204 research outputs found

    Opportunistic validation of sulfur dioxide in the Sarychev Peak volcanic eruption cloud

    Get PDF
    We report attempted validation of Ozone Monitoring Instrument (OMI) sulfur dioxide (SO<sub>2</sub>) retrievals in the stratospheric volcanic cloud from Sarychev Peak (Kurile Islands) in June 2009, through opportunistic deployment of a ground-based ultraviolet (UV) spectrometer (FLYSPEC) as the volcanic cloud drifted over central Alaska. The volcanic cloud altitude (~12–14 km) was constrained using coincident CALIPSO lidar observations. By invoking some assumptions about the spatial distribution of SO<sub>2</sub>, we derive averages of FLYSPEC vertical SO<sub>2</sub> columns for comparison with OMI SO<sub>2</sub> measurements. Despite limited data, we find minimum OMI-FLYSPEC differences within measurement uncertainties, which support the validity of the operational OMI SO<sub>2</sub> algorithm. However, our analysis also highlights the challenges involved in comparing datasets representing markedly different spatial and temporal scales. This effort represents the first attempt to validate SO<sub>2</sub> in a stratospheric volcanic cloud using a mobile ground-based instrument, and demonstrates the need for a network of rapidly deployable instruments for validation of space-based volcanic SO<sub>2</sub> measurements

    Long range transport and fate of a stratospheric volcanic cloud from Soufrière Hills volcano, Montserrat

    Get PDF
    International audienceVolcanic eruptions emit gases, ash particles and hydrometeors into the atmosphere, occasionally reaching heights of 20 km or more, to reside in the stratospheric overworld where they affect the radiative balance of the atmosphere and the Earth's climate. Here we use satellite measurements and a Lagrangian particle dispersion model to determine the mass loadings, vertical penetration, horizontal extent, dispersion and transport of volcanic gases and particles in the stratosphere from the volcanic cloud emitted during the 20 May 2006 eruption of Soufrière Hills volcano, Montserrat, West Indies. Infrared, ultraviolet and microwave radiation measurements from two polar orbiters are used to quantify the gases and particles, and track the movement of the cloud for 23 days, over a distance of ~18 000 km. Approximately, 0.1±0.01 Tg(S) was injected into the stratosphere in the form of SO2: the largest single sulphur input to the stratosphere in 2006. Microwave Limb Sounder measurements indicate an enhanced mass of HCl of ~0.003?0.01 Tg. Geosynchronous satellite data reveal the rapid nature of the stratospheric injection and indicate that the eruption cloud contained ~2 Tg of ice, with very little ash reaching the stratosphere. These new satellite measurements of volcanic gases and particles can be used to test the sensitivity of climate to volcanic forcing and assess the impact of stratospheric sulphates on climate cooling

    A global catalogue of large SO \u3c inf\u3e 2 sources and emissions derived from the Ozone Monitoring Instrument

    Get PDF
    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr-1 to more than 4000 kt yr-1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005-2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr-1 and not detected by OMI

    In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC^4

    Get PDF
    A NASA DC-8 research aircraft penetrated tropospheric gas and aerosol plumes sourced from active volcanoes in Ecuador and Colombia during the Tropical Composition, Cloud and Climate Coupling (TC^4) mission in July–August 2007. The likely source volcanoes were Tungurahua (Ecuador) and Nevado del Huila (Colombia). The TC^4 data provide rare insight into the chemistry of volcanic plumes in the tropical troposphere and permit a comparison of SO_2 column amounts measured by the Ozone Monitoring Instrument (OMI) on the Aura satellite with in situ SO_2 measurements. Elevated concentrations of SO_2, sulfate aerosol, and particles were measured by DC-8 instrumentation in volcanic outflow at altitudes of 3–6 km. Estimated plume ages range from ~2 h at Huila to ~22–48 h downwind of Ecuador. The plumes contained sulfate-rich accumulation mode particles that were variably neutralized and often highly acidic. A significant fraction of supermicron volcanic ash was evident in one plume. In-plume O_3 concentrations were ~70%–80% of ambient levels downwind of Ecuador, but data are insufficient to ascribe this to O_3 depletion via reactive halogen chemistry. The TC^4 data record rapid cloud processing of the Huila volcanic plume involving aqueous-phase oxidation of SO_2 by H_2O_2, but overall the data suggest average in-plume SO_2 to sulfate conversion rates of ~1%–2% h^(−1). SO_2 column amounts measured in the Tungurahua plume (~0.1–0.2 Dobson units) are commensurate with average SO_2 columns retrieved from OMI measurements in the volcanic outflow region in July 2007. The TC^4 data set provides further evidence of the impact of volcanic emissions on tropospheric acidity and oxidizing capacity

    Satellite detection of volcanic ash from Eyjafjallajökull and the threat to aviation

    Get PDF
    Earth orbiting satellites provide an excellent means for monitoring and measuring emissions from volcanic eruptions. The recent eruption of Eyjafjallajökull in Iceland on 14 April, 2010 and the subsequent movement of the ash clouds were tracked using a variety of satellite instruments as they moved over Europe. Data from the rapid sampling (every 15 minutes) SEVIRI on Meteosat Second Generation were especially useful during this event as the thermal channels between 10–12 micron could be used to detect the ash signal and perform quantitative ash retrievals of mass loadings, optical depths and effective particle size. Higher-spatial resolution ( 1 km2) information from the MODIS sensors on NASA’s Terra and Aqua platforms were also analysed to determine ash microphysics and also to provide ash cloud top height. High-spectral resolution data from the IASI and AIRS sensors showed that initially quantities of ice, potentially with ash cores, were present, and that multi-species retrievals could be performed by exploiting the spectral content of the data. Vertically resolved ash layers were detected using the Caliop lidar on board the Calipso platform. Ash was clearly detected over Europe using the infra-red sensors with mass loadings typically in the range 0.1–5 gm-2, which for layers of 500–1000 m thickness, suggests ash concentrations in the range 0.1–10 mg m-3, and therefore represent a potential hazard to aviation.Little SO2 was detected at the start of the eruption, although both OMI and AIRS detected upper-level SO2 on 15 April. By late April and early May, 0.1–0.3 Tg (SO2) could be detected using these sensors. The wealth of satellite data available, some in near real-time, and the ability of infrared and ultra-violet sensors to detect volcanic ash and SO2 are emphasised in this presentation. The ash/aviation problem can be addressed using remote sensing measurements, validated with ground-based and air-borne, and combined with dispersion modelling. The volcanic ash threat to aviation can be ameliorated by utilising these space-based resources

    In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC

    Get PDF
    A NASA DC‐8 research aircraft penetrated tropospheric gas and aerosol plumes sourced from active volcanoes in Ecuador and Colombia during the Tropical Composition, Cloud and Climate Coupling (TC4 ) mission in July–August 2007. The likely source volcanoes were Tungurahua (Ecuador) and Nevado del Huila (Colombia). The TC4 data provide rare insight into the chemistry of volcanic plumes in the tropical troposphere and permit a comparison of SO2 column amounts measured by the Ozone Monitoring Instrument (OMI) on the Aura satellite with in situ SO2 measurements. Elevated concentrations of SO2, sulfate aerosol, and particles were measured by DC‐8 instrumentation in volcanic outflow at altitudes of 3–6 km. Estimated plume ages range from ∼2 h at Huila to ∼22–48 h downwind of Ecuador. The plumes contained sulfate‐rich accumulation mode particles that were variably neutralized and often highly acidic. A significant fraction of supermicron volcanic ash was evident in one plume. In‐plume O3 concentrations were ∼70%–80% of ambient levels downwind of Ecuador, but data are insufficient to ascribe this to O3 depletion via reactive halogen chemistry. The TC4 data record rapid cloud processing of the Huila volcanic plume involving aqueous‐phase oxidation of SO2 by H2O2, but overall the data suggest average in‐plume SO2 to sulfate conversion rates of ∼1%–2% h−1 . SO2 column amounts measured in the Tungurahua plume (∼0.1–0.2 Dobson units) are commensurate with average SO2 columns retrieved from OMI measurements in the volcanic outflow region in July 2007. The TC4 data set provides further evidence of the impact of volcanic emissions on tropospheric acidity and oxidizing capacit

    Modeling of 2008 Kasatochi volcanic sulfate direct radiative forcing: Assimilation of OMI SO \u3c inf\u3e 2 plume height data and comparison with MODIS and CALIOP observations

    Get PDF
    Volcanic SO2 column amount and injection height retrieved from the Ozone Monitoring Instrument (OMI) with the Extended Iterative Spectral Fitting (EISF) technique are used to initialize a global chemistry transport model (GEOS-Chem) to simulate the atmospheric transport and lifecycle of volcanic SO2 and sulfate aerosol from the 2008 Kasatochi eruption, and to subsequently estimate the direct shortwave, top-of-the-atmosphere radiative forcing of the volcanic sulfate aerosol. Analysis shows that the integrated use of OMI SO2 plume height in GEOS-Chem yields: (a) good agreement of the temporal evolution of 3-D volcanic sulfate distributions between model simulations and satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), and (b) an e-folding time for volcanic SO 2 that is consistent with OMI measurements, reflecting SO2 oxidation in the upper troposphere and stratosphere is reliably represented in the model. However, a consistent (∼25%) low bias is found in the GEOS-Chem simulated SO2 burden, and is likely due to a high (∼20%) bias of cloud liquid water amount (as compared to the MODIS cloud product) and the resultant stronger SO2 oxidation in the GEOS meteorological data during the first week after eruption when part of SO2 underwent aqueous-phase oxidation in clouds. Radiative transfer calculations show that the forcing by Kasatochi volcanic sulfate aerosol becomes negligible 6 months after the eruption, but its global average over the first month is -1.3 Wm -2, with the majority of the forcing-influenced region located north of 20 N, and with daily peak values up to -2 Wm-2 on days 16-17. Sensitivity experiments show that every 2 km decrease of SO2 injection height in the GEOS-Chem simulations will result in a ∼25 % decrease in volcanic sulfate forcing; similar sensitivity but opposite sign also holds for a 0.03 μm increase of geometric radius of the volcanic aerosol particles. Both sensitivities highlight the need to characterize the SO 2 plume height and aerosol particle size from space. While more research efforts are warranted, this study is among the first to assimilate both satellite-based SO2 plume height and amount into a chemical transport model for an improved simulation of volcanic SO2 and sulfate transport

    Satellite detection of volcanic ash from Eyjafjallajökull and the threat to aviation

    Get PDF
    Earth orbiting satellites provide an excellent means for monitoring and measuring emissions from volcanic eruptions. The recent eruption of Eyjafjallajökull in Iceland on 14 April, 2010 and the subsequent movement of the ash clouds were tracked using a variety of satellite instruments as they moved over Europe. Data from the rapid sampling (every 15 minutes) SEVIRI on Meteosat Second Generation were especially useful during this event as the thermal channels between 10–12 micron could be used to detect the ash signal and perform quantitative ash retrievals of mass loadings, optical depths and effective particle size. Higher-spatial resolution ( 1 km2) information from the MODIS sensors on NASA’s Terra and Aqua platforms were also analysed to determine ash microphysics and also to provide ash cloud top height. High-spectral resolution data from the IASI and AIRS sensors showed that initially quantities of ice, potentially with ash cores, were present, and that multi-species retrievals could be performed by exploiting the spectral content of the data. Vertically resolved ash layers were detected using the Caliop lidar on board the Calipso platform. Ash was clearly detected over Europe using the infra-red sensors with mass loadings typically in the range 0.1–5 gm-2, which for layers of 500–1000 m thickness, suggests ash concentrations in the range 0.1–10 mg m-3, and therefore represent a potential hazard to aviation.Little SO2 was detected at the start of the eruption, although both OMI and AIRS detected upper-level SO2 on 15 April. By late April and early May, 0.1–0.3 Tg (SO2) could be detected using these sensors. The wealth of satellite data available, some in near real-time, and the ability of infrared and ultra-violet sensors to detect volcanic ash and SO2 are emphasised in this presentation. The ash/aviation problem can be addressed using remote sensing measurements, validated with ground-based and air-borne, and combined with dispersion modelling. The volcanic ash threat to aviation can be ameliorated by utilising these space-based resources

    Modeling of 2008 Kasatochi Volcanic Sulfate Direct Radiative Forcing: Assimilation of OMI SO2 Plume Height Data and Comparison with MODIS and CALIOP Observations

    Get PDF
    Volcanic SO2 column amount and injection height retrieved from the Ozone Monitoring Instrument (OMI) with the Extended Iterative Spectral Fitting (EISF) technique are used to initialize a global chemistry transport model (GEOS-Chem) to simulate the atmospheric transport and lifecycle of volcanic SO2 and sulfate aerosol from the 2008 Kasatochi eruption, and to subsequently estimate the direct shortwave, top-of-the-atmosphere radiative forcing of the volcanic sulfate aerosol. Analysis shows that the integrated use of OMI SO2 plume height in GEOS-Chem yields: (a) good agreement of the temporal evolution of 3-D volcanic sulfate distributions between model simulations and satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), and (b) an e-folding time for volcanic SO2 that is consistent with OMI measurements, reflecting SO2 oxidation in the upper troposphere and stratosphere is reliably represented in the model. However, a consistent (approx. 25 %) low bias is found in the GEOS-Chem simulated SO2 burden, and is likely due to a high (approx.20 %) bias of cloud liquid water amount (as compared to the MODIS cloud product) and the resultant stronger SO2 oxidation in the GEOS meteorological data during the first week after eruption when part of SO2 underwent aqueous-phase oxidation in clouds. Radiative transfer calculations show that the forcing by Kasatochi volcanic sulfate aerosol becomes negligible 6 months after the eruption, but its global average over the first month is -1.3W/sq m, with the majority of the forcing-influenced region located north of 20degN, and with daily peak values up to -2W/sq m on days 16-17. Sensitivity experiments show that every 2 km decrease of SO2 injection height in the GEOS-Chem simulations will result in a approx.25% decrease in volcanic sulfate forcing; similar sensitivity but opposite sign also holds for a 0.03 m increase of geometric radius of the volcanic aerosol particles. Both sensitivities highlight the need to characterize the SO2 plume height and aerosol particle size from space. While more research efforts are warranted, this study is among the first to assimilate both satellite-based SO2 plume height and amount into a chemical transport model for an improved simulation of volcanic SO2 and sulfate transport

    Underestimated Passive Volcanic Sulfur Degassing Implies Overestimated Anthropogenic Aerosol Forcing

    Get PDF
    The Arctic is warming at almost four times the global rate. An estimated sixty percent of greenhouse-gas-induced Arctic warming has been offset by anthropogenic aerosols, but the contribution of aerosols to radiative forcing (RF) represents the largest uncertainty in estimating total RF, largely due to unknown preindustrial aerosol abundance. Here, sulfur isotope measurements in a Greenland ice core show that passive volcanic degassing contributes up to 66 ± 10% of preindustrial ice core sulfate in years without major eruptions. A state-of-the-art model indicates passive volcanic sulfur emissions influencing the Arctic are underestimated by up to a factor of three, possibly because many volcanic inventories do not include hydrogen sulfide emissions. Higher preindustrial volcanic sulfur emissions reduce modeled anthropogenic Arctic aerosol cooling by up to a factor of two (+0.11 to +0.29 W m−2), suggesting that underestimating passive volcanic sulfur emissions has significant implications for anthropogenic-induced Arctic climate change
    corecore