1,880 research outputs found

    Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments

    Get PDF
    Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm

    Tape recorder failure investigation

    Get PDF
    Two end-item tape recorders lost 4:1 mode data recording mode capability at less than half of their 1 6,000-cycle, 4-year operating life. Subsequent life tests on two spare recorders also experienced 4:1 mode data loss at 8,000 and 11,700 cycles. Tear down inspection after completion of the life tests showed that the tape had worn through the alfesil record and reproduce heads. An investigation was initiated to understand the cause of excessive tape head wear and the reasons why the 4:1 mode data rate, low-speed mode is more damaging than the 1:1 mode data rate, high-speed recording mode. The objective was to establish how operating conditions (tape speed, humidity, temperature, stop/start cycles) affects head life with the goal of extending head life on the remaining in-service tape recorders. Another interest was to explain why an earlier vendor life test showed capability beyond 16,000 cycles

    Incorporation of excluded volume correlations into Poisson-Boltzmann theory

    Get PDF
    We investigate the effect of excluded volume interactions on the electrolyte distribution around a charged macroion. First, we introduce a criterion for determining when hard-core effects should be taken into account beyond standard mean field Poisson-Boltzmann (PB) theory. Next, we demonstrate that several commonly proposed local density functional approaches for excluded volume interactions cannot be used for this purpose. Instead, we employ a non-local excess free energy by using a simple constant weight approach. We compare the ion distribution and osmotic pressure predicted by this theory with Monte Carlo simulations. They agree very well for weakly developed correlations and give the correct layering effect for stronger ones. In all investigated cases our simple weighted density theory yields more realistic results than the standard PB approach, whereas all local density theories do not improve on the PB density profiles but on the contrary, deviate even more from the simulation results.Comment: 23 pages, 7 figures, 1 tabl

    Fractionation effects in phase equilibria of polydisperse hard sphere colloids

    Full text link
    The equilibrium phase behaviour of hard spheres with size polydispersity is studied theoretically. We solve numerically the exact phase equilibrium equations that result from accurate free energy expressions for the fluid and solid phases, while accounting fully for size fractionation between coexisting phases. Fluids up to the largest polydispersities that we can study (around 14%) can phase separate by splitting off a solid with a much narrower size distribution. This shows that experimentally observed terminal polydispersities above which phase separation no longer occurs must be due to non-equilibrium effects. We find no evidence of re-entrant melting; instead, sufficiently compressed solids phase separate into two or more solid phases. Under appropriate conditions, coexistence of multiple solids with a fluid phase is also predicted. The solids have smaller polydispersities than the parent phase as expected, while the reverse is true for the fluid phase, which contains predominantly smaller particles but also residual amounts of the larger ones. The properties of the coexisting phases are studied in detail; mean diameter, polydispersity and volume fraction of the phases all reveal marked fractionation. We also propose a method for constructing quantities that optimally distinguish between the coexisting phases, using Principal Component Analysis in the space of density distributions. We conclude by comparing our predictions to perturbative theories for near-monodisperse systems and to Monte Carlo simulations at imposed chemical potential distribution, and find excellent agreement.Comment: 21 pages, 23 figures, 2 table

    Concept for a Large Scalable Space Telescope: In-Space Assembly

    Get PDF
    We present a conceptual design for a scalable (10-50 meter segmented filled-aperture) space observatory operating at UV-optical-near infrared wavelengths. This telescope is designed for assembly in space by robots, astronauts or a combination of the two, as envisioned in NASA s Vision for Space Exploration. Our operations concept for this-space telescope provides for assembly and check-out in an Earth Moon L2 (EML2) orbit, and transport to a Sun-Earth L2 (SEL2) orbit for science operations and routine servicing, with return to EML2 for major servicing. We have developed and analyzed initial designs for the optical, structural, thermal and attitude control systems for a 30-m aperture space telescope. We further describe how the separate components are packaged for launch by heavy lift vehicle(s) and the approach for the robot assembly of the telescope from these components

    A cluster theory for a Janus fluid

    Full text link
    Recent Monte Carlo simulations on the Kern and Frenkel model of a Janus fluid have revealed that in the vapour phase there is the formation of preferred clusters made up of a well-defined number of particles: the micelles and the vesicles. A cluster theory is developed to approximate the exact clustering properties stemming from the simulations. It is shown that the theory is able to reproduce the micellisation phenomenon.Comment: 27 pages, 8 figures, 6 table

    Validation of a New Predictive Risk Model: Measuring the Impact of the Major Modifiable Risks of Death for Patients and Populations

    Get PDF
    Background: Modifiable risks account for a large fraction of disease and death, but clinicians and patients lack tools to identify high risk populations or compare the possible benefit of different interventions. Methods: We used data on the distribution of exposure to 12 major behavioral and biometric risk factors inthe US population, mortality rates by cause, and estimates of the proportional hazards of risk factor exposure from published systematic reviews to develop a risk prediction model that estimates an adult\u27s 10 year mortality risk compared to a population with optimum risk factors. We compared predicted risk to observed mortality in 8,241 respondents in NHANES 1988-1994 and NHANES 1999-2004 with linked mortality data up to the end of 2006

    Parity forbidden excitations of Sr2CuO2Cl2 revealed by optical third-harmonic spectroscopy

    Full text link
    We present the first study of nonlinear optical third harmonic generation in the strongly correlated charge-transfer insulator Sr2CuO2Cl2. For fundamental excitation in the near-infrared, the THG spectrum reveals a strongly resonant response for photon energies near 0.7 eV. Polarization analysis reveals this novel resonance to be only partially accounted for by three-photon excitation to the optical charge-transfer exciton, and indicates that an even-parity excitation at 2 eV, with a_1g symmetry, participates in the third harmonic susceptibility.Comment: Requires RevTeX v4.0beta

    Transport Coefficients for Granular Media from Molecular Dynamics Simulations

    Full text link
    Under many conditions, macroscopic grains flow like a fluid; kinetic theory pred icts continuum equations of motion for this granular fluid. In order to test the theory, we perform event driven molecular simulations of a two-dimensional gas of inelastic hard disks, driven by contact with a heat bath. Even for strong dissipation, high densities, and small numbers of particles, we find that continuum theory describes the system well. With a bath that heats the gas homogeneously, strong velocity correlations produce a slightly smaller energy loss due to inelastic collisions than that predicted by kinetic theory. With an inhomogeneous heat bath, thermal or velocity gradients are induced. Determination of the resulting fluxes allows calculation of the thermal conductivity and shear viscosity, which are compared to the predictions of granular kinetic theory, and which can be used in continuum modeling of granular flows. The shear viscosity is close to the prediction of kinetic theory, while the thermal conductivity can be overestimated by a factor of 2; in each case, transport is lowered with increasing inelasticity.Comment: 14 pages, 17 figures, 39 references, submitted to PRE feb 199

    New avenue to the Parton Distribution Functions: Self-Organizing Maps

    Full text link
    Neural network algorithms have been recently applied to construct Parton Distribution Function (PDF) parametrizations which provide an alternative to standard global fitting procedures. We propose a technique based on an interactive neural network algorithm using Self-Organizing Maps (SOMs). SOMs are a class of clustering algorithms based on competitive learning among spatially-ordered neurons. Our SOMs are trained on selections of stochastically generated PDF samples. The selection criterion for every optimization iteration is based on the features of the clustered PDFs. Our main goal is to provide a fitting procedure that, at variance with the standard neural network approaches, allows for an increased control of the systematic bias by enabling user interaction in the various stages of the process.Comment: 34 pages, 17 figures, minor revisions, 2 figures update
    corecore