142 research outputs found

    GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information

    Get PDF
    GeneCodis is a web server application for functional analysis of gene lists that integrates different sources of information and finds modular patterns of interrelated annotations. This integrative approach has proved to be useful for the interpretation of high-throughput experiments and therefore a new version of the system has been developed to expand its functionality and scope. GeneCodis now expands the functional information with regulatory patterns and user-defined annotations, offering the possibility of integrating all sources of information in the same analysis. Traditional singular enrichment is now permitted and more organisms and gene identifiers have been added to the database. The application has been re-engineered to improve performance, accessibility and scalability. In addition, GeneCodis can now be accessed through a public SOAP web services interface, enabling users to perform analysis from their own scripts and workflows. The application is freely available at http://genecodis.dacya.ucm.e

    SENT: semantic features in text

    Get PDF
    We present SENT (semantic features in text), a functional interpretation tool based on literature analysis. SENT uses Non-negative Matrix Factorization to identify topics in the scientific articles related to a collection of genes or their products, and use them to group and summarize these genes. In addition, the application allows users to rank and explore the articles that best relate to the topics found, helping put the analysis results into context. This approach is useful as an exploratory step in the workflow of interpreting and understanding experimental data, shedding some light into the complex underlying biological mechanisms. This tool provides a user-friendly interface via a web site, and a programmatic access via a SOAP web server. SENT is freely accessible at http://sent.dacya.ucm.es

    bioNMF: a versatile tool for non-negative matrix factorization in biology

    Get PDF
    BACKGROUND: In the Bioinformatics field, a great deal of interest has been given to Non-negative matrix factorization technique (NMF), due to its capability of providing new insights and relevant information about the complex latent relationships in experimental data sets. This method, and some of its variants, has been successfully applied to gene expression, sequence analysis, functional characterization of genes and text mining. Even if the interest on this technique by the bioinformatics community has been increased during the last few years, there are not many available simple standalone tools to specifically perform these types of data analysis in an integrated environment. RESULTS: In this work we propose a versatile and user-friendly tool that implements the NMF methodology in different analysis contexts to support some of the most important reported applications of this new methodology. This includes clustering and biclustering gene expression data, protein sequence analysis, text mining of biomedical literature and sample classification using gene expression. The tool, which is named bioNMF, also contains a user-friendly graphical interface to explore results in an interactive manner and facilitate in this way the exploratory data analysis process. CONCLUSION: bioNMF is a standalone versatile application which does not require any special installation or libraries. It can be used for most of the multiple applications proposed in the bioinformatics field or to support new research using this method. This tool is publicly available at

    Simultaneous non-negative matrix factorization for multiple large scale gene expression datasets in toxicology

    Get PDF
    Non-negative matrix factorization is a useful tool for reducing the dimension of large datasets. This work considers simultaneous non-negative matrix factorization of multiple sources of data. In particular, we perform the first study that involves more than two datasets. We discuss the algorithmic issues required to convert the approach into a practical computational tool and apply the technique to new gene expression data quantifying the molecular changes in four tissue types due to different dosages of an experimental panPPAR agonist in mouse. This study is of interest in toxicology because, whilst PPARs form potential therapeutic targets for diabetes, it is known that they can induce serious side-effects. Our results show that the practical simultaneous non-negative matrix factorization developed here can add value to the data analysis. In particular, we find that factorizing the data as a single object allows us to distinguish between the four tissue types, but does not correctly reproduce the known dosage level groups. Applying our new approach, which treats the four tissue types as providing distinct, but related, datasets, we find that the dosage level groups are respected. The new algorithm then provides separate gene list orderings that can be studied for each tissue type, and compared with the ordering arising from the single factorization. We find that many of our conclusions can be corroborated with known biological behaviour, and others offer new insights into the toxicological effects. Overall, the algorithm shows promise for early detection of toxicity in the drug discovery process

    Metagenes Associated with Survival in Non-Small Cell Lung Cancer

    Get PDF
    NSCLC (non-small cell lung cancer) comprises about 80% of all lung cancer cases worldwide. Surgery is most effective treatment for patients with early-stage disease. However, 30%–55% of these patients develop recurrence within 5 years. Therefore, markers that can be used to accurately classify early-stage NSCLC patients into different prognostic groups may be helpful in selecting patients who should receive specific therapies

    Computational Analysis of HIV-1 Resistance Based on Gene Expression Profiles and the Virus-Host Interaction Network

    Get PDF
    A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS) therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR) and Incremental Feature Selection (IFS) methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection

    Transcriptional dysregulation of Interferome in experimental and human Multiple Sclerosis

    Get PDF
    Recent evidence indicates that single multiple sclerosis (MS) susceptibility genes involved in interferon (IFN) signaling display altered transcript levels in peripheral blood of untreated MS subjects, suggesting that responsiveness to endogenous IFN is dysregulated during neuroinflammation. To prove this hypothesis we exploited the systematic collection of IFN regulated genes (IRG) provided by the Interferome database and mapped Interferome changes in experimental and human MS. Indeed, central nervous system tissue and encephalitogenic CD4 T cells during experimental autoimmune encephalomyelitis were characterized by massive changes in Interferome transcription. Further, the analysis of almost 500 human blood transcriptomes showed that (i) several IRG changed expression at distinct MS stages with a core of 21 transcripts concordantly dysregulated in all MS forms compared with healthy subjects; (ii) 100 differentially expressed IRG were validated in independent case-control cohorts; and (iii) 53 out of 100 dysregulated IRG were targeted by IFN-beta treatment in vivo. Finally, ex vivo and in vitro experiments established that IFN-beta administration modulated expression of two IRG, ARRB1 and CHP1, in immune cells. Our study confirms the impairment of Interferome in experimental and human MS, and describes IRG signatures at distinct disease stages which can represent novel therapeutic targets in MS

    A literature-based similarity metric for biological processes

    Get PDF
    BACKGROUND: Recent analyses in systems biology pursue the discovery of functional modules within the cell. Recognition of such modules requires the integrative analysis of genome-wide experimental data together with available functional schemes. In this line, methods to bridge the gap between the abstract definitions of cellular processes in current schemes and the interlinked nature of biological networks are required. RESULTS: This work explores the use of the scientific literature to establish potential relationships among cellular processes. To this end we haveused a document based similarity method to compute pair-wise similarities of the biological processes described in the Gene Ontology (GO). The method has been applied to the biological processes annotated for the Saccharomyces cerevisiae genome. We compared our results with similarities obtained with two ontology-based metrics, as well as with gene product annotation relationships. We show that the literature-based metric conserves most direct ontological relationships, while reveals biologically sounded similarities that are not obtained using ontology-based metrics and/or genome annotation. CONCLUSION: The scientific literature is a valuable source of information from which to compute similarities among biological processes. The associations discovered by literature analysis are a valuable complement to those encoded in existing functional schemes, and those that arise by genome annotation. These similarities can be used to conveniently map the interlinked structure of cellular processes in a particular organism

    Quantification of miRNA-mRNA Interactions

    Get PDF
    miRNAs are small RNA molecules (′ 22nt) that interact with their corresponding target mRNAs inhibiting the translation of the mRNA into proteins and cleaving the target mRNA. This second effect diminishes the overall expression of the target mRNA. Several miRNA-mRNA relationship databases have been deployed, most of them based on sequence complementarities. However, the number of false positives in these databases is large and they do not overlap completely. Recently, it has been proposed to combine expression measurement from both miRNA and mRNA and sequence based predictions to achieve more accurate relationships. In our work, we use LASSO regression with non-positive constraints to integrate both sources of information. LASSO enforces the sparseness of the solution and the non-positive constraints restrict the search of miRNA targets to those with down-regulation effects on the mRNA expression. We named this method TaLasso (miRNA-Target LASSO)
    corecore