88 research outputs found

    Efeito da restrição calórica sobre os níveis de uréia e creatinina séricas em cães obesos

    Get PDF
    O artigo não apresenta resumo

    The structure of the Shiga toxin 2a A-subunit dictates the interactions of the toxin with blood components

    Get PDF
    Hemolytic uremic syndrome (eHUS) is a severe complication of human infections with Shiga toxins (Stxs)-producing Escherichia coli. A key step in the pathogenesis of eHUS is the interaction of Stxs with blood components before the targeting of renal endothelial cells. Here, we show that a single proteolytic cleavage in the Stx2a A-subunit, resulting into two fragments (A1 and A2) linked by a disulfide bridge (cleaved Stx2a), dictates different binding abilities. Uncleaved Stx2a was confirmed to bind to human neutrophils and to trigger leukocyte/platelet aggregate formation, whereas cleaved Stx2a was ineffective. Conversely, binding of complement factor H was confirmed for cleaved Stx2a and not for uncleaved Stx2a. It is worth noting that uncleaved and cleaved Stx2a showed no differences in cytotoxicity for Vero cells or Raji cells, structural conformation, and contaminating endotoxin. These results have been obtained by comparing two Stx2a batches, purified in different laboratories by using different protocols, termed Stx2a(cl; cleaved toxin, Innsbruck) and Stx2a(uncl; uncleaved toxin, Bologna). Stx2a(uncl) behaved as Stx2a(cl) after mild trypsin treatment. In this light, previous controversial results obtained with purified Stx2a has to be critically re-evaluated; furthermore, characterisation of the structure of circulating Stx2a is mandatory to understand eHUS-pathogenesis and to develop therapeutic approaches

    Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol induced resistance

    Get PDF
    Maximin H5 (MH5) is an amphibian antimicrobial peptide specifically targeting Staphylococcus aureus. At pH 6, the peptide showed an increased ability to penetrate (∆П = 6.2 mN m-1) and lyse (lysis = 48 %) S. aureus membrane mimics, which incorporated physiological levels of lysylated phosphatidylglycerol (Lys-PG, 60 %) as compared to pH 7 (∆П = 5.6 mN m-1 and lysis = 40 % at pH 7) where levels of Lys-PG are lower (40 %). The peptide therefore appears to have optimal function at pH levels known to be optimal for the organism’s growth. MH5 killed S. aureus (minimum inhibitory concentration = 90 µM) via membranolytic mechanisms that involved the stabilization of α-helical structure (circa 45-50 %) and which showed similarities to the ‘Carpet’ mechanism based on its ability to increase the rigidity (Cs-1 = 109.94 mN m-1) and thermodynamic stability (∆Gmix = -3.0) of physiologically relevant S. aureus membrane mimics at pH 6. Based on theoretical analysis this mechanism may involve the use of a tilted peptide structure and efficacy was noted to vary inversely with the Lys-PG content of S. aureus membrane mimics for each pH studied (R2 circa 0.97), which led to the suggestion that under biologically relevant conditions, low pH helps mediate Lys-PG induced resistance in S. aureus to MH5 antibacterial action. The peptide showed a lack of haemolytic activity (< 2 % haemolysis) and merits further investigation as a potential template for development as an anti-staphylococcal agent in medically and biotechnically relevant areas

    The management of heart failure cardiogenic shock:an international RAND appropriateness panel

    Get PDF
    Background: Observational data suggest that the subset of patients with heart failure related CS (HF-CS) now predominate critical care admissions for CS. There are no dedicated HF-CS randomised control trials completed to date which reliably inform clinical practice or clinical guidelines. We sought to identify aspects of HF-CS care where both consensus and uncertainty may exist to guide clinical practice and future clinical trial design, with a specific focus on HF-CS due to acute decompensated chronic HF. Methods: A 16-person multi-disciplinary panel comprising of international experts was assembled. A modified RAND/University of California, Los Angeles, appropriateness methodology was used. A survey comprising of 34 statements was completed. Participants anonymously rated the appropriateness of each statement on a scale of 1 to 9 (1–3 as inappropriate, 4–6 as uncertain and as 7–9 appropriate). Results: Of the 34 statements, 20 were rated as appropriate and 14 were rated as inappropriate. Uncertainty existed across all three domains: the initial assessment and management of HF-CS; escalation to temporary Mechanical Circulatory Support (tMCS); and weaning from tMCS in HF-CS. Significant disagreement between experts (deemed present when the disagreement index exceeded 1) was only identified when deliberating the utility of thoracic ultrasound in the immediate management of HF-CS. Conclusion: This study has highlighted several areas of practice where large-scale prospective registries and clinical trials in the HF-CS population are urgently needed to reliably inform clinical practice and the synthesis of future societal HF-CS guidelines

    Mesodermal Progenitor Cells (MPCs) Differentiate into Mesenchymal Stromal Cells (MSCs) by Activation of Wnt5/Calmodulin Signalling Pathway

    Get PDF
    Mesenchymal Stromal Cells (MSCs) remain poorly characterized because of the absence of manifest physical, phenotypic, and functional properties in cultured cell populations. Despite considerable research on MSCs and their clinical application, the biology of these cells is not fully clarified and data on signalling activation during mesenchymal differentiation and proliferation are controversial. The role of Wnt pathways is still debated, partly due to culture heterogeneity and methodological inconsistencies. Recently, we described a new bone marrow cell population isolated from MSC cultures that we named Mesodermal Progenitor Cells (MPCs) for their mesenchymal and endothelial differentiation potential. An optimized culture method allowed the isolation from human adult bone marrow of a highly pure population of MPCs (more than 97%), that showed the distinctive SSEA-4+CD105+CD90(neg) phenotype and not expressing MSCA-1 antigen. Under these selective culture conditions the percentage of MSCs (SSEA-4(neg)CD105+CD90(bright) and MSCA-1+), in the primary cultures, resulted lower than 2%.We demonstrate that MPCs differentiate to MSCs through an SSEA-4+CD105+CD90(bright) early intermediate precursor. Differentiation paralleled the activation of Wnt5/Calmodulin signalling by autocrine/paracrine intense secretion of Wnt5a and Wnt5b (p<0.05 vs uncondictioned media), which was later silenced in late MSCs (SSEA-4(neg)). We found the inhibition of this pathway by calmidazolium chloride specifically blocked mesenchymal induction (ID₅₀ =  0.5 µM, p<0.01), while endothelial differentiation was unaffected.The present study describes two different putative progenitors (early and late MSCs) that, together with already described MPCs, could be co-isolated and expanded in different percentages depending on the culture conditions. These results suggest that some modifications to the widely accepted MSC nomenclature are required

    Brain hemodynamic intermediate phenotype links Vitamin B12 to cognitive profile of healthy and mild cognitive impaired subjects

    Get PDF
    Vitamin B12, folate, and homocysteine are implicated in pivotal neurodegenerative mechanisms and partake in elders' mental decline. Findings on the association between vitamin-related biochemistry and cognitive abilities suggest that the structural and functional properties of the brain may represent an intermediate biomarker linking vitamin concentrations to cognition. Despite this, no previous study directly investigated whether vitamin B12, folate, and homocysteine levels are sufficient to explain individual neuropsychological profiles or, alternatively, whether the activity of brain regions modulated by these compounds better predicts cognition in elders. Here, we measured the relationship between vitamin blood concentrations, scores at seventeen neuropsychological tests, and brain activity of sixty-five elders spanning from normal to Mild Cognitive Impairment. We then evaluated whether task-related brain responses represent an intermediate phenotype, providing a better prediction of subjects' neuropsychological scores, as compared to the one obtained considering blood biochemistry only. We found that the hemodynamic activity of the right dorsal anterior cingulate cortex was positively associated (p value &lt; 0 05 cluster corrected) with vitamin B12 concentrations, suggesting that elders with higher B12 levels had a more pronounced recruitment of this salience network region. Crucially, the activity of this area significantly predicted subjects' visual search and attention abilities (p value = 0 0023), whereas B12 levels per se failed to do so. Our results demonstrate that the relationship between blood biochemistry and elders' cognitive abilities is revealed when brain activity is included into the equation, thus highlighting the role of brain imaging as intermediate phenotype.Vitamin B12, folate, and homocysteine are implicated in pivotal neurodegenerative mechanisms and partake in elders' mental decline. Findings on the association between vitamin-related biochemistry and cognitive abilities suggest that the structural and functional properties of the brain may represent an intermediate biomarker linking vitamin concentrations to cognition. Despite this, no previous study directly investigated whether vitamin B12, folate, and homocysteine levels are sufficient to explain individual neuropsychological profiles or, alternatively, whether the activity of brain regions modulated by these compounds better predicts cognition in elders. Here, we measured the relationship between vitamin blood concentrations, scores at seventeen neuropsychological tests, and brain activity of sixty-five elders spanning from normal to Mild Cognitive Impairment. We then evaluated whether task-related brain responses represent an intermediate phenotype, providing a better prediction of subjects' neuropsychological scores, as compared to the one obtained considering blood biochemistry only. We found that the hemodynamic activity of the right dorsal anterior cingulate cortex was positively associated (p value &lt; 0 05 cluster corrected) with vitamin B12 concentrations, suggesting that elders with higher B12 levels had a more pronounced recruitment of this salience network region. Crucially, the activity of this area significantly predicted subjects' visual search and attention abilities (p value = 0 0023), whereas B12 levels per se failed to do so. Our results demonstrate that the relationship between blood biochemistry and elders' cognitive abilities is revealed when brain activity is included into the equation, thus highlighting the role of brain imaging as intermediate phenotype
    • …
    corecore