142 research outputs found

    Late gestation modulation of fetal glucocorticoid effects requires the receptor for leukemia inhibitory factor: an observational study

    Get PDF
    BACKGROUND: Ablation of the low-affinity receptor subunit for leukemia inhibitory factor (LIFR) causes multi-systemic defects in the late gestation fetus. Because corticosterone is known to have a broad range of effects and LIF function has been associated with the hypothalamo-pituitary-adrenal axis, this study was designed to determine the role for LIFR in the fetus when exposed to the elevated maternal glucocorticoid levels of late gestation. Uncovering a requirement for LIFR in appropriate glucocorticoid response will further understanding of control of glucocorticoid function. METHODS: Maternal adrenalectomy or RU486 administration were used to determine the impact of the maternal glucocorticoid surge on fetal development in the absence of LIFR. The mice were analyzed by a variety of histological techniques including immunolabeling and staining techniques (hematoxylin and eosin, Alizarin red S and alcian blue). Plasma corticosterone was assayed using radioimmunoassay. RESULTS: Maternal adrenalectomy does not improve the prognosis for LIFR null pups and exacerbates the effects of LIFR loss. RU486 noticeably improves many of the tissues affected by LIFR loss: bone density, skeletal muscle integrity and glial cell formation. LIFR null pups exposed during late gestation to RU486 in utero survive natural delivery, unlike LIFR null pups from untreated litters. But RU486 treated LIFR null pups succumb within the first day after birth, presumably due to neural deficit resulting in an inability to suckle. CONCLUSION: LIFR plays an integral role in modulating the fetal response to elevated maternal glucocorticoids during late gestation. This role is likely to be mediated through the glucocorticoid receptor and has implications for adult homeostasis as a direct tie between immune, neural and hormone function

    Lineage relationship of prostate cancer cell types based on gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells.</p> <p>Methods</p> <p>Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology) and pattern 4 (aglandular) sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype) and LuCaP 49 (neuroendocrine/small cell carcinoma) grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts.</p> <p>Results</p> <p>Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like) grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness.</p> <p>Conclusions</p> <p>Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.</p

    Facioscapulohumeral Dystrophy: Incomplete Suppression of a Retrotransposed Gene

    Get PDF
    Each unit of the D4Z4 macrosatellite repeat contains a retrotransposed gene encoding the DUX4 double-homeobox transcription factor. Facioscapulohumeral dystrophy (FSHD) is caused by deletion of a subset of the D4Z4 units in the subtelomeric region of chromosome 4. Although it has been reported that the deletion of D4Z4 units induces the pathological expression of DUX4 mRNA, the association of DUX4 mRNA expression with FSHD has not been rigorously investigated, nor has any human tissue been identified that normally expresses DUX4 mRNA or protein. We show that FSHD muscle expresses a different splice form of DUX4 mRNA compared to control muscle. Control muscle produces low amounts of a splice form of DUX4 encoding only the amino-terminal portion of DUX4. FSHD muscle produces low amounts of a DUX4 mRNA that encodes the full-length DUX4 protein. The low abundance of full-length DUX4 mRNA in FSHD muscle cells represents a small subset of nuclei producing a relatively high abundance of DUX4 mRNA and protein. In contrast to control skeletal muscle and most other somatic tissues, full-length DUX4 transcript and protein is expressed at relatively abundant levels in human testis, most likely in the germ-line cells. Induced pluripotent (iPS) cells also express full-length DUX4 and differentiation of control iPS cells to embryoid bodies suppresses expression of full-length DUX4, whereas expression of full-length DUX4 persists in differentiated FSHD iPS cells. Together, these findings indicate that full-length DUX4 is normally expressed at specific developmental stages and is suppressed in most somatic tissues. The contraction of the D4Z4 repeat in FSHD results in a less efficient suppression of the full-length DUX4 mRNA in skeletal muscle cells. Therefore, FSHD represents the first human disease to be associated with the incomplete developmental silencing of a retrogene array normally expressed early in development

    The impact of individual Cognitive Stimulation Therapy (iCST) on cognition, quality of life, caregiver health, and family relationships in dementia: a randomized controlled trial

    Get PDF
    Background: Cognitive Stimulation Therapy (CST) is a well-established group psychosocial intervention for people with dementia. There is evidence that homebased programmes of cognitive stimulation delivered by family caregivers may benefit both the person and the caregiver. However, no previous studies have evaluated caregiver-delivered CST. This study aimed to evaluate the effectiveness of a home-based, caregiver-led individual Cognitive Stimulation Therapy (iCST) program in (i) improving cognition and quality of life (QoL) for the person with dementia and (ii) mental and physical health (wellbeing) for the caregiver. Methods and Findings: A single-blind, pragmatic randomized trial (RCT) at eight study sites across the UK. The intervention and blinded assessment of outcomes were conducted in participants’ homes. 356 people with mild to moderate dementia and their caregivers recruited from memory services, and community mental health teams. Participants were randomly assigned to iCST (75, 30 minute sessions) or treatment as usual (TAU) control over 25 weeks. iCST sessions consisted of themed activities designed to be mentally stimulating and enjoyable. Caregivers delivering iCST received training and support from an unblind researcher. Primary outcomes were cognition (Alzheimer’s Disease Assessment Scale cognitive [ADAS-Cog]) and self-reported quality of life (QoL) (Quality of Life Alzheimer’s Disease [QoL-AD]) for the person with dementia, and general health status (Short Form-12 [SF-12]) for the caregiver. Secondary outcomes included: quality of the caregiving relationship from the perspectives of the person and of the caregiver (Quality of the Carer Patient Relationships Scale), and health-related QoL (EQ5D) for the caregiver. Intention to treat (ITT) analyses were conducted. At the post-test (26 weeks), there were no differences between the iCST and TAU groups in the outcomes of cognition (MD = -0·55, 95% CI -2·00 to 0·90; p=0·45), and self-reported quality of life (QoL) (MD = -0·02, 95% CI -1·22 to 0·82; p= 0·97) for people with dementia, or caregivers’ general health status (MD=0·13, 95% CI -1·65 to 1·91; p=0·89). However, people with dementia receiving iCST rated the relationship with their caregiver more positively (MD = 1·77, 95% CI 0·26 to 3·28; p=0·02) and iCST improved QoL for caregivers (EQ-5D, MD = 0·06, 95% CI 0·02 to 0·10; p=0·01). Forty percent (72/180) of dyads allocated to iCST completed at least two sessions per week, with 22% (39/180) completing no sessions at all. Study limitations include low adherence to the intervention. Conclusions: There was no evidence that iCST has an effect on cognition or QoL for people with dementia. However, participating in iCST appeared to enhance the quality of the caregiving relationship and caregivers’ QoL

    SirT1 modulates the estrogen–insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice

    Get PDF
    INTRODUCTION: Estrogen and insulin-like growth factor-1 (IGF-1) play important roles in mammary gland development and breast cancer. SirT1 is a highly conserved protein deacetylase that can regulate the insulin/IGF-1 signaling in lower organisms, as well as a growing number of transcription factors, including NF-κB, in mammalian cells. Whether SirT1 regulates the IGF-1 signaling for mammary gland development and function, however, is not clear. In the present study, this role of SirT1 was examined by studying SirT1-deficient mice. METHODS: SirT1-deficient (SirT1(ko/ko)) mice were generated by crossing a new strain of mice harboring a conditional targeted mutation in the SirT1 gene (SirT1(co/co)) with CMV-Cre transgenic mice. Whole mount and histology analyses, immunofluorescence staining, immunohistochemistry, and western blotting were used to characterize mammary gland development in virgin and pregnant mice. The effect of exogenous estrogen was also examined by subcutaneous implantation of a slow-releasing pellet in the subscapular region. RESULTS: Both male and female SirT1(ko/ko )mice can be fertile despite the growth retardation phenotype. Virgin SirT1(ko/ko )mice displayed impeded ductal morphogenesis, whereas pregnant SirT1(ko/ko )mice manifested lactation failure due to an underdeveloped lobuloalveolar network. Estrogen implantation was sufficient to rescue ductal morphogenesis. Exogenous estrogen reversed the increased basal level of IGF-1 binding protein-1 expression in SirT1(ko/ko )mammary tissues, but not that of IκBα expression, suggesting that increased levels of estrogen enhanced the production of local IGF-1 and rescued ductal morphogenesis. Additionally, TNFα treatment enhanced the level of the newly synthesized IκBα in SirT1(ko/ko )cells. SirT1 deficiency therefore affects the cellular response to multiple extrinsic signals. CONCLUSION: SirT1 modulates the IGF-1 signaling critical for both growth regulation and mammary gland development in mice. SirT1 deficiency deregulates the expression of IGF-1 binding protein-1 and attenuates the effect of IGF-1 signals, including estrogen-stimulated local IGF-1 signaling for the onset of ductal morphogenesis. These findings suggest that the enzymatic activity of SirT1 may influence both normal growth and malignant growth of mammary epithelial cells
    corecore