271 research outputs found

    Unveiling the monster heart: unbeamed properties of blazar 4C 71.07

    Get PDF
    4C 71.07 is a high-redshift blazar whose optical radiation is dominated by quasar-like nuclear emission. We here present the results of a spectroscopic monitoring of the source to study its unbeamed properties. We obtained 24 optical spectra at the Nordic Optical Telescope (NOT) and William Herschel Telescope (WHT) and 3 near-infrared spectra at the Telescopio Nazionale Galileo (TNG). They show no evidence of narrow emission lines. The estimate of the systemic redshift from the Hβ\beta and Hα\alpha broad emission lines leads to zsys=2.2130±0.0004z_{\rm sys}=2.2130 \pm 0.0004. Notwithstanding the nearly face-on orientation of the accretion disc, the high-ionization emission lines present large broadening as well as noticeable blueshifts, which increase with the ionizing energy of the corresponding species. This is a clear indication of strong ionized outflows. Line broadening and blueshift appear correlated. We applied scaling relationships to estimate the mass of the supermassive black hole from the Balmer and C IV lines, taking into account the prescriptions to correct for outflow. They give MBH∼2×109 M⊙M_{\rm BH} \sim 2 \times 10^9 \, M_\odot. We derived an Eddington luminosity LEdd∼2.5×1047 erg s−1L_{\rm Edd} \sim 2.5 \times 10^{47} \rm \, erg \, s^{-1} ∼Ldisc\sim L_{\rm disc}, and a broad line region luminosity LBLR∼1.5×1046 erg s−1L_{\rm BLR} \sim 1.5 \times 10^{46} \rm \, erg \, s^{-1}. The line fluxes do not show significant variability in time. In particular, there is no line reaction to the jet flaring activity detected in 2015 October and November. This implies that the jet gives no contribution to the photoionization of the broad line region in the considered period.Comment: 13 pages, 13 figures, in press for MNRA

    Variability and evolution of the optical polarization of a sample of gamma-ray blazars

    Full text link
    We present a polarization variability analysis of a sample of 26 γ\gamma-ray blazars monitored by the Steward Observatory between 2008 and 2018 in the optical band. We investigate the properties and long-term variability of their optical polarization, searching for differences between blazar types. We observe that BL Lac objects are typically less polarized and less variable than flat spectrum radio quasars (FSRQs). Moreover, BL Lacs display a distribution of their polarization angle typically oriented in a preferential direction, contrary to the rather random distribution of FSRQs. For the latter blazar type, as well as those sources showing a bright stellar emission, we take into account the depolarizing effect introduced by the broad line region and the host galaxy on the measured polarization degree. In this sample we also observe that BL Lacs present an uncorrelated evolution of the flux and the polarization. Contrary, FSRQs show a correlation before the depolarization correction, that is lost however after considering this effect. In addition, we study the behaviour of the polarization angle, searching for angle rotations in its long-term evolution. We derive that the FSRQs studied here show rotations more frequently than BL Lac objects by a factor ∼\sim1.5. During these periods we also observe a systematic decrease of the polarization fraction, as well as a marginal flux increase, not significant however to connect rotations with optical flares. We interpret these results within the extended shock-in-jet scenario, able to explain the overall features observed here for the polarization of the blazar sample.Comment: Accepted for publication in MNRA

    Vertical and horizontal distribution of regional new particle formation events in Madrid

    Get PDF
    The vertical profile of new particle formation (NPF) events was studied by comparing the aerosol size number distributions measured aloft and at surface level in a suburban environment in Madrid, Spain, using airborne instruments. The horizontal distribution and regional impact of the NPF events was investigated with data from three urban, urban background, and suburban stations in the Madrid metropolitan area. Intensive regional NPF episodes followed by particle growth were simultaneously recorded at three stations in and around Madrid during a field campaign in July 2016. The urban stations presented larger formation rates compared to the suburban station. Condensation and coagulation sinks followed a similar evolution at all stations, with higher values at urban stations. However, the total number concentration of particles larger than 2.5 nm was lower at the urban station and peaked around noon, when black carbon (BC) levels are at a minimum. The vertical soundings demonstrated that ultrafine particles (UFPs) are formed exclusively inside the mixed layer. As convection becomes more effective and the mixed layer grows, UFPs are detected at higher levels. The morning soundings revealed the presence of a residual layer in the upper levels in which aged particles (nucleated and grown on previous days) prevail. The particles in this layer also grow in size, with growth rates significantly smaller than those inside the mixed layer. Under conditions with strong enough convection, the soundings revealed homogeneous number size distributions and growth rates at all altitudes, which follow the same evolution at the other stations considered in this study. This indicates that UFPs are detected quasi-homogenously in an area spanning at least 17 km horizontally. The NPF events extend over the full vertical extension of the mixed layer, which can reach as high as 3000 m in the area, according to previous studies. On some days a marked decline in particle size (shrinkage) was observed in the afternoon, associated with a change in air masses. Additionally, a few nocturnal nucleation-mode bursts were observed at the urban stations, for which further research is needed to elucidate their origin.Peer reviewe

    A New Multi-Wavelength Census of Blazars

    Full text link
    Context:Blazars are the rarest and most powerful active galactic nuclei, playing a crucial and growing role in today multi-frequency and multi-messenger astrophysics. Current blazar catalogs, however, are incomplete and particularly depleted at low Galactic latitudes. Aims: We aim at augmenting the current blazar census to build a catalog of blazar candidates with homogeneous sky coverage that can provide candidate counterparts to unassociated gamma-ray sources, sources of high-energy neutrino emission, and ultra-high energy cosmic rays. Methods: Starting from the ALMA Calibrator Catalog we built a catalog of 1580 blazar candidates (ALMA Blazar Candidates, ABC) for which we collect multi-wavelength information. We also compared ABC sources with existing blazar catalogs. Results: The ABC catalogue fills the lack of low Galactic latitude sources in current blazar catalogues. ABC sources are significantly dimmer than known blazars in Gaia g band, and they appear bluer in SDSS and WISE colors. The majority of ABC sources (~ 90%) have optical spectra that classify them as QSO, while the remaining sources resulted galactic objects. ABC sources are similar in X-rays to known blazar, while in gamma-rays they are on average dimmer and softer, indicating a significant contribution of FSRQ sources. Making use of WISE colours, we classified 715 ABC sources as candidate gamma-ray blazar of different classes. Conclusions: We built a new catalogue of 1580 candidate blazars with a rich multi-wavelength data-set, filling the lack of low Galactic latitude sources in current blazar catalogues. This will be particularly important to identify the source population of high energy neutrinos or ultra-high energy cosmic rays. The data collected by the upcoming LSST surveys will provide a key tool to investigate the possible blazar nature of these sources.Comment: 53 pages, 32 figures, 6 tables. Accepted for publication on A&

    Thiol group functionalization of mesoporous SiO2 SBA-15 using supercritical CO2

    Get PDF
    Chemical modification of mesoporous SiO2 SBA-15 with thiol groups was performed using mercaptopropyltrimethoxysilane (MPTMS) dissolved in supercritical CO2 (scCO2). Thiol groups serve as adsorbents for the selective removal of contaminant metal cations and in catalysis. Functionalization was carried out in scCO2 at temperatures ranging from 40 to 150 °C and pressures from 15.0 to 29.0 MPa. For comparison purposes, the reaction was also performed in toluene at 80 and 110 °C. As opposed to toluene, scCO2 is considered a green solvent. Grafting of the thiol groups was confirmed by FTIR spectroscopy, thermogravimetric analysis (TGA) and elemental analysis. Grafting density and surface coverage of the materials modified using scCO2increased with temperature, CO2 density, time and stirring and varied from 1.3 to 4.4 mmol g−1 and from 1.3 to 4.0 molecules nm−2, respectively. On the other hand, surface area and pore size decreased as grafting density increased. At temperatures of 80 °C or higher, the pore size remained constant, suggesting the formation of a compact monolayer. Modification at higher temperatures led to larger grafting densities but very low surface areas. Assuming total hydrolysis and condensation of the precursor, the optimum grafting density and surface coverage of 2.3 mmol g−1 and 2.4 molecules nm−2, respectively, were obtained in scCO2 at 80 °C and 25.0 MPa for 4 h. Grafting densities of the samples prepared in toluene were by far much lower than those obtained using scCO2 at lower temperatures and shorter times, which demonstrates the advantages of CO2 as a green functionalization medium
    • …
    corecore