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Abstract

Recent studies highlight the ability of inductive architectures to deliver therapeutic

magnetic stimuli to target tissues and to be embedded into small-scale intracorporeal

medical devices. However, to date, current micro-scale biomagnetic devices require

very high electric current excitations (usually exceeding 1 A) to ensure the

delivery of efficient magnetic flux densities. This is a critical problem as advanced

implantable devices demand self-powering, stand-alone and long-term operation.

This work provides, for the first time, a novel small-scale magnetic stimulation

system that requires up to 50-fold lower electric current excitations than required

by relevant biomagnetic technology recently proposed. Computational models were

developed to analyse the magnetic stimuli distributions and densities delivered to

cellular tissues during in vitro experiments, such that the feasibility of this novel

stimulator can be firstly evaluated on cell culture tests. The results demonstrate

that this new stimulative technology is able to deliver osteogenic stimuli (0.1-7 mT

range) by current excitations in the 0.06-4.3 mA range. Moreover, it allows coil

designs with heights lower than 1 mm without significant loss of magnetic stimuli

capability. Finally, suitable core diameters and stimulator-stimulator distances allow

to define heterogeneity or quasi -homogeneity stimuli distributions. These results

support the design of high-sophisticated biomagnetic devices for a wide range of

therapeutic applications.
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1 Introduction

Research and clinical practice have been highlighting the ability of magnetic stimulation to

provide a large variety of diagnostic and therapeutic applications, such as for orthopaedics,

neurology, psychiatry and cardiology [1–13]. Biomagnetic stimulation was already approved

by well-established national agencies to promote public health by using this non-drug

strategy [4,9,14,15]. The therapeutic potential of this biophysical approach is also continuously

revealed by emerging technologies aiming to develop advanced bioapplications, such as

closed-loop bioelectronic implantable devices operating as stand-alone therapeutic agents to

treat neurological and psychiatric disorders [16,17]. It is also noteworthy to recognize the

groundbreaking achievements towards the design of multifunctional bioelectronic devices to

provide bone-implant integration and bone regeneration by target-oriented bone stimulation

[18–24]. These are examples of advanced implantable devices that require the delivery of

personalized stimuli to target tissues. As personalized medicine demand the delivery of

highly individualized stimuli [14,25], the superior performance of biomagnetic stimulators

will be achieved only if time- and region-dependent magnetic stimuli are delivered, ensuring a

wide range of effective stimuli characterized by different waveforms, magnitudes, frequencies,

periodicities, stimulation exposures, etc [14,21,26]. Different coil designs have been proposed

to maximize their performance in the delivery of magnetic stimuli to target tissues, both

for extracorporeal [5,27,28] and intracorporeal devices [1,2,29]. Electric power requirements

is of uppermost importance for intracorporeal biomagnetic devices, as their technological

sophistication includes powering ability to supply therapeutic stimulators, as well as

physiological sensing and communication systems [16,17,30]. However, current small-scale (up

to micro-scale) implantable magnetic devices require that high electrical currents (usually

exceeding 1 A) must flow in the stimulation coils to ensure the delivery of therapeutic

efficient magnetic flux densities [1,2,25,29–31]. This problem has been addressed by using

extracorporeal wireless powering [32]; however, this approach presents significant limitations,

as it is uncomfortable for patients, it troubles their routine activities and it strongly reduces the

periodicity of operation of bioelectronic medical devices [33]. Therefore, as future personalized

medicine will demand autonomous stand-alone biomagnetic stimulators with self-powering

ability for long-term personalized therapeutic operation [16,17,21,25,34], a new methodology
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is demanded to simultaneously require low electric current excitations and ensure the delivery

of suitable magnetic field stimuli. This paper provides, for the first time, a novel small-scale

magnetic stimulation technology that requires much lower electric current excitations to deliver

the required magnetic fields. Since the feasibility of this innovative device must be predicted

prior device implantation and firstly evaluated on cell culture tests, this study is focused on

the magnetic stimuli delivered to cellular tissues during in vitro experiments as a function

of electric current excitation [25]. Computational models of this novel stimulator are also

provided such that magnetic flux densities and distributions are analysed for bone cellular

tissues. Nevertheless, breakthroughs here reported will promisingly support biological in vitro

and in-vivo experiments using a large variety of tissues. The main goal of this study is to

contribute towards the development of implantable high-sophisticated bioelectronic magnetic

devices capable of delivering highly controlled and personalized stimuli to a wide range of

therapeutic applications.

2 Methods

2.1 Inductive architectures

The magnetic flux densities that induce positive osteogenic responses are in the 0.1-7 mT

range [35–37]. The ability of planar and ring quasi -planar inductive architectures to provide

such stimuli at low power was explored in this study, since they have been used to implement

sub-millimeter magnetic stimulators for implantable devices [1,25,29,31]. A planar and two

quasi -planar architectures were designed for the delivery of magnetic stimuli to bone cells

in culture during the first two stages of bone remodelling (proliferation and differentiation)

[25]. The planar architecture (P-architecture), composed by a coil shaped with a planar

geometry of spiral pattern and micro-scale wire diameter (5 µm), as illustrated by Fig. 1a, was

firstly analysed. The ability of a ring quasi -planar architecture (µM-architecture) comprising a

cylindrical-shaped core surrounded by a helicoidal-shaped single-layer coil with few turns (20)

and micro-scale wire diameter (5 µm) to deliver magnetic field stimuli was afterwards explored

(Fig. 1b). This architecture and geometrical dimensions are similar to the ones experimentally
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tested by Bonmassar and colleagues [1,29]. The manufacture of both P- and µM-architectures

for electrophysiological experiments is technically challenging, since they must be small enough

to be embedded within implantable devices but ensuring the ability to induce sufficient

magnetic flux densities to stimulate tissues [1,38]. A new insight is here provided to significantly

minimize the electric current supply by using a quasi -planar architecture (µM-kT-architecture)

composed by a cylindrical core surrounded by a helicoidal-shaped multilayered coil with a

large number of turns (1000) and micro-scale wire diameter (5 µm) (Fig. 1b). This is a

more complex and even harder to manufacture architecture compared to already proposed

P- and µM-architectures. The proposed methodology is based on the approximative relation

of proportionality between the magnetic flux density and the product of the electric current

with the number of turns of an electrically excited coil (B ∝ NI), obtained from the Ampere’s

law [39].

2.2 Simulations details

All models were implemented considering apparatuses recently validated in silico and in

vitro to analyse electromagnetic stimuli throughout proliferation and differentiation stages of

osteoblastic MC3T3 cells (a cell line commonly used to analyse bone remodelling stages), which

is briefly described as follows [21,25,26,40]. This apparatus prohibits cell-electrode contacts

and was modelled using seven domains: core, coil, culture medium (a liquid solution), cellular

layer (during proliferation stage) or cellular tissue (during differentiation stage), culture dish,

substrate and air. Coils and cores were positioned over a polycarbonate substrate and under a

polystyrene culture dish. The latter, in turn, contains a cell culture composed of a cellular or a

tissue layer and a culture medium (Fig. 1). Remodelling stages were considered approximately

homogeneous phases [21]. The cellular/tissue layers were positioned above the culture dish and

covered by the liquid solution since osteoblastic MC3T3 cells are highly adherent to polystyrene

surfaces [21,41]. The thickness of the adherent organic layer was doubled for simulations related

to differentiation stage in order to resemble an organized cellular tissue mainly composed by

MC3T3 cells and type-I collagen (a protein that corresponds to approximately 90% of the

bone organic matrix) [21]. Polymeric dishes and substrates were used to ensure their very
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high electrical resistivity. The coils were assumed to be made of copper, following previous

works [1,2,25,31]. The properties of the ferromagnetic cores were taken as those of an Fe-Ni

alloy [42]. Table 1 presents all geometric dimensions of each architecture. Table 2 describes

electric and magnetic properties of organic and inorganic materials considered to numerically

model all architectures. Notice that the geometrical dimensions here explored do not allow

only one biomagnetic stimulator to cover the entire area of the bottom surface of the culture

dishes [25]. This methodology was chosen in order to highlight the potential of very low scale

µM-kT-architectures to deliver osteogenic stimuli at low current excitations.

To compute the magnetic field stimuli generated by these planar and quasi -planar

architectures, considering also the present biological architectures, requires a multi-physics

approach. The magnetic flux density and distributions were computed by numerical models

developed using the AC/DC module of COMSOL Multiphysics (v. 5.3, COMSOL), since this

computer simulation tool has been used to analyse electromagnetic stimulation of biological

tissues [1,13,21,40,49]. The magnetic field stimuli delivered by all inductive architectures

to bone cellular tissues during in vitro experiments was simulated using 3 finite element

Table 1

Dimensions of each domain of P-, µM- and µM-kT-architectures of biomagnetic stimulators.

Domain P-architecture µM-architecture µM-kT-architecture

Coil

height: 5 µm;

diam: 1 mm
wire diam: 5 µm

height: 1 mm;

diam: 1 mm;

wire diam: 5 µm
turns: 20

height: 1 mm (a);

inner diam: 1 mm (a);

outer diam: 1.05 mm (a);

wire diam: 5 µm (a);

turns: 1000 (a)

Core —

height: 1 mm;

diam: 900 µm

height: 1 mm (a);

diam: 900 µm (a)

Culture medium
(liquid solution) diam: 3.5 mm; thick: 1 mm

Cellular layer

(proliferation) diam: 3.5 mm; thick: 10 µm

Cellular tissue
(differentiation) diam: 3.5 mm; thick: 20 µm

Culture dish diam: 4.5 mm; thick: 500 µm; height: 2 mm

Substrate diam: 4.5 mm; thick: 500 µm

Air height: 8.51 mm diam: 10.5 mm; height: 9.5 mm

(a) These geometrical dimensions were also varied so that their influence can be quantified.
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Table 2

Electric and magnetic properties of their organic and inorganic materials composing all

architectures of biomagnetic stimulators.

Domain
Relative electric

permittivity

Electric conductivity

[S/m]

Relative magnetic

permeability Reference

Coil 1 6 × 107 1 [1,21]

Core 1 1 × 107 5 × 104 [42]

Culture medium
(liquid solution) 73 1.6 1 [43,44]

Cellular layer

(proliferation) 73 1.2 × 10−7 1 [43,45]

Cellular tissue
(differentiation) 73 1.2 × 10−7 1 [46,47]

Culture dish 2.6 6.7 × 10−14 1 [21,48]

Substrate 3 6.7 × 10−14 0.866 [48]

Air 1 0 1 [1,21]

computational models: (1) the P-model for the P-architecture (Fig. 1a); (2) the µM-model

for the µM-architecture (Fig. 1b); and (3) the µM-kT-model for the µM-kT-architecture (Fig.

1b).

All domains were deemed homogeneous and isotropic and were tessellated by fine 3D meshes

of tetrahedral linear elements of second order (Delaunay method). Mesh refinement and

dimensioning of the ’Air’ domain were conducted by convergence analysis (2% error as stop

criterion). The homogeneous Neumann condition was imposed to interior boundaries. Null

magnetic potential (A = 0) throughout all architecture was established as initial condition.

External boundaries were magnetically isolated (n × A = 0). Electromagnetic fields were

simulated by using ’Magnetic and Electric Fields’ as the COMSOL physics interface since it

allows to solve the Maxwell’s equations in the frequency-domain, as expressed by Eqs. (1) to

(8).

∇ · J = 0 (1)

E = −∇ · V − dA

dt
(2)

∇×H = J (3)
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B = ∇×A (4)

J = σE +
dD

dt
(5)

D = ε0εrE (6)

B = µ0µrH (7)

n2 · (J1 − J2) = 0 (8)

where: E - electric field intensity [V/m]; D - electric displacement [C/m2]; H - magnetic field

intensity [A/m]; B - magnetic flux density [T]; J - current density [A/m2]; A - magnetic vector

potential [Vs/m]; σ - electrical conductivity [S/m]; ε0 - permittivity of vacuum (8.85×10−12

[F/m]); εr - relative permittivity; µ0 - permeability of vacuum (4π×10−7 [H/m]); µr - relative

permeability; V - electric scalar potential [V]; n2 - outward normal from medium 2 at interfaces

between two media J1 and J2; Jn - current densities of medium n [A]. The linear FGMRES

solver was used to provide fast convergence and computing robustness. All models were

computed in a Lenovo P710 workstation with 2 Xeon E5-2690 v4 processors (total 28 physical

cores) at 2.6 GHz and 256 GB RAM.

2.3 Excitations powering the stimulators

Coils were powered by an electric current source I in the 0.5-12.5 mA range, according to the

equation: I =
Ipp
2

+
Ipp
2
sign(sin(ωt)). The current excitation described throughout this paper

refers to the pick-to-pick current Ipp. Pulsed waveform (50% duty cycle) and 15 Hz frequency

were selected because many in vitro and in vivo studies highlight the positive osteogenic

responses induced by these stimuli parameters using magnetic stimulation throughout different

daily exposure time and days of exposure [7–9,37,50,51].

2.4 Data analysis

The origin plane (x, y, 0) match the upper boundary of stimulators’ coil. The magnetic field was

analysed along a xy-plane in a vertical z -coordinate corresponding to the cellular layer/tissue
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midpoint: along (x, y, 0.505) [mm] for the stimuli delivered throughout the proliferation stage,

and (x, y, 0.51) [mm] for the differentiation stage. The magnetic fields were also observed

along the line y = 0 [mm] (i.e, along (x, 0, 0.505) [mm] for proliferation and (x, 0, 0.51) [mm]

for differentiation). Section ’Results’ only presents the magnetic flux density at π/2 rad, as

these stimuli exhibit pulsed electromagnetic fields (PEMF) dynamics (since cores were defined

as soft magnetic materials).

3 Results

3.1 Influence of cell confluence

The magnetic flux densities and distributions along the cellular layer (z ∈ [0.5 0.51] [mm]; low

cell confluence condition; proliferation stage) and along the cellular tissue (z ∈ [0.5 0.52] [mm];

full cell confluence condition; matrix maturation stage) are quite similar. Cross-correlations

of nearly 100% and amplitude differences lower than 1% were perceived. Thereupon, only

the stimuli delivered to bone cells throughout proliferation will be analysed in the following

sections, i.e., along (x, y, 0.505) [mm].

3.2 Influence of the architecture and current excitation

Similar heterogeneous distributions of magnetic stimuli (cross-correlations higher than 99%)

are delivered by biomagnetic stimulators to the bone cellular tissue when their coils are

powered by the same electric current source, imposing maximum magnetic flux densities

in regions above the cores (Fig. 2). Nevertheless, quite differing magnetic flux densities

are observed. The µM-kT-architecture is able to provide approximately 4 mT for 2.5 mA

current excitation (Fig. 2c,d). This is a magnetic stimulus approximately 50-fold and 34-fold

higher than the stimuli delivered by µM- and P-architectures, respectively (Fig. 2a,b,d).

The architecture-dependent stimulation is also noticeable by analysing the required current

excitation to provide osteogenic stimuli: magnetic flux densities in the 0.1-7 mT range are

obtained by exciting the µM-kT-architecture using an electric current in the 0.06-4.3 mA
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range (Fig. 2e,f); in contrast, the same magnetic stimuli range will require powering the

µM- and P-architectures, respectively, with approximately 3.1-212.6 mA and 2.1-146.4 mA.

Linear interrelationships occur, as expected, between current excitations supplying coils

and magnetic densities delivered along the overall cell tissue (slope B [mT] / i [mA] is

1.62 for the µM-kT-architecture, 32.9×10−3 for the µM-architecture and 47.8×10−3 for the

P-architecture), as illustrates Fig. 2f. All these results emphasize that further analyses must be

conducted to identify the effects of varying the physical properties of the µM-kT-architecture,

namely the influence of the coil and core, as well as stimulators positioning. So, next sections

will be focused on the influence of these design parameters for magnetic stimulation performed

by the µM-kT-architecture.

3.3 Influence of the coil and core

The influence of the number of turns is of utmost importance for the design of biomagnetic

devices. Fig. 3a highlights the magnetic flux densities delivered by µM-kT-architecture as a

function of the number of turns. Minimum osteogenic magnetic stimulus (0.1 mT) will be

obtained by using 25 turns (2.5 mA current excitation). Nevertheless, most in vitro and in

vivo studies propose magnetic flux densities higher than 1 mT for a successful stimulation

therapy, which requires 250 turns (Fig. 3b). A coil comprising 1750 turns must be designed

for the maximum flux density (7 mT) to be delivered to cellular tissues (Fig. 3b). Although

the use of different number of turns results in different stimuli magnitudes (if the current

excitation is not varied), the stimuli distribution waveforms along the cellular tissue are quite

similar (cross-correlation of nearly 100%).

No significant impacts are predicted on distributions and densities of magnetic flux when

different designs are established by varying the coil and core heights (Fig. 4a). Similarity on

stimuli distribution waveforms are observed when the coil height is varied in the 100-1000

µm range (cross-correlations higher than 99%). One must, however, recognize that even a

stimulator designed with a 100 µm coil height is able to deliver osteogenic magnetic stimuli

(approximately 3.7 mT) when it is driven by 2.5 mA current source.
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Cross-correlations in magnetic stimuli distributions of approximately 99.6% were observed for

core diameters lower than 900 µm, but the lower the core diameter the lower maximum

magnetic flux densities provided by the µM-kT-architecture based stimulator (Fig. 4b).

Nevertheless, no significant changes on the stimuli magnitudes were observed for varying core

diameters, since they are mainly influenced by the number of coil turns and the electric current

excitation (as predicted by the Ampere’s law). Hence, the design of biomagnetic stimulators

with core diameters lower than 500 µm are affective to deliver osteogenic stimuli using 2.5 mA

current excitation. A quite different behaviour is perceived for core diameters higher than 1

mm: distribution similarity decrease to 91.3% and the maximum magnetic flux decrease 7.3%

when 900 µm and 2 mm core diameters are compared. Besides, the maximum magnetic flux

is horizontally shifted on the cellular tissue above the core to above the coils.

3.4 Influence of the stimulators positioning

Due to the very small geometric dimensions of the µM-kT-architecture, in vitro experimental

tests will require several biomagnetic stimulators delivering magnetic stimuli to cellular

layers/tissues. Their relative positioning to each other allow the delivery of magnetic stimuli

to tissue areas in both quasi -homogeneous and heterogeneous manner. The influence of

the equidistances between the geometric center of two cores is highlighted in Fig. 5.

Quasi -homogeneous magnetic flux densities are provided for very short stimulator-stimulator

distances (as it approaches 1.06 mm), whereas heterogeneity increases for increasing distances.

Notice the decreasing magnetic flux density around the midpoint between geometric centers for

increasing stimulator-stimulator distance. Null magnetic stimulus is delivered in this midpoint

for distances higher than 3 mm. Finally, it is noteworthy to observe that the experimental

apparatus to conduct both in vitro and in vivo tests will require a network of independent

biomagnetic stimulators. For instance, if only 10 stimulators are demanded to deliver a 1 mT

PEMF stimulative therapy along a target tissue, then the self-powering system must provide

approximately 6.2 mA current excitation if the µM-kT-stimulator is used; however, 209 mA

and 304 mA will be required for the P-stimulator and µM-stimulator, respectively.
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4 Discussion and conclusion

Recent research findings have highlighted the therapeutic potential of contactless biomagnetic

stimulators for delivery of personalized non-drug therapies to target tissues [1,25,29]. Low

power and electric current requirements are mandatory for innovative implantable medical

devices, mainly if they provide multifunctional operation (therapeutic stimulation, sensing

and communication ability). Several analyses were recently conducted to identify the influence

of the relevant planar and quasi -planar architectures on the deliver of magnetic stimuli, as

well as the influence of some of their physical properties [1,40]. However, these studies were

focused on µM-architectures, and usually electric currents exceeding 1 A are required to drive

micro-inductors. This work is focused on the ability of a novel quasi -planar architecture for

small-scale implantable devices, the µM-kT-architecture, to induce sufficient magnetic flux

densities to tissue target by powering coils by low current excitations. By developing numerical

models using COMSOL Multiphysics to compute the magnetic stimuli delivered to osteoblastic

MC3T3 cells throughout in vitro experimental tests, significant differences in electric current

excitations required to induce positive osteogenic responses (in the 0.1-7 mT range) were

observed. The architecture here proposed is able to provide such magnetic stimuli if currents in

the 0.06-4.3 mA range flow through the coil. The greater complexity of the µM-kT-architecture

must be noticed, but it requires 50-fold and 34-fold lower current excitations than µM-

and P-architectures, respectively. Moreover, this quasi -planar µM-kT-architecture can be

redesigned to include sophisticated coil heights lower than 500 µm without significant magnetic

stimuli decreases, which is another advantage over P-architectures. Besides, heterogeneous or

quasi -homogeneous magnetic stimuli distributions can be established by defining appropriated

core diameters and the stimulator-stimulator distance.

These analyses were firstly considered for cell culture tests in which the target is a cellular

tissue. In vitro stimulation of cellular tissues on cell culture dishes of 35 mm in diameter will

require a network of ≈300 µM-kT stimulators (3 mm equidistance between adjacent cores;

Fig. 5; Table 1) and, consequently, 18.6 mA of electric current excitation will be demanded

if each stimulator is independently driven with 0.06 mA (Fig. 2f). Such solution is suitable

for biomagnetic devices that must be designed to deliver different stimuli to very close target
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regions of the same tissue. However, lower electric current excitations will be demanded if:

(i) arrays of µM-kT stimulators are electrically connected in series circuit; (ii) a network of

larger µM-kT stimulators is used. This latter described apparatus will only require 1.8 mA to

deliver osteogenic stimuli along the cellular tissue if 9 µM-kT stimulators, with 6 mm of core

diameter, are driven with 0.2 mA of current excitation, as illustrated by Fig. 6. Notice that

the network of stimulators could be designed using coils with different diameters, such that

they can cover almost the entire area of the bottom surface of the culture dishes.

Further research must be conducted for much more complex bone structures, such as trabecular

and cortical structures comprising liquid, organic and mineral phases. Besides, the impact

of the µM-kT-architecture must also be evaluated for a wide range of biological structures,

including for neurological and psychiatric applications. Temperature and loss effects must also

be considered in future research works in this scope. The ultimate goal is to support the design

of innovative active biomagnetic medical devices based on biophysical stimulation and their

future clinical translation to tissues or organs therapies of patients.
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Fig. 1. Computational models of inductive architectures: (a) P-model for the P-architecture;

(b) µM-model for the µM-architecture, and µM-kT-model for the µM-kT-architecture.

Domains: 1 - Culture medium (a liquid solution); 2 - Cellular layer (proliferation stage) or

cellular tissue (differentiation stage); 3 - Culture dish; 4 - Coil (quasi -planar coils: single-layer

coil for µM-architectures; multilayered coil for µM-kT-architectures); 5 - Polymeric substrate;

6 - Air; 7 - Core.

Fig. 2. Magnetic flux density delivered by biomagnetic stimulators to bone cellular tissue

for 5 mA current excitation along (x, y, 0.505) mm: (a) P-architecture; (b) µM-architecture;

(c) µM-kT-architecture. (d) Magnetic flux density along (x, 0, 0.505) mm delivered by all

architectures. Magnetic flux density along (x, y, 0.505) for differing current excitations: (e) 1,

5 and 10 mA current excitation applied to drive the µM-kT-architecture; (f) Magnetic flux

densities delivered by all architectures as a function of current excitation. The dashed line

represent the geometric center of the stimulator (x = 3 mm).

Fig. 3. Magnetic flux density delivered by µM-kT-architecture for 5 mA current excitation

along (x, y, 0.505) mm: (a) influence of a coil design comprising 20, 500, 1000 and 2000 turns

(the coil outer diameter was also redesigned to allow this analysis); (b) Magnetic flux densities

as a function of the number of turns. The dashed line represent the geometric center of the

stimulator (x = 3 mm).

Fig. 4. Magnetic flux density delivered by µM-kT-architecture for 5 mA current excitation

along (x, y, 0.505) mm: (a) influence of 100 µm, 500 µm and 1 mm coil heights (the coil outer

diameter was also redesigned to allow this analysis); (b) influence of 500 µm, 900 µm and 2

mm core diameters. The dashed line represent the geometric center of the stimulator (x = 3

mm).

Fig. 5. Influence of the stimulators positioning on the distribution of magnetic stimuli along

(x, y, 0.505) mm provided by two biomagnetic stimulators based on µM-kT-architecture.

Fig. 6. In vitro stimulation on cell culture dishes of 35 mm in diameter using 9 µM-kT

stimulators with 6 mm of core diameter, 1 mm of height and 1000 coil turns, when driven

with 0.2 mA of current excitation.
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