2,531 research outputs found
A fixed combination of probiotics and herbal extracts attenuates intestinal barrier dysfunction from inflammatory stress in an in vitro model using Caco-2 cells.
Background: Inflammatory Bowel Diseases (IBD), are considered a growing global disease, with about ten million people being affected worldwide. Maintenance of intestinal barrier integrity is crucial for preventing IBD onset and exacerbations. Some recent patents regarding oily formulations containing probiotics (WO2010122107A1 and WO2010103374A9) and the use of probiotics for gastrointestinal complaints (US20110110905A1 and US9057112B2) exist, or are pending application. Objective: In this work, we studied the effect of a fixed combination of registered Lactobacillus reuteri and Lactobacillus acidophilus strains and herbal extracts in an in vitro inflammation experimental model. Methods: Caco-2 cell monolayer was exposed to INF-\u3b3+TNF-\u3b1 or to LPS; Trans Epithelial Electrical Resistance (TEER) and paracellular permeability were investigated. ZO-1 and occludin Tight Junctions (TJs) were also investigated by mean of immunofluorescence. Results: Pre-treatment with the fixed combination of probiotics and herbal extracts prevented the inflammation-induced TEER decrease, paracellular permeability increase and TJs translocation. Conclusions: In summary, the fixed combination of probiotics and herbal extracts investigated in this research was found to be an interesting candidate for targeting the re-establishment of intestinal barrier function in IBD conditions
Age-Related Changes in Cardiac Autonomic Modulation and Heart Rate Variability in Mice
Objective: The aim of this study was to assess age-related changes in cardiac autonomic modulation and heart rate variability (HRV) and their association with spontaneous and pharmacologically induced vulnerability to cardiac arrhythmias, to verify the translational relevance of mouse models for further in-depth evaluation of the link between autonomic changes and increased arrhythmic risk with advancing age. Methods: Heart rate (HR) and time- and frequency-domain indexes of HRV were calculated from Electrocardiogram (ECG) recordings in two groups of conscious mice of different ages (4 and 19 months old) (i) during daily undisturbed conditions, (ii) following peripheral β-adrenergic (atenolol), muscarinic (methylscopolamine), and β-adrenergic + muscarinic blockades, and (iii) following β-adrenergic (isoprenaline) stimulation. Vulnerability to arrhythmias was evaluated during daily undisturbed conditions and following β-adrenergic stimulation. Results: HRV analysis and HR responses to autonomic blockades revealed that 19-month-old mice had a lower vagal modulation of cardiac function compared with 4-month-old mice. This age-related autonomic effect was not reflected in changes in HR, since intrinsic HR was lower in 19-month-old compared with 4-month-old mice. Both time- and frequency-domain HRV indexes were reduced following muscarinic, but not β-adrenergic blockade in younger mice, and to a lesser extent in older mice, suggesting that HRV is largely modulated by vagal tone in mice. Finally, 19-month-old mice showed a larger vulnerability to both spontaneous and isoprenaline-induced arrhythmias. Conclusion: The present study combines HRV analysis and selective pharmacological autonomic blockades to document an age-related impairment in cardiac vagal modulation in mice which is consistent with the human condition. Given their short life span, mice could be further exploited as an aged model for studying the trajectory of vagal decline with advancing age using HRV measures, and the mechanisms underlying its association with proarrhythmic remodeling of the senescent heart
A review of clinical decision-making: Models and current research
Aims and objectives: The aim of this paper was to review the current literature with respect to clinical decision-making models and the educational application of models to clinical practice. This was achieved by exploring the function and related research of the three available models of clinical decision making: information processing model, the intuitive-humanist model and the clinical decision making model.
Background: Clinical decision-making is a unique process that involves the interplay between knowledge of pre-existing pathological conditions, explicit patient information, nursing care and experiential learning. Historically, two models of clinical decision making are recognised from the literature; the information processing model and the intuitive-humanist model. The usefulness and application of both models has been examined in relation the provision of nursing care and care related outcomes. More recently a third model of clinical decision making has been proposed. This new multidimensional model contains elements of the information processing model but also examines patient specific elements that are necessary for cue and pattern recognition.
Design: Literature review
Methods: Evaluation of the literature generated from MEDLINE, CINAHL, OVID, PUBMED and EBESCO systems and the Internet from 1980 – November 2005
A novel ex vivo porcine model of acid-induced esophageal damage for preliminary functional evaluations of anti-gastroesophageal reflux disease medical devices
open7noAim: The aim of the study was to set up a porcine ex vivo model of acid-induced damage and to evaluate its performance by means of multichannel intraluminal impedance and pH (MII-pH) live recording, histology, and Evans blue (EB) permeability assay. Materials and Methods: Thirteen esophagi, collected at a slaughterhouse, were ablated of their sphincters, pinned upright on a support, and placed in a thermostatic hood at 37°C with two infusion tubes and an MII-pH probe inserted in the top end. Three esophagi (histology controls) were only left in the hood for 3.5 h before sampling, while the remaining organs underwent the experimental protocol including saline infusion and recovery recording, and acid solution infusion and recovery recording. Results: MII-pH analysis highlighted a significantly stronger decrease during acid infusion when compared to saline, but a better post-infusion recovery for saline solution. At the end of the protocol, MII was still statistically lower than baseline. The acid-damaged esophagi significantly absorbed more EB dye, and histology revealed strong mucosal exfoliation. Conclusion: The proposed model of esophageal acid damage seems to be repeatable, reliable, and achievable using organs collected at the slaughterhouse. MII recording proved to have good sensitivity in detecting mucosal alterations also in ex vivo trials.openVentrella D.; Salaroli R.; Elmi A.; Carnevali G.; Forni M.; Baldi F.; Bacci M.L.Ventrella D.; Salaroli R.; Elmi A.; Carnevali G.; Forni M.; Baldi F.; Bacci M.L
Elevated miR-34a expression and altered transcriptional profile are associated with adverse electromechanical remodeling in the heart of male rats exposed to social stress
This study investigated epigenetic risk factors that may contribute to stress-related cardiac disease in a rodent model. Experiment 1 was designed to evaluate the expression of microRNA-34a (miR-34a), a known modulator of both stress responses and cardiac pathophysiology, in the heart of male adult rats exposed to a single or repeated episodes of social defeat stress. Moreover, RNA sequencing was conducted to identify transcriptomic profile changes in the heart of repeatedly stressed rats. Experiment 2 was designed to assess cardiac electromechanical changes induced by repeated social defeat stress that may predispose rats to cardiac dysfunction. Results indicated a larger cardiac miR-34a expression after repeated social defeat stress compared to a control condition. This molecular modification was associated with increased vulnerability to pharmacologically induced arrhythmias and signs of systolic left ventricular dysfunction. Gene expression analysis identified clusters of differentially expressed genes in the heart of repeatedly stressed rats that are mainly associated with morphological and functional properties of the mitochondria and may be directly regulated by miR-34a. These results suggest the presence of an association between miR-34a overexpression and signs of adverse electromechanical remodeling in the heart of rats exposed to repeated social defeat stress, and point to compromised mitochondria efficiency as a potential mediator of this link. This rat model may provide a useful tool for investigating the causal relationship between miR-34a expression, mitochondrial (dys)function, and cardiac alterations under stressful conditions, which could have important implications in the context of stress-related cardiac disease
Life cycle assessment of hydrogen-powered city buses in the High V.LO-City project: integrating vehicle operation and refuelling infrastructure
During the project High V.LO-City, which ended in December 2019, 14 hydrogen fuel cell buses were operated in four European cities. This paper aims at presenting total emissions through the lifetime of fuel cell buses with different hydrogen production options, including the refuelling stations. The environmental assessment of such bus system is carried out using the life cycle assessment methodology. Three hydrogen production pathways are investigated: water electrolysis, chlor-alkali electrolysis and steam methane reforming. Fuel economy during bus operation is around 10.25 KgH2/100 km, and the refuelling station energy demand ranges between 7 and 9 KWh/KgH2. To support the inventory stage, dedicated software tools were developed for collecting and processing a huge amount of bus data and refuelling station performance, for automating data entry and for impacts calculation. The results show that hydrogen-powered buses, compared to a diesel bus, have the potential to reduce emissions during the use phase, if renewables resources are used. On the other hand, impacts from the vehicle production, including battery pack and fuel cell stack, still dominate environmental load. Consequently, improving the emission profile of fuel cell bus system requires to promote clean electricity sources to supply a low-carbon hydrogen and to sharpen policy focus regarding life cycle management and to counter potential setbacks, in particular those related to problem shifting and to grid improvement. For hazardous emissions and resource use, the high energy intensity of mining and refining activities still poses challenges on how to further enhance the environmental advantages of fuel cells and battery packs
Multimodal imaging of Hypotrichosis with juvenile macular dystrophy: a case report
Background: To report the first Italian case of hypotrichosis with juvenile macular dystrophy complicated by macular neovascularization diagnosed through multimodal imaging. Case presentation: An 11-year-old boy was referred to our Institution for bilateral maculopathy of unknown origin. Multimodal imaging helps the diagnosis of Juvenile Macular Dystrophy with Hypotrichosis (HJMD). Fundus examination showed several alterations of the retinal pigment epithelium and circular pigmented area of chorioretinal atrophy. Structural spectral domain optical coherence tomography (OCT) showed some backscattering phenomenon with several alterations of retinal pigment epithelium and photoreceptor layer in both eyes. Moreover, OCT showed hyperreflective lesion beneath the neuroepithelium in left eye. OCT angiography (OCT-A) revealed a pathologic neovascular network in choriocapillaris plexus, probably the result of a fibrovascular membrane. Multifocal electroretinograms (MfERGs) showed functional alterations in 12.22° of the central retina. In order to confirm the suspicion of HJMD, the child and both parents underwent genetic testing. Both parents resulted to be heterozygous healthy carriers of a single variation. Conclusion: Multimodal imaging, in particular OCT-A, is a useful aid, along to clinical findings and genetics, for the diagnosis of inherited retinal dystrophies
Dynamic analysis and performance of a Repoint track switch
This paper is closed access until 09 May 2020.Repoint is an alternative concept for the design of track switches developed at Loughborough University. The concept, based around a stub switch, offers several improvements over current designs. Through a novel locking arrangement, it allows parallel, multi-channel actuation and passive locking functions, providing a high degree of fault tolerance. The aim of the work presented in this paper is to evaluate the dynamic interaction forces due to the passage of rolling stock over the switch and, particularly, the area of the stub rail ends, in comparison to a conventional switch. Specific behaviour and load transfer conditions from one rail to the other at the joint are analysed, as well as long term wear conditions of the rails. These evaluations are undertaken by means of multi-body dynamic simulations, leading to design refinement of the stub rail ends and the identification of further research and development requirements in their design
- …