Hox genes are essential, direct regulators. While the importance of Hox genes in regulating embryonic development is clear, Hox targets and the ways in which each protein executes its specific function are not known. We reveal how nested Hox expression along the rostro-caudal axis restricts Tbx5 expression to forelimb. We demonstrate that Hoxc9, which is expressed in caudal LPM where Tbx5 is not expressed, can form a repressive complex on the Tbx5 forelimb regulatory element. This repressive capacity is limited to Hox proteins expressed in caudal LPM and carried out by two separate protein domains in Hoxc9. Forelimb-restricted expression of Tbx5 and ultimately forelimb formation is therefore achieved through co-option of two characteristics of Hox genes; their colinear expression along the body axis and the functional specificity of different paralogs. Active complexes can be formed by Hox PG proteins present throughout the rostral-caudal LPM while restriction of Tbx5 expression is achieved by superimposing a dominant repressive (Hoxc9) complex that determines the caudal boundary of Tbx5 expression. Our results reveal the regulatory mechanism that ensures emergence of the forelimbs at the correct position along the body. Acquisition of this regulatory element would have been critical for the evolution of limbs in vertebrates and modulation of the factors we have identified can be molecular drivers of the diversity in limb morphology. © 2014 Nishimoto et al.This work was supported by a JSPS Research Fellowship for Young Scientists [SN] (http://www.jsps.go.jp/english/e-pd/index.html), an EMBO Long-term Fellowship [SN] (ALTF 345-2008, http://www.embo.org/funding-awards/fellowships/long-term-fellowships) and the Medical Research Council U117560477 [MPOL]Peer Reviewe
    corecore