293 research outputs found

    Simulação computacional do contágio da gripe pessoa a pessoa

    Get PDF
    Neste trabalho estuda-se a propagação do vírus da gripe numa comunidade escoar com 2000 pessoas recorrendo ao modelo matemático SIR em que se considera que a população está dividida em três grupos independentes: os Suscetíveis (S), os Infecciosos (l) e os Recuperados (R). 'O estudo è feito do" ponto" de"vista determinístico e estocástico.info:eu-repo/semantics/publishedVersio

    Safety requirements for the design of collaborative robotic workstations in europe – a review

    Get PDF
    Industrial manufacturing is moving towards flexible and intelligent processes. Human-Robot Collaboration (HRC) has a pivotal role in smart factories due to a more versatile resource allocation that ultimately drives higher productivity and efficiency. The physical barriers that separate robots’ and humans’ workspaces are removed to facilitate HRC, which raises new safety concerns. To cope with this new robotics paradigm, regulatory legislation and international safety standards have been issued and are enforced for any machinery placed in factories. In this paper, we aim to shorten the gap between research projects and industry-ready robotic systems, by providing the guidelines and general requirements for collaborative robotic applications. We review the current international safety standards, certification procedures under the scope of European jurisdiction, and elaborate a literature review of papers related to safety for collaborative workstations.This work was supported by NORTE-06-3559-FSE-000018, integrated into the invitation NORTE-59-2018-41, aiming to hire highly-qualified human resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF)

    Regularity of maximal operators: recent progress and some open problems

    Full text link
    This is an expository paper on the regularity theory of maximal operators, when these act on Sobolev and BV functions, with a special focus on some of the current open problems in the topic. Overall, a list of fifteen research problems is presented. It summarizes the contents of a talk delivered by the author at the CIMPA 2017 Research School - Harmonic Analysis, Geometric Measure Theory and Applications, in Buenos Aires, Argentina.Comment: 19 pages. Expository paper with the contents of a lecture given at the in the CIMPA 2017 Research School - Harmonic Analysis, Geometric Measure Theory and Applications, in Buenos Aires, Argentin

    Novel magnetic stimulation methodology for low-current implantable medical devices

    Get PDF
    Recent studies highlight the ability of inductive architectures to deliver therapeutic magnetic stimuli to target tissues and to be embedded into small-scale intracorporeal medical devices. However, to date, current micro-scale biomagnetic devices require very high electric current excitations (usually exceeding 1 A) to ensure the delivery of efficient magnetic flux densities. This is a critical problem as advanced implantable devices demand self-powering, stand-alone and long-term operation. This work provides, for the first time, a novel small-scale magnetic stimulation system that requires up to 50-fold lower electric current excitations than required by relevant biomagnetic technology recently proposed. Computational models were developed to analyse the magnetic stimuli distributions and densities delivered to cellular tissues during in vitro experiments, such that the feasibility of this novel stimulator can be firstly evaluated on cell culture tests. The results demonstrate that this new stimulative technology is able to deliver osteogenic stimuli (0.1-7 mT range) by current excitations in the 0.06-4.3 mA range. Moreover, it allows coil designs with heights lower than 1 mm without significant loss of magnetic stimuli capability. Finally, suitable core diameters and stimulator-stimulator distances allow to define heterogeneity or quasi-homogeneity stimuli distributions. These results support the design of high-sophisticated biomagnetic devices for a wide range of therapeutic applications.This work was funded by the Portuguese Foundation for Science and Technology (FCT), through the grant references SFRH/BPD/117475/2016, SFRH/BD/129340/2017 and IF/01089/2015, and by the European Structural and Investment Funds, through the project reference POCI-01-0145-FEDER-031132 and POCI-01-0145-FEDER-007679. It was also support by the TEMA - Centre for Mechanical Technology & Automation (UID/EMS/00481/2013-FCT and CENTRO-01-0145-FEDER-022083) and CICECO - Aveiro Institute of Materials (UID /CTM /50011/ 2013).in publicatio

    Unveiling the local structure of 2-mercaptobenzothiazole intercalated in (Zn2Al) layered double hydroxides

    Get PDF
    The structure and composition of a zinc-aluminum layered double hydroxide (Zn2Al LDH) with the intercalated 2-mercaptobenzothiazole corrosion inhibitor (a.k.a. benzo[d]thiazole-2-thiol) are interpreted by means of atomistic molecular dynamics (MD) simulations. The results concerning the proportion of intercalated 2-mercaptobenzothiazole and water species in the Zn2Al LDH interlayer were correlated with experimental X-ray diffraction (XRD) and thermogravimetric analysis (TGA) data of samples obtained at pH 8.5, 10 and 11.5. While the sample synthesized at the lowest pH is almost free of contaminants, the sample obtained at the highest pH is contaminated by a small fraction of a material with intercalated OH-. The comparison of the calculated and XRD interlayer distances suggests that the most stable structure has a ratio of ~4.5 water molecules per intercalated organic species, which is higher than the ratio of ~2 typically reported in the literature. The distribution of molecules in the LDH interlayer consists of a layer of water near the hydroxides, a second layer grown over the first layer, with the 2-mercaptobenzothiazole species adopting conformations with the sulfur of the thioamide group facing the hydroxide/water layers and the 6-member ring oriented towards the middle of the interlayer. Different structural analyses were done to explain the equilibria between the different species in the interlayer space, and their molecular interactions with the LDH metal hydroxide layers.publishe

    Impact of transferring arts dispensing from hospital to community pharmacies : a pilot study in Portugal

    Get PDF
    Copyright © 2018 Elsevier B.V. or its licensors or contributors.Objectives: Currently, in Portugal, People Living with HIV (PLHIV) refill antiretroviral therapy (ART) at Hospital Pharmacies (HP). We aimed to assess the impact of transferring ARTs dispensing from HP to community pharmacies (CPs) in the Portuguese setting.info:eu-repo/semantics/publishedVersio

    Decision-making framework for implementing safer human-robot collaboration workstations: system dynamics modeling

    Get PDF
    Human-Robot Collaboration (HRC) systems are often implemented seeking for reducing risk of Work-related Musculoskeletal Disorders (WMSD) development and increasing productivity. The challenge is to successfully implement an industrial HRC to manage those factors, considering that non-linear behaviors of complex systems can produce counterintuitive effects. Therefore, the aim of this study was to design a decision-making framework considering the key ergonomic methods and using a computational model for simulations. It considered the main systemic influences when implementing a collaborative robot (cobot) into a production system and simulated scenarios of productivity and WMSD risk. In order to verify whether the computational model for simulating scenarios would be useful in the framework, a case study in a manual assembly workstation was conducted. The results show that both cycle time and WMSD risk depend on the Level of Collaboration (LoC). The proposed framework helps deciding which cobot to implement in a context of industrial assembly process. System dynamics were used to understand the actual behavior of all factors and to predict scenarios. Finally, the framework presented a clear roadmap for the future development of an industrial HRC system, drastically reducing risk management in decision-making.This work was supported by European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n◦ 39479; Funding Reference: POCI-01-0247-FEDER-39479] and by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/202

    Arguing with behavior influence: A model for web-based group decision support systems

    Get PDF
    In this work, we propose an argumentation-based dialogue model designed for Web-based Group Decision Support Systems, that considers the decision-makers' intentions. The intentions are modeled as behavior styles which allow agents to interact with each other as humans would in face-to-face meetings. In addition, we propose a set of arguments that can be used by the agents to perform and evaluate requests, while considering the agents' behavior style. The inclusion of decision-makers' intentions intends to create a more reliable and realistic process. Our model proved, in different contexts, that higher levels of consensus and satisfaction are achieved when using agents modeled with behavior styles compared to agents without any features to represent the decision-makers' intentions.- (undefined
    corecore