3 research outputs found

    Deterministic Cache-based Execution of On-line Self-Test Routines in Multi-core Automotive System-on-Chips

    Get PDF
    Traditionally, the usage of caches and deterministic execution of on-line self-test procedures have been considered two mutually exclusive concepts. At the same time, software executed in a multi-core context suffers of a limited timing predictability due to the higher system bus contention. When dealing with selftest procedures, this higher contention might lead to a fluctuating fault coverage or even the failure of some test programs. This paper presents a cache-based strategy for achieving both deterministic behaviour and stable fault coverage from the execution of self-test procedures in multi-core systems. The proposed strategy is applied to two representative modules negatively affected by a multi-core execution: synchronous imprecise interrupts logic and pipeline hazard detection unit. The experiments illustrate that it is possible to achieve a stable execution while also improving the state-of-the-art approaches for the on-line testing of embedded microprocessors. The effectiveness of the methodology was assessed on all the three cores of a multi-core industrial System- on-Chip intended for automotive ASIL D applications

    NEUROPULS: NEUROmorphic energy-efficient secure accelerators based on Phase change materials aUgmented siLicon photonicS

    No full text
    International audienceThis special session paper introduces the Horizon Europe NEUROPULS project, which targets the development of secure and energy-efficient RISC-V interfaced neuromorphic accelerators using augmented silicon photonics technology. Our approach aims to develop an augmented silicon photonics platform, an FPGA-powered RISC-V-connected computing platform, and a complete simulation platform to demonstrate the neuromorphic accelerator capabilities. In particular, their main advantages and limitations will be addressed concerning the underpinning technology for each platform. Then, we will discuss three targeted use cases for edge-computing applications: Global National Satellite System (GNSS) anti-jamming, autonomous driving, and anomaly detection in edge devices. Finally, we will address the reliability and security aspects of the stand-alone accelerator implementation and the project use case

    NEUROPULS: NEUROmorphic energy-efficient secure accelerators based on Phase change materials aUgmented siLicon photonicS

    Get PDF
    This special session paper introduces the Horizon Europe NEUROPULS project, which targets the development of secure and energy-efficient RISC-V interfaced neuromorphic accelerators using augmented silicon photonics technology. Our approach aims to develop an augmented silicon photonics platform, an FPGA-powered RISC-V-connected computing platform, and a complete simulation platform to demonstrate the neuromorphic accelerator capabilities. In particular, their main advantages and limitations will be addressed concerning the underpinning technology for each platform. Then, we will discuss three targeted use cases for edge-computing applications: Global National Satellite System (GNSS) anti-jamming, autonomous driving, and anomaly detection in edge devices. Finally, we will address the reliability and security aspects of the stand-alone accelerator implementation and the project use cases.Comment: 10 pages, 2 figures, conferenc
    corecore