38 research outputs found

    Does interspecific competition drive patterns of habitat use in desert bat communities?

    No full text
    Bodies of water are a key foraging habitat for insectivorous bats. Since water is a scarce and limiting resource in arid environments, bodies of open water may have a structuring effect on desert bat communities, resulting in temporal or spatial partitioning of bat activity. Using acoustic monitoring, we studied the spatial and temporal activity patterns of insectivorous bats over desert ponds, and hypothesised that sympatric bat species partition the foraging space above ponds based on interspecific competitive interactions. We used indirect measures of competition (niche overlap and competition coefficients from the regression method) and tested for differences in pond habitat selection and peak activity time over ponds. We examined the effect of changes in the activity of bat species on their potential competitors. We found that interspecific competition affects bat community structure and activity patterns. Competing species partitioned their use of ponds spatially, whereby each species was associated with different pond size and hydroperiod (the number of months a pond holds water) categories, as well as temporally, whereby their activity peaked at different hours of the night. The drying out of temporary ponds increased temporal partitioning over permanent ponds. Differences in the activity of species over ponds in response to the presence or absence of their competitors lend further support to the role of interspecific competition in structuring desert bat communities. We suggest that habitat use and night activity pattern of insectivorous bats in arid environments reflect the trade-offs between selection of preferred pond type or activity time and constraints posed by competitive interactions

    Pond characteristics as determinants of species diversity and community composition in desert bats

    No full text
    Although water availability is known to affect landscape-scale patterns of wildlife diversity and distribution in arid environments, little is known about the microhabitat characteristics that shape the local-scale distribution of desert bats. We examined the relative importance of pond microhabitat characteristics for the conservation of bats, and hypothesized that in arid environments, patterns of bat diversity and community composition relate to the size of the pond and its hydroperiod (the number of months a pond holds water), a term we use to distinguish between permanent, semi-permanent and temporary ponds. We combined acoustic monitoring with video recording and an experimental approach to study bat activity over natural ponds in the Negev Desert, Israel. We found that both within and between ponds bat species richness and activity significantly increased with pond size. An experimental reduction of pond size led to a significant reduction in bat species richness and activity and affected the bat community composition. In contrast to pond size, pond hydroperiod did not affect bat diversity, as temporary ponds had equivalent levels of bat species richness and activity to permanent ponds. However, hydroperiod did couple with pond size to affect the bat community composition, whereby non-desert bat species that have a higher frequency of drinking were associated with larger and more permanent ponds. Our results highlight the importance of larger temporary ponds (ponds over 15 m in length and 0.5 m in depth) for the conservation of biodiversity in arid environments

    Bats and Water: Anthropogenic Alterations Threaten Global Bat Populations

    Get PDF
    Natural bodies of open water in desert landscapes, such as springs and ephemeral pools, and the plant-life they support, are important resources for the survival of animals in hyper arid, arid and semi-arid (dryland) environments. Human-made artificial water sources, i.e. waste-water treatment ponds, catchments and reservoirs, have become equally important for wildlife in those areas. Bodies of open water are used by bats either for drinking and/or as sites over which to forage for aquatic emergent insects. Due to the scarcity of available water for replenishing water losses during roosting and flight, open bodies of water of many shapes and sizes may well be a key resource influencing the survival, activity, resource use and the distribution of insectivorous bats. In this chapter, we review the current knowledge of bats living in semi- and arid regions around the world and discuss the factors that influence their richness, behaviour and activity around bodies of water. We further present how increased anthropogenic changes in hydrology and water availability may influence the distribution of species of bats in desert environments and offer directions for future research on basic and applied aspects on bats and the water they use in these environments

    Ultrasound avoidance by flying antlions (<i>Myrmeleontidae</i>)

    Get PDF

    Effects of Ethanol on Food Consumption and Skin Temperature in the Egyptian Fruit Bat (Rousettus aegyptiacus)

    No full text
    Since mammalian frugivores generally choose to eat ripe fruit in which ethanol concentration ([EtOH]) increases as the fruit ripens, we asked whether ethanol acts as an appetitive stimulant in the Egyptian fruit bat, Rousettus aegyptiacus, and also studied the effects of ethanol on their skin temperature (Ts). We hypothesized that the responses of fruit bats to dietary ethanol are concentration dependent and tested the predictions that the bats’ response is positive, i.e., they eat more when [EtOH] in the food is in the range found in naturally ripe fruit, while it negatively affects them at higher concentrations. We also tested the prediction that in winter, even when availability of fruit is low and thermoregulatory costs are high, ingestion of ethanol by fruit bats is low because assimilated ethanol reduces shivering thermogenesis and peripheral vasodilation; these, alone or together, are detrimental to the maintenance of body temperature (Tb). In summer, captive bats offered food containing 0.1% ethanol significantly increased consumption over food with no ethanol; they did not change consumption when food contained 0.01, 0.3, or 0.5% ethanol; but significantly decreased consumption at higher levels of ethanol [EtOH], i.e., 1 and 2%. In winter, captive bats ate significantly less when their food contained 0.1% ethanol than when it contained 0, 0.3, or 0.5%. During summer, freshly caught bats ate significantly more ethanol-containing food than freshly caught bats in winter. Skin temperature (Ts) in Egyptian fruit bats decreased significantly at an ambient temperature (Ta) of 128C (winter conditions) after gavage with liquid food containing 1% ethanol. The effect was clearly temperature-dependent, since ethanol did not have the same effect on bats gavaged with food containing 1% or no ethanol at a Ta of 258C (summer conditions). In conclusion, ethanol may act as an appetitive stimulant for Egyptian fruit bats at low concentrations, but only in summer. Bats are deterred by food containing [EtOH] corresponding to that in overripe, unpalatable fruit (1 and 2%). Furthermore, during winter, Egyptian fruit bats are deterred by ethanol-rich fruit, possibly due to the potential thermoregulatory consequences of ethanol consumption

    Reproductive Energetics of Captive and Free‐Ranging Egyptian Fruit Bats (Rousettus Aegyptiacus)

    No full text
    This study explored how a flying frugivorous mammal, the Egyptian fruit bat (Rousettus aegyptiacus), meets the increased energy requirements of reproduction. This bat feeds on low‐protein fruit, and females have bimodal polyestrous cycles that are relatively long for a small mammal. We measured the energy and water balance of captive nonreproductive, pregnant, and lactating females, and of free‐ranging lactating females. Our results indicate that females use more than one strategy to cope with the high energy demands of reproduction. These strategies may change according to the availability of food and reproductive status. The primary strategy near the end of pregnancy and at peak lactation was increased food consumption. In the laboratory, mean metabolizable energy intake (MEI) of pregnant and lactating females (271 and 360 kJ/d, respectively) increased by 35% and 80%, respectively, compared to that of nonreproductive females (200 kJ/d). At peak lactation, energy intake measured by doubly labeled water averaged 350 kJ/d. During late pregnancy, water turnover rate (WTO) increased by 15–23% compared to that of nonreproductive females. In the field, WTO at peak lactation was 44% higher than in captive lactating females, and milk production was estimated to be 22 mL/d. Absolute resting metabolic rate (RMR) in late pregnancy was significantly lower than the RMR of nonreproductive females, suggesting that a metabolic depression was used as a compensatory mechanism. Fat deposition was evident during the second pregnancy, when food availability was high, presumably in preparation for a second lactation period. Fetal tissue represented ∼1.3% of the total energy assimilated during pregnancy, and the gross efficiency of lactation averaged 24%. Both values are lower than the values reported for other eutherian mammals, but similar to estimates for other bat species, and probably reflect the high energy costs associated with flight. A long lactation period may be constrained by flight and the low‐protein diet of fruits. We

    Insect Pest Pheromone Lures May Enhance the Activity of Insectivorous Bats in Mediterranean Vineyards and Apple Orchards

    No full text
    Insectivorous bats may play a significant role in regulating populations of agricultural pests. Currently, few methods are available to enhance the activity of bats in agroecosystems. We asked whether synthetic sex pheromones, used in integrated pest management (IPM) to impede the mating success of major moth pests in vineyards and apple orchards, could also enhance the activity and richness of insectivorous bats, their natural enemies. We hypothesized that applying concentrated sex pheromones of pest moths will alter the movement patterns of male moths, indirectly affecting bat richness and activity. We compared the effect of sex pheromones on bats under two different agricultural management systems: conventional farming and IPM. We used synthetic sex pheromones of Lobesia botrana or Cydia pomonella; both are among the most destructive moth pests in vineyards and apple orchards, respectively. Using passive acoustic monitoring, we compared species richness and bat activity in plots without and with additional pheromones. In both IPM vineyards and IPM apple orchards, total bat activity and species richness significantly increased after applying the pheromone treatment, with a positive correlation between total bat activity and the numbers of moth pests in the vineyards. In conventional vineyards, bat species richness increased significantly, but not total bat activity. IPM vineyards had significantly higher species richness than conventional vineyards, both before and after the pheromone treatment. Our study shows that moth pheromone lures, commonly used as a pest control method, may also attract insectivorous bats, which in turn may further suppress the pests. These findings highlight the potential of insectivorous bats as pest control agents and call for further research directed at integrating them in IPM practices

    Is the Egyptian fruit-bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat\u27s diet and implications for its conservation

    No full text
    The Egyptian fruit-bat Rousettus aegyptiacus is regarded as a pest for agriculture. However, no quantitative data on its diet have been collected in Israel or in other Mediterranean areas, and control measures in the past reduced populations of insectivorous bats in Israel. We therefore studied the relative importance of native versus commercially cultivated fruit plants by analysis of bat faeces. Droppings were collected during 1993–1995 in two roost-sites in the Carmel National Park. Results show that the bat feeds mainly on fruits but leaves and pollen are also eaten. Leaf eating was observed mainly during winter, when bats may face times of severe decrease in fruit availability and quality. Only four fruit species (15%) of the bat\u27s diet are commercially grown and only two of these in the research area. Therefore the definition of the fruit-bat as a major agricultural pest should be re-examined. Two effective methods for controlling damage caused by bats are discussed
    corecore