87 research outputs found
Adenovirus VA RNA-derived miRNAs target cellular genes involved in cell growth, gene expression and DNA repair
Adenovirus virus-associated (VA) RNAs are processed to functional viral miRNAs or mivaRNAs. mivaRNAs are important for virus production, suggesting that they may target cellular or viral genes that affect the virus cell cycle. To look for cellular targets of mivaRNAs, we first identified genes downregulated in the presence of VA RNAs by microarray analysis. These genes were then screened for mivaRNA target sites using several bioinformatic tools. The combination of microarray analysis and bioinformatics allowed us to select the splicing and translation regulator TIA-1 as a putative mivaRNA target. We show that TIA-1 is downregulated at mRNA and protein levels in infected cells expressing functional mivaRNAs and in transfected cells that express mivaRNAI-138, one of the most abundant adenoviral miRNAs. Also, reporter assays show that TIA-1 is downregulated directly by mivaRNAI-138. To determine whether mivaRNAs could target other cellular genes we analyzed 50 additional putative targets. Thirty of them were downregulated in infected or transfected cells expressing mivaRNAs. Some of these genes are important for cell growth, transcription, RNA metabolism and DNA repair. We believe that a mivaRNA-mediated fine tune of the expression of some of these genes could be important in adenovirus cell cycle
Epigenome-Wide Comparative Study Reveals Key Differences Between Mixed Connective Tissue Disease and Related Systemic Autoimmune Diseases
Mixed Connective Tissue Disease (MCTD) is a rare complex systemic autoimmune disease (SAD) characterized by the presence of increased levels of anti-U1 ribonucleoprotein autoantibodies and signs and symptoms that resemble other SADs such as systemic sclerosis (SSc), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE). Due to its low prevalence, this disease has been very poorly studied at the molecular level. We performed for the first time an epigenome-wide association study interrogating DNA methylation data obtained with the Infinium MethylationEPIC array from whole blood samples in 31 patients diagnosed with MCTD and 255 healthy subjects. We observed a pervasive hypomethylation involving 170 genes enriched for immune-related function such as those involved in type I interferon signaling pathways or in negative regulation of viral genome replication. We mostly identified epigenetic signals at genes previously implicated in other SADs, for example MX1, PARP9, DDX60, or IFI44L, for which we also observed that MCTD patients exhibit higher DNA methylation variability compared with controls, suggesting that these sites might be involved in plastic immune responses that are relevant to the disease. Through methylation quantitative trait locus (meQTL) analysis we identified widespread local genetic effects influencing DNA methylation variability at MCTD-associated sites. Interestingly, for IRF7, IFI44 genes, and the HLA region we have evidence that they could be exerting a genetic risk on MCTD mediated through DNA methylation changes. Comparison of MCTD-associated epigenome with patients diagnosed with SLE, or Sjogren's Syndrome, reveals a common interferon-related epigenetic signature, however we find substantial epigenetic differences when compared with patients diagnosed with rheumatoid arthritis and systemic sclerosis. Furthermore, we show that MCTD-associated CpGs are potential epigenetic biomarkers with high diagnostic value. Our study serves to reveal new genes and pathways involved in MCTD, to illustrate the important role of epigenetic modifications in MCTD pathology, in mediating the interaction between different genetic and environmental MCTD risk factors, and as potential biomarkers of SADs
Ocular surface analysis and automatic non-invasive assessment of tear film breakup location, extension and progression in patients with glaucoma
Background: Tear film stability is the key event in ocular surface diseases. The purpose of this study is to evaluate
spatial and temporal progression of the tear film breakup using an automatic non-invasive device.
Methods: Non-invasive tear breakup time (NITBUT) parameters, such as First NITBUT (F-NITBUT) and Average
NITBUT (A-NITBUT), were evaluated in 132 glaucoma and 87 control eyes with the Keratograph 5 M device. Further
analysis of this data was used to determine size, location and progression of tear film breakup with automatically
identified breakup areas (BUA). The progression from First BUA (F-BUA) to total BUA (T-BUA) was expressed as Dry
Area Growth Rate (DAGR). Differences between both groups were analysed using Student t-test for parametric data
and Mann-Whitney U test for non-parametric data. Pearson’s correlation coefficient was used to assess the
relationship between parametric variables and Spearman in the case of non-parametric variables.
Results: F-NITBUT was 11.43 ± 7.83 s in the control group and 8.17 ± 5.73 in the glaucoma group (P = 0.010). A-NITBUT was
14.04 ± 7.21 and 11.82 ± 6.09 s in control and glaucoma groups, respectively (P = 0.028). F-BUA was higher in the glaucoma
group than in the control group (2.73 and 2.28; P = 0.022) and was more frequently located at the centre of the cornea in
the glaucoma group (P = 0.039). T-BUA was also higher in the glaucoma group than in the control group (13.24 and 9.76%;
P = 0.012) and the DAGR was steeper in the glaucoma group than in the control group (34.38° and 27.15°; P = 0.009).
Conclusions: Shorter NITBUT values and bigger, more central tear film breakup locations were observed in the glaucoma
group than in the control group. The DAGR indicates that tear film rupture is bigger and increases faster in glaucomatous
eyes than in normal eyes
Expression Quantitative Trait Locus Analysis in Systemic Sclerosis Identifies New Candidate Genes Associated With Multiple Aspects of Disease Pathology
Objective: To identify the genetic variants that affect gene expression (expression quantitative trait loci [eQTLs]) in systemic sclerosis (SSc) and to investigate their role in the pathogenesis of the disease.
Methods: We performed an eQTL analysis using whole-blood sequencing data from 333 SSc patients and 524 controls and integrated them with SSc genome-wide association study (GWAS) data. We integrated our findings from expression modeling, differential expression analysis, and transcription factor binding site enrichment with key clinical features of SSc.
Results: We detected 49,123 validated cis-eQTLs from 4,539 SSc-associated single-nucleotide polymorphisms (SNPs) (PGWAS 0.05). As a result, 233 candidates were identified, 134 (58%) of them associated with hallmarks of SSc and 105 (45%) of them differentially expressed in the blood cells, skin, or lung tissue of SSc patients. Transcription factor binding site analysis revealed enriched motifs of 24 transcription factors (5%) among SSc eQTLs, 5 of which were found to be differentially regulated in the blood cells (ELF1 and MGA), skin (KLF4 and ID4), and lungs (TBX4) of SSc patients. Ten candidate genes (4%) can be targeted by approved medications for immune-mediated diseases, of which only 3 have been tested in clinical trials in patients with SSc.
Conclusion: The findings of the present study indicate a new layer to the molecular complexity of SSc, contributing to a better understanding of the pathogenesis of the disease
Integrative epigenomics in Sjögren¿s syndrome reveals novel pathways and a strong interaction between the HLA, autoantibodies and the interferon signature.
Primary Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by lymphocytic infiltration and damage of exocrine salivary and lacrimal glands. The etiology of SS is complex with environmental triggers and genetic factors involved. By conducting an integrated multi-omics study, we confirmed a vast coordinated hypomethylation and overexpression effects in IFN-related genes, what is known as the IFN signature. Stratified and conditional analyses suggest a strong interaction between SS-associated HLA genetic variation and the presence of Anti-Ro/SSA autoantibodies in driving the IFN epigenetic signature and determining SS. We report a novel epigenetic signature characterized by increased DNA methylation levels in a large number of genes enriched in pathways such as collagen metabolism and extracellular matrix organization. We identified potential new genetic variants associated with SS that might mediate their risk by altering DNA methylation or gene expression patterns, as well as disease-interacting genetic variants that exhibit regulatory function only in the SS population. Our study sheds new light on the interaction between genetics, autoantibody profiles, DNA methylation and gene expression in SS, and contributes to elucidate the genetic architecture of gene regulation in an autoimmune population.Funding for the preparation of this manuscript has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement nº 115,565, resources composed of the financial contribution from the European Union's Seventh Framework Program (FP7/2007-2013) and the EFPIA companies’ in kind contribution. MT is supported by a Spanish grant from Health Department, Junta de Andalucía (PI/0017/2016) and through the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 806975. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA. EC-M was funded by the Postdoctoral Training Subprogramme Juan de la Cierva-Ministry of Economy and Competitiveness (FJCI_2014_20652). We thank Ralf Lesche for the production of RNASeq data and Marc Torres Ciuró for design support.Peer reviewe
Molecular subtypes explain lupus epigenomic heterogeneity unveiling new regulatory genetic risk variants
The heterogeneity of systemic lupus erythematosus (SLE) can be explained by epigenetic alterations that disrupt transcriptional programs mediating environmental and genetic risk. This study evaluated the epigenetic contribution to SLE heterogeneity considering molecular and serological subtypes, genetics and transcriptional status, followed by drug target discovery. We performed a stratified epigenome-wide association studies of whole blood DNA methylation from 213 SLE patients and 221 controls. Methylation quantitative trait loci analyses, cytokine and transcription factor activity - epigenetic associations and methylation-expression correlations were conducted. New drug targets were searched for based on differentially methylated genes. In a stratified approach, a total of 974 differential methylation CpG sites with dependency on molecular subtypes and autoantibody profiles were found. Mediation analyses suggested that SLE-associated SNPs in the HLA region exert their risk through DNA methylation changes. Novel genetic variants regulating DNAm in disease or in specific molecular contexts were identified. The epigenetic landscapes showed strong association with transcription factor activity and cytokine levels, conditioned by the molecular context. Epigenetic signals were enriched in known and novel drug targets for SLE. This study reveals possible genetic drivers and consequences of epigenetic variability on SLE heterogeneity and disentangles the DNAm mediation role on SLE genetic risk and novel disease-specific meQTLs. Finally, novel targets for drug development were discovered
Investigating the epigenetic discrimination of identical twins using buccal swabs, saliva, and cigarette butts in the forensic setting
Monozygotic (MZ) twins are typically indistinguishable via forensic DNA profiling. Recently, we demonstrated that epigenetic differentiation of MZ twins is feasible; however, proportions of twin differentially methylated CpG sites (tDMSs) identified in reference-type blood DNA were not replicated in trace-type blood DNA. Here we investigated buccal swabs as typical forensic reference material, and saliva and cigarette butts as commonly encountered forensic trace materials. As an analog to a forensic case, we analyzed one MZ twin pair. Epigenome-wide microarray analysis in reference-type buccal DNA revealed 25 candidate tDMSs with >0.5 twin-to-twin differences. MethyLight quantitative PCR (qPCR) of 22 selected tDMSs in trace-type DNA revealed in saliva DNA that six tDMSs (27.3%) had >0.1 twin-to-twin differences, seven (31.8%) had smaller (<0.1) but robustly detected differences, whereas for nine (40.9%) the differences were in the opposite direction relative to the microarray data; for cigarette butt DNA, results were 50%, 22.7%, and 27.3%, respectively. The discrepancies between reference-type and trace-type DNA outcomes can be explained by cell composition differences, method-to-method variation, and other technical reasons including bisulfite conversion inefficiency. Our study highlights the importance of the DNA source and that careful characterization of biological and technical effects is needed before epigenetic MZ twin differentiation is applicable in forensic casework
LipoDDx: a mobile application for identification of rare lipodystrophy syndromes
Background: Lipodystrophy syndromes are a group of disorders characterized by a loss of adipose tissue once
other situations of nutritional deprivation or exacerbated catabolism have been ruled out. With the exception of the
HIV-associated lipodystrophy, they have a very low prevalence, which together with their large phenotypic
heterogeneity makes their identification difficult, even for endocrinologists and pediatricians. This leads to
significant delays in diagnosis or even to misdiagnosis.
Our group has developed an algorithm that identifies the more than 40 rare lipodystrophy subtypes described to
date. This algorithm has been implemented in a free mobile application, LipoDDx®. Our aim was to establish the
effectiveness of LipoDDx®.
Forty clinical records of patients with a diagnosis of certainty of most lipodystrophy subtypes were analyzed,
including subjects without lipodystrophy. The medical records, blinded for diagnosis, were evaluated by 13
physicians, 1 biochemist and 1 dentist. Each evaluator first gave his/her results based on his/her own criteria. Then,
a second diagnosis was given using LipoDDx®. The results were analysed based on a score table according to the
complexity of each case and the prevalence of the disease.
Results: LipoDDx® provides a user-friendly environment, based on usually dichotomous questions or choice of
clinical signs from drop-down menus. The final result provided by this app for a particular case can be a low/high
probability of suffering a particular lipodystrophy subtype. Without using LipoDDx® the success rate was 17 ± 20%,
while with LipoDDx® the success rate was 79 ± 20% (p < 0.01).Project financed with an intramural grant from the Xunta de Galicia, ED341b 2017/19. S.S-I was awarded a Research Fellowship, granted by the Asociación Española de Familiares y Afectados de Lipodistrofias (AELIP).S
Supplementary Information: NAD pool as an antitumor target against cancer stem cells in head and neck cancer
Supplementary table 1. Analysis of CD10, CD184, CD19, CD133, CD166 and CD44 positive subpopulations by FACS in HNSCC cell lines.-- Supplementary Table 2. Differential genes common to CD10, CD184, CD19 and NAMPT subpopulations obtained from transcriptomic analysis. All the genes in color are related to tumorigenic process, acting as oncogenes (in red), tumor suppressor genes (in blue), ambiguous genes depending on the type of the tumor (in green).-- Supplementary Table 3: IC50s for NAMPT inhibitors in parental and NAMPT CRISPR clones of both cell lines.-- Supplementary figure 1: Verification of NAMPT overexpression in RPMI and Detroit HNSCC cell lines. A: Western blot showing increased NAMPT ectopic overexpression. B: increased NAD total and NAD+ pools in cells overexpressing NAMPT (in orange).-- Supplementary Figure 2. Overall survival of HNSCC patients from the TCGA database. Kaplan-Meier curves show the overall survival of HNSCC patients with high and low expression levels of CD10, CD184, CD19, CD133, CD166 and NAMPT genes from the TCGA (The Cancer Genome Atlas) database, N=520.-- Supplementary Figure 3. GO term analysis. Analysis of the genes by the terms GO biological process, molecular function and cellular component (p<0.05).-- Supplementary Figure 4. Transcriptomic analysis of differential genes common to CD10, CD184, CD19 and NAMPT subpopulations in HNSCC cell lines. Venn diagram represents the differential genes common to positive and negative CD10, CD184 and CD19 populations and NAMPT overexpression and CRISPRs in RPMI-2650 and Detroit-562 cell lines obtained by NGS sequencing.-- Supplementary Figure 5: Densitometric quantification of NAMPT expression in the WB of figure 2C.-- Supplementary Figure 6: Densitometric quantification of NAMPT and NAPRT expression in the WB of Figure 5C.-- Supplementary materials: Original images of western blots.Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that affect different anatomical locations. Despite this heterogeneity, HNSCC treatment depends on the anatomical location, TNM stage and resectability of the tumor. Classical chemotherapy is based on platinum-derived drugs (cisplatin, carboplatin and oxaliplatin), taxanes (docetaxel, paclitaxel) and 5-fluorouracil1. Despite advances in HNSCC treatment, the rate of tumor recurrence and patient mortality remain high. Therefore, the search for new prognostic identifiers and treatments targeting therapy-resistant tumor cells is vital. Our work demonstrates that there are different subgroups with high phenotypic plasticity within the CSC population in HNSCC. CD10, CD184, and CD166 may identify some of these CSC subpopulations with NAMPT as a common metabolic gene for the resilient cells of these subpopulations. We observed that NAMPT reduction causes a decrease in tumorigenic and stemness properties, migration capacity and CSC phenotype through NAD pool depletion. However, NAMPT-inhibited cells can acquire resistance by activating the NAPRT enzyme of the Preiss-Handler pathway. We observed that coadministration of the NAMPT inhibitor with the NAPRT inhibitor cooperated inhibiting tumor growth. The use of an NAPRT inhibitor as an adjuvant improved NAMPT inhibitor efficacy and reduced the dose and toxicity of these inhibitors. Therefore, it seems that the reduction in the NAD pool could have efficacy in tumor therapy. This was confirmed by in vitro assays supplying the cells with products of inhibited enzymes (NA, NMN or NAD) and restoring their tumorigenic and stemness properties. In conclusion, the coinhibition of NAMPT and NAPRT improved the efficacy of antitumor treatment, indicating that the reduction in the NAD pool is important to prevent tumor growth.This research was funded by Grants RTI2018-097455-B-I00 and PID2021-122629OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, by the “European Union”. Additional grants from CIBER de Cáncer (CB16/12/00275), from Consejeria de Salud (PI-0397–2017) and Project P18-RT-2501 from 2018 competitive research projects call within the scope of PAIDI 2020—80% co-financed by the European Regional Development Fund (ERDF) from the Regional Ministry of Economic Transformation, Industry, Knowledge and Universities. Junta de Andalucía. Special thanks to the AECC (Spanish Association of Cancer Research) Founding Ref. GC16173720CARR for supporting this work. AES was funded by a grant from the Fundación AECC. EMVS was funded by a postdoctoral fellowship from Junta de Andalucía (CTEICU/PAIDI 2020). LEN, ES-M and LS-D were funded by Spanish ministry of education (FPU16/0290; FPU17/02173; FPU18/01009).Peer reviewe
- …