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Chapter 8
Bats and Water: Anthropogenic Alterations 
Threaten Global Bat Populations
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Abstract Natural bodies of open water in desert landscapes, such as springs 
and ephemeral pools, and the plant-life they support, are important resources for 
the survival of animals in hyper arid, arid and semi-arid (dryland) environments. 
Human-made artificial water sources, i.e. waste-water treatment ponds, catch-
ments and reservoirs, have become equally important for wildlife in those areas. 
Bodies of open water are used by bats either for drinking and/or as sites over 
which to forage for aquatic emergent insects. Due to the scarcity of available water 
for replenishing water losses during roosting and flight, open bodies of water 
of many shapes and sizes may well be a key resource influencing the survival, 
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activity, resource use and the distribution of insectivorous bats. In this chapter, we 
review the current knowledge of bats living in semi- and arid regions around the 
world and discuss the factors that influence their richness, behaviour and activity 
around bodies of water. We further present how increased anthropogenic changes 
in hydrology and water availability may influence the distribution of species of 
bats in desert environments and offer directions for future research on basic and 
applied aspects on bats and the water they use in these environments.

8.1  General Introduction

Dryland environments which include hyper-arid, arid and semi-arid regions can be 
highly complex and diverse, despite being occasionally perceived as simple eco-
systems supporting low species diversity (Ayal et al. 2005). Aridity is described 
by ratio of precipitation to potential evapotranspiration ratio (P/ETP) (UNESCO 
1979, Fig. 8.1) and dryland environments are ecosystems in which typically 
food availability is low, precipitation is limited and unpredictable, ambient tem-
perature is high, humidity is low, and drinking water is scarce (Noy-Meir 1973). 
Consequently, there are large variations in primary production by plants that can 
strongly affect overall species diversity and interactions (Evenari et al. 1971). 
Furthermore, the distribution, abundance and persistence of several desert-dwell-
ing mammal species is affected by water availability, especially during dry sum-
mer months, when the challenges of minimizing energy use and water losses is 
greatest (Calder 1984; Morton et al. 1995; Lovegrove 2000; Marom et al. 2006).

In desert environments, bats are an important component of the mammalian 
fauna. Carpenter (1969) asserted that, based on the number of species and abun-
dance, bats are one of the most successful desert mammals, although they are 
outnumbered by rodents in the driest parts of the Sahara and the Namib Desert 
(Findley 1993). In the deserts of Israel, insectivorous bats are the most diverse 

Fig. 8.1  The arid lands of the world (U.S. Geological Survey, science information services)
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group of mammals (Mendelssohn and Yom-Tov 1999), with 12 species recorded in 
the Negev Desert (Korine and Pinshow 2004) and 17 species in the Dead Sea area 
(Yom-Tov 1993). Benda et al. (2008) recorded 14 species of insectivorous bats in 
Sinai, highlighting the diversity of these mammals in desert environments. The 
dryland regions of South America are the most species-rich habitats of the region 
and have the highest number of endemic species, even when compared to the 
tropical lowland Amazon forest (Mares 1992; Ojeda and Tabeni 2009; Sandoval 
and Barquez 2013). In the Yungas dry forest of Argentina, 55 % of the bat species 
may be endemics (Sandoval et al. 2010). However, this area is severely under-pro-
tected and very little research has been conducted on the bat fauna (Mares 1992; 
Sandoval and Barquez 2013) In Mongolia, more than half of the bat species only 
occur in arid and semi-arid regions (Nyambayar et al. 2010).

Most bats, and in particular desert-dwelling bats, use open water sources for 
drinking water and/or as a foraging site (Vaughan et al. 1996; Grindal et al. 1999; 
Ciechanowski 2002; Campbell 2009, Fig. 8.2) with various studies reporting high 
levels of bat activity over open bodies of water (Rydell et al. 1994; Walsh et al. 
1995; Young and Ford 2000; Mickeviciene and Mickevicius 2001; Ciechanowski 
2002; Russo and Jones 2003; Korine and Pinshow 2004; Williams and Dickman 
2004; Anderson et al. 2006; Davie et al. 2012; Monamy et al. 2013), making even 
small springs, ephemeral pools and waterholes key foraging areas for insectivorous 
bats worldwide (Racey 1998). Water availability was even proposed as a mechanism 
for elevational patterns of species richness of bats in arid mountains (McCain 2007).

In this chapter, we review our current knowledge of bats and water across 
regionally different semi-arid and dryland environments, and the factors that may 

Fig. 8.2  A drinking event of the lesser horseshoe bat (Rhinolophus hipposideros) from a spring 
in the Dead Sea, Israel. Photo by Jens Rydell
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influence their richness, behavior and activity around bodies of water. We dis-
cuss how anthropogenic development may influence water availability and thus 
the distribution of species of bats in desert environments. Dryland environments 
are also predicted to be particularly sensitive to climate change, and we will dis-
cuss patterns by which climate disruption may further reduce water availability in 
arid regions. Finally, we offer directions for future research on basic and applied 
aspects on bats and the water they use in these environments.

8.2  Ecology of Bats and Water in Drylands Environments

8.2.1  Water Sources Used by Bats

Permanent and ephemeral pools are the central characteristic of many watersheds 
in dry, arid and semi-arid regions. Temporary pools have largely been ignored in 
management programs due to their relatively small size and apparent lack of ben-
efit for human use (Schwartz and Jenkins 2000). However, during spring and early 
summer, temporary pools may serve as important foraging grounds for aquatic and 
terrestrial species, some of which are regionally or locally rare and/or endemic 
(Nicolet et al. 2004). Temporary pools in the Negev Desert had equivalent levels 
of species richness of bats and activity to permanent pools (Razgour et al. 2010) 
and the activity of bats was reduced significantly when bodies of open water 
were dried (Korine and Pinshow 2004), highlighting the importance of pools of 
all shapes and sizes to desert wildlife. In the arid regions of Mongolia, even sub-
optimal water sources such as small human-dug wells and salty lakes are used by 
bats and are an important resource for their continued survival (Nyambayar et al. 
2010). Conservation efforts should therefore focus on those sources offering only 
temporary water availability because although they support similar bat species 
richness and activity levels as permanent pools, they are less likely to be protected 
due to their ephemeral nature.

That said, the importance of permanent pools can be underestimated if land-
scape availability of water is not considered through time. Geluso and Geluso 
(2012) analyzed 34 years of data in relation to capture rates gathered at a single 
drinking site, which was sampled once yearly, in the San Mateo Mountains of 
New Mexico. They found that in non-drought years capture success was signif-
icantly lower because bats were more dispersed across the landscape. However, 
in drought years, capture rates at the only available water source skyrocketed, 
thereby indicating the importance of open-water to local species of bats.

Data gathered on foraging patterns of bats in Utah indicated a strong affinity by 
Myotis bats for riparian and edge habitats as compared to other surrounding areas 
(Rogers et al. 2006). Similarly, Grindal et al. (1999) showed that bat activity levels 
were significantly greater in riparian versus upland areas in British Columbia and 
capture rates were higher for females than for males indicating that female bats 
may be more dependent on water-driven attributes of a particular area. Williams 
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et al. (2006) sampled across 22.5 km of the Muddy River floodplain in the Mojave 
Desert in Nevada, which was highly disturbed by long-standing flood control, 
livestock grazing, and the invasion of non-native plant species, and found that the 
riparian woodland habitat, which represents less than 1 % of the area, accounted 
for greater than 50 % of all bat activity. Areas of historically less disturbed mes-
quite bosque habitat maintained higher bat activity than more disturbed areas. 
Fortunately, restoration of habitats can increase local species richness. In Arizona, 
red bats (Lasiurus blossevillii), which had not been reported before, were captured 
along riparian-restoration areas of the lower Colorado River. The Arizona myo-
tis (Myotis occultus), presumed extirpated, was also captured after restoration 
(Calvert 2012).

In Africa, there is evidence that bat activity is higher around bodies of water 
than in adjacent areas. For example, in two regions in southern Africa, bat abun-
dance was higher in riverine habitat than in adjacent, dryer savannah (Rautenbach 
et al. 1996; Monadjem and Reside 2008). Differences in species richness and 
diversity between riverine and savannah habitats were not the same in the two 
regions. In the Kruger National Park, there was no difference in bat species rich-
ness or evenness between riverine habitat and savannah (Rautenbach et al. 1996). 
In contrast, at another site in Swaziland, the riverine habitat had higher species 
richness and diversity (Monadjem and Reside 2008). In both regions, the two 
assemblages differed in the relative densities of the various species, with the 
savannah assemblages forming a subset of the riverine assemblages (Rautenbach 
et al. 1996; Monadjem and Reside 2008). This reinforces the notion that bat 
assemblages in less mesic regions are extensions of bat assemblages in more 
mesic regions, but that not all species are inclined to make use of less mesic hab-
itats when conditions are favorable. Some of them, particularly fruit eating bats 
(e.g. Epomophorus crypturus; Thomas and Fenton 1978) may be restricted to riv-
erine habitats (Monadjem and Reside 2008).

Australian studies also indicate high levels of bat activity around bodies 
of water (Lumsden and Bennett 1995; Williams and Dickman 2004; Griffiths 
et al. 2014a). Young and Ford (2000) found that species richness of bats, abun-
dance, and capture success in the semi-arid Idalia National Park was greatest in 
areas adjacent to water, with 97 % of captures occurring at sites with water. Bats 
in Uluru National Park and the north-eastern edge of the Simpson Desert pre-
dominantly use oasis habitats that have permanent or temporary water sources 
even in years with higher than average annual rainfall (Coles 1993; Williams 
and Dickman 2004). Multiple species of Australian insectivorous bats have even 
been recorded flying, foraging, and perhaps drinking over hypersaline environ-
ments (Laegdsgaard et al. 2004; Gonsalves et al. 2012; Griffiths et al. 2014a, b). 
Pteropus species in New Guinea have been recorded drinking seawater (Iudica 
and Bonaccorso 2003) but the prevalence of bats drinking hypersaline water in 
arid environments is not understood, despite natural hypersaline water bodies 
being common in arid and semi-arid areas in Western Australia (Halse et al. 2003; 
Timms 2005). In the arid regions of Mongolia, bats are mostly frequently found in 
association with water (Dolch et al. 2007; Davie et al. 2012).
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8.2.2  Bodies of Water as a Drinking Source

Water sources that are used by bats are likely to be pools in streams, lakes, ponds, 
slow-flowing streams and rivers and artificial bodies of water with similar proper-
ties such as farm and urban dams (Jackrel and Matlack 2010; Sirami et al. 2013), 
canals (e.g. Lisón and Calvo 2011), cattle troughs, swimming pools and settling 
ponds at waste water treatment facilities (Vaughan et al. 1996; Abbott et al. 2009; 
Naidoo et al. 2013, 2014) and mines having natural seepage (Donato et al. 2007; 
Griffiths et al. 2014a).

Both the size and accessibility of the water source influence whether a bat can 
drink from it. Bats drink water by swooping over a water source while lapping at 
the surface (Harvey et al. 1999). Because bats drink on the wing, small and more 
maneuverable bats are able to drink from smaller pools, whereas less maneuvera-
ble bats need a large surface area of water to skim (Tuttle et al. 2006). In the Negev 
Desert, Razgour et al. (2010) found that both within and between pools, species 
richness of bats and activity significantly increased with pond size. Furthermore, 
manipulations that decreased pond size led to a significant reduction in species 
richness and activity and affected the bat assemblage composition. The size and 
situation of artificial water sources similarly affect their use by bats. In the arid 
Texas Panhandle, USA, bats preferentially drank water from larger livestock tanks 
that were full and had only light vegetation around. They tended to avoid smaller, 
half-full tanks with denser vegetation around them (Jackrel and Matlack 2010). 
Although there are many anecdotal observations (Nickerson and O’Keefe 2013) of 
bats drinking from swimming pools there have been no formal studies of this.

Despite the central nature of drinking and water availability for bats, there 
are a surprisingly small number of studies addressing this topic in Europe, even 
though many species do drink at open water sources regularly to rehydrate (e.g. 
Russo et al. 2012). Some appear more sensitive than others to water deprivation 
because of their stricter dependence on water habitats. For instance, in water-denial 
experiments Daubenton’s bat, Myotis daubentonii, a species selectively dwelling 
in riparian habitat and above bodies of open water, has been found to undergo a 
greater body mass loss and to show signs of dehydration earlier than the brown 
long-eared bat, Plecotus auritus, a forest bat (Webb et al. 1995). Drinking sites 
are also of chief importance for European bats outside the semiarid Mediterranean 
region. In the Bavarian Forest, Germany, oligotrophic, acidic ponds are used by 
over a dozen species of bats for drinking (Seibold et al. 2013). Likewise, in the 
Italian Apennines, water cattle troughs built for traditional livestock breeding are 
frequently used to drink by over a dozen species of bats. Such small (often less 
than 15 × 1.5 m) pools of water are locally of extreme importance (Russo et al. 
2010, 2012) for several threatened species (Fig. 8.3). These pools also concen-
trate insects, so bats occasionally forage there, but their importance for drinking 
is overwhelming (Russo et al. 2012). The disappearance of traditional livestock 
breeding due to rural depopulation in many Apennine areas has led to the abandon-
ment of the cattle troughs, implying an unstudied yet potentially high cost for bat 
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populations (Fig. 8.3). In Italian forests, bats also drink from the small ephemeral 
pools which form following heavy rain and only last few days or weeks (D. Russo, 
pers. obs.). Eavesdropping on other drinking bats is likely to play an important role 
in locating such sites and this behaviour is typical of species with manoeuvrable 
flight such as the barbastelle bat, Barbastella barbastellus, and the greater horse-
shoe bat Rhinolophus ferrumequinum.

8.2.3  Bodies of Water as a Foraging Habitat

The tendency for higher insect abundance near water sources attracts bats to use 
water sources as foraging habitats. Furthermore, calm surface water provides a 
less cluttered acoustic signal return from the echolocation pulses (Mackey and 
Barclay 1989; Siemers et al. 2001), and there is some evidence, at least for echo-
locating bats, that activity over calm pools of water is higher than that over fast-
flowing riffles (von Frenckell and Barclay 1987). Bat activity in a transect from 
dry woodland savannah to riverine habitat in southern Africa was correlated with 
insect abundance—both bat activity and insect abundance were higher in riverine 
habitat (Rautenbach et al. 1996) suggesting that bats were attracted to this habitat 
because of the feeding opportunities it provided.

Drought is known to reduce the abundance of insects in temperate zones 
(Frampton et al. 2000) and thus affect reproduction in insectivorous bats (Rhodes 
2007). An eight year study by Bogan and Lytle (2011) on aquatic insects living in 
two study pools of a formerly perennial desert stream in the Whetstone Mountains 
of Arizona, USA, showed that complete water loss followed by intermittent flow 
caused a catastrophic regime shift in community structure that did not recover to 
the pre-drying configuration even after four years. Ledger et al. (2011) found sig-
nificant reduction in and suppression of secondary productivity by drought that 
could have severe constraining effects on terrestrial vertebrate predator popula-
tions, and Love et al. (2008) found similar effects in Arkansas, USA. Furthermore, 

Fig. 8.3  Cattle troughs used by drinking bats in the Italian Apennines. Photo by Luca Cistrone
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desert bats in Arizona responded to artificial-light-induced food patches (Fenton 
and Morris 1975) and one would presume this would be similar when small pools 
of water create swarms of high insect density. All of these data together suggest 
that small water sources with intermittent flow are vitally important as foraging 
sites to at least some insectivorous desert bat species.

In Europe, three species of bats are aquatic habitat specialists: Daubenton’s bat, 
M. daubentonii, the long-fingered bat, Myotis capaccinii, and the pond bat, Myotis 
dasycneme. Besides taking insects in flight by aerial hawking, they typically for-
age very close to the water surface, from which prey is gaffed with their large feet 
or the inter-femoral membrane and transferred to the mouth while on the wing 
(Kalko and Schnitzler 1989; Siemers et al. 2001). Chironomidae and Trichoptera 
are frequent prey items of these bats (e.g. Biscardi et al. 2007; Krüger et al. 2012). 
M. capaccinii may seize adult chironomids from the water surface as they emerge 
from pupal casings. Trawling bats mainly forage over calm water whose surface 
is free from ripples (Rydell et al. 1999) as echoes from clutter interfere with prey 
detection (Siemers and Schnitzler 2004). On windy nights, M. capaccinii and M. 
daubentonii are less active (Russo and Jones 2003), presumably because wind 
reduces prey density and generates ripples on the water surface affecting target 
detection. In such circumstances, bats forage at sheltered sites where water is 
calmer (Lewis and Stephenson 1966; Lewis 1969).

Several other species of bats frequent riparian habitats to forage and/or drink, 
especially the soprano pipistrelle, Pipistrellus pygmaeus (e.g. Nicholls and Racey 
2006), Nathusius’ pipistrelle, Pipistrellus nathusii (Flaquer et al. 2009), and 
other Pipistrellus spp. (Scott et al. 2010), Schreiber’s bat Miniopterus schreiber-
sii (Serra-Cobo et al. 2000) and noctules, Nyctalus spp. (Rachwald 1992; Racey 
1998; Vaughan et al. 1997). The stricter reliance on riparian habitats is one of the 
main ecological factors distinguishing P. pygmaeus from its sibling P. pipistrel-
lus (but see Warren et al. 2000) and allowing interspecific niche partitioning and 
thus coexistence (Oakeley and Jones 1998; Nicholls and Racey 2006; Davidson-
Watts et al. 2006; Sattler et al. 2007). However, local factors such as elevation or 
landscape composition may influence differences across species. At larger scales, 
the presence of main rivers and wetland areas are important as migratory paths 
and offer important stopover sites to migrating bats across Europe (Flaquer et al. 
2009). Rivers and riparian vegetation also constitute important linear landscape 
elements used for navigation by several European bats (Serra-Cobo et al. 2000; 
Russo et al. 2002).

As might be expected given the above, the quality of foraging areas lacking 
water is influenced by their distance to water. In Portugal, proximity to a drink-
ing water source increased foraging habitat quality for Mehely’s horseshoe bat 
Rhinolophus mehelyi and M. schreibersii (Rainho and Palmeirim 2011). Similarly, 
a radio-tracking study of R. mehelyi in Spain showed that although this species 
hunted predominately in forest, the foraging areas were always within 500 m of 
a water source (Salsamendi et al. 2012), possibly to allow for easy rehydration 
between foraging bouts or perhaps to take advantage of water-emergent forest 
insects. In historic landscape parks of England (Glendell and Vaughan 2002) as 
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well as in German forests (Kusch and Idelberger 2005) the relative area of avail-
able water surface is an effective proxy for levels of bat activity.

Australian bats have also been documented preferentially foraging around 
water sources. When compared to other habitat types in the Simpson Desert, more 
feedings buzzes were recorded around permanent and temporary water sources 
(Williams and Dickman 2004). Bats will also forage over hypersaline water bodies 
but more feeding buzzes are recorded over freshwater sites (Griffiths et al. 2014b). 
There is also evidence (e.g. Aldridge and Rautenbach 1987; Schoeman and Jacobs 
2003, 2011; Naidoo et al. 2011, 2013) that insects associated with freshwater habi-
tats (e.g. Plecoptera, Ephemeroptera and Trichoptera) occur in the diet of southern 
African bats.

8.2.4  Water, Roosts and Reproduction

The propensity for female bats to choose roost sites that are relatively high in 
ambient temperature is thought to help them save metabolic energy by allowing 
for continued gestation of the young during torpor (Speakman et al. 1991; Adams 
and Thibault 2006; Daniel et al. 2010). The cost of such a choice in roost sites 
in arid regions, however, is the propensity for high-levels of evaporative water 
loss during the diurnal roosting cycle (Webb 1995) and this is further exacerbated 
when females are lactating (Kurta et al. 1990). The only quantitative field study 
to assess the need for drinking water by lactating female bats in drylands used 
PIT-tagged lactating and non-reproductive females from a maternity colony of 
fringed myotis (Myotis thysanodes) in Colorado, USA. Adams and Hayes (2008) 
found that lactating females visited to drink an average of seven times more per 
night than did non-breeding adult females. In addition, lactating females visited to 
drink consistently night after night regardless of daily relative humidity and tem-
peratures, whereas non-reproductive females visited more when temperatures were 
high and relative humidity low (Adams and Hayes 2008).

In addition, Adams (2010) synthesized 13 years of capture data from the same 
field sites in Colorado, USA and found that summer mean precipitation had the 
highest correlation with reproductive frequency followed closely by mean stream 
discharge rates. Of these two, the latter showed the most abrupt effect on bat 
reproduction. When stream discharge rates were lower than 7 m/s, the frequency 
of reproductively active females captured plummeted, in some years by as much 
as 50 %. When female reproductive condition was plotted against mean stream 
discharge, the frequency of lactating females tracked the amount of available 
water, whereas the frequency of pregnant females was not correlated. This sug-
gests that during drought years pregnant females may give birth, but do not have 
access to enough drinking water to support lactation. O’Shea et al. (2010) using 
mark/recapture of big brown bats, Eptesicus fuscus, at maternity colonies in Ft. 
Collins, Colorado, USA found that first year survival was lowest in bats born dur-
ing a drought year, although other factors were also at play.
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Several species of bats have been found to roost close to bodies of water to 
minimize the energy expenditure required to reach important drinking or forag-
ing sites (Racey 1998; Korine et al. 2013). The need to drink directly after emerg-
ing from the roosts may be the main factor determining the proximity of roosts 
to water, especially for maternity colonies (Racey 1998). M. daubentonii, whose 
foraging strictly depends on water habitat, often uses bridges over rivers, as well 
as buildings or cavity-bearing trees in the immediate surroundings of riparian bio-
topes (Racey 1998; Parsons and Jones 2003; Lučan and Radil 2010; Encarnação 
2012). Several other species, such as Natterer’s bat (Myotis nattereri), pipistrelles 
(Pipistrellus spp.) and brown long-eared bat, also tend to roost in landscapes com-
prising bodies of water that provide drinking and foraging opportunities (Racey 
1998; Entwistle et al. 1997; Oakeley and Jones 1998). Floodplain forests of central 
Europe host important reproductive colonies of tree-roosting noctule bat Nyctalus 
noctula (Görföl et al. 2009). Myotis macropus, an Australian species, has a vari-
able roosting behaviour but the primary force behind roost selection is proximity 
to waterways (Campbell 2009).

8.3  Threats to Water Sources Used by Bats

In drylands, where water resources are scarce, any loss of or degradation to open 
water source, such as a reduction in water quality, may create cascading affects 
that will be harmful to the wildlife that depends on it. When bats drink from a 
polluted source they ingest toxins directly and during foraging they indirectly 
ingest toxins that may have bio-accumulated within their insect prey. For exam-
ple, if insect larvae feed on microorganisms in polluted water, they concentrate 
the pollutants in their bodies and when they metamorphose into adults these are 
consumed by bats. The effect of environmental chemical containments on bats 
was reviewed in 2001; most studies have occurred in Europe (~50 %) and North 
America (~34 %) mostly pertaining to organochlorine insecticides (58 %), metals 
(30 %), and polychlorinated biphenyls or PCBs (13 %) (Clark and Shore 2001). 
There are hardly any reports on the effect of polluted water on bat activity and 
richness in the drylands of North Africa, the Middle East and South America. 
Levels of bat activity in the Negev Desert were very high over wastewater treat-
ment ponds (Korine and Pinshow 2004), however species richness was low and 
the majority of the activity was attributed to Kuhl’s pipistrelle (Pipistrellus kuhlii). 
Pilosof et al. (2013) showed that sewage pollution in the Negev desert affected the 
immune response of Kuhl’s pipistrelle and Naidoo et al. (2014) reported on DNA 
damage to bats that forage at wastewater treatments work.
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8.3.1  Loss of Sources of Water

An estimated two-thirds of Earth’s freshwater flowing to oceans is obstructed by 
anthropogenic development (Nilsson and Berggren 2000), with approximately 
75,000 dams in the USA alone and the majority of natural wetlands having been 
destroyed as well. Although not the scope of this chapter, it is important to men-
tion that for bats, wetlands provide critical foraging habitat (Johnson et al. 2008; 
Rainey et al. 2006) with absolute area and connectivity of wetlands being impor-
tant components for foraging (Lookingbill et al. 2010).

Indeed, a recent report on total wetland loss in the USA from 2004–2009, 
showed a 25 % reduction from the previous reporting period. In addition, a total 
of 95,000 acres of saltwater wetlands and 265,720 acres of freshwater wetlands 
were lost (Dahl and Stedman 2013). The situation is exacerbated in the western 
USA, where livestock grazing has damaged at least 80 % of stream and riparian 
ecosystems (Belsky and Matzke 1999). The consequences for bats are illustrated 
by observed declines in bat activity as related to flow-reduction and drying along 
the San Pedro River in Arizona. Moreover, these declines corresponded to declines 
in insect availability at perennial sites and both bat activity and insect activity 
declined to imperceptible levels in areas where the river dried up (Hagen and Sabo 
2012).

European rivers, lakes and wetlands are among the most seriously altered eco-
systems. Human impact has caused a major structural or chemical degradation 
of such ecosystems with fatal repercussions for their associated biota (e.g. Abel 
1996). Alteration of European rivers has often led to the loss of channel features, 
floodplain connectivity and structure of bank vegetation. A threatened vespertil-
ionid, M. capaccinii, selects foraging sites where water is less polluted and ripar-
ian vegetation better preserved. Along with the loss or disturbance of suitable cave 
roosts (Papadatou et al. 2008), riparian habitat alteration poses the main threat to 
this bat (Biscardi et al. 2007).

Australian rivers have the highest variation in flow and flooding in the world 
(Williams 1981; Puckridge et al. 1988). Anthropogenic activities such as extrac-
tion and diversion of water have had adverse impacts on rivers in the arid-zone 
of Australia (Walker 1985; Kingsford and Thomas 1995). High natural variation 
in water availability coupled with anthropogenic activities and climate change has 
the potential to catastrophically affect arid-species that depend on water availabil-
ity (Roshier et al. 2001; McKenzie et al. 2007; Saunders et al. 2013).

A major concern associated with natural rivers and lakes in urban areas is that 
they may be polluted by runoff from roads or other sources. When bats drink 
from these sources, they ingest these pollutants directly or indirectly by feeding 
on aquatic-emergent insects. Sources of pollution of farm and golf course dams 
include feces from livestock and wild animal, nitrate and phosphate in fertiliz-
ers, metals, pathogens, sediments and pesticides. Unfortunately, little research has 
been done on the use of polluted urban water sources by bats and the probable 
health impacts on bats. The little evidence that does exist suggests that at least 
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some species of bats may not avoid polluted bodies of water in arid areas (Pilosof 
et al. 2013; Korine et al. 2015). In Durban, South Africa bat abundance and spe-
cies richness were higher over a polluted than over an unpolluted river and bat 
feeding activity (measured by feeding buzzes in the echolocation sequences) was 
also higher at the polluted river. There was, however, no difference in insect diver-
sity between the two rivers (Naidoo et al. 2011) and, with the exception of a single 
species, Rufous mouse-eared bat, Myotis bocagii, proportions of prey items in the 
diets of bats did not correspond to their proportion in the insect fauna. M. bocagii 
fed predominantly on Diptera and this was also the most abundant insect in the 
insect light traps (Naidoo et al. 2011).

8.3.2  Mining

Mining is a major anthropogenic source of environmental destruction and con-
tamination globally. Toxins associated with extensive mining operations, in par-
ticular, gold mining is well documented. Cyanide used to extract gold from ore 
is commonly stored in open ponds, some of which are 200 acres in size. The 
actual numbers of bats, and other wildlife killed by drinking at these ponds is 
poorly understood and very difficult to track as many affected individuals either 
become submerged, or die from drinking contaminated water after leaving the 
site. Between 1980 and 1989, 34 % of all known mammals killed at cyanide ponds 
used for mining gold in California, Nevada, and Arizona were bats (Clark and 
Hothem 1991).

Other heavy metals used in mining operations such as arsenic, cadmium, chro-
mium, copper, lead, mercury, methyl mercury, nickel, and zinc have been found 
in bat carcasses. In Arizona, USA where at least 20 % of bat populations are in 
decline (King et al. 2001), Mexican free-tailed bats (Tadarida brasiliensis) living 
8 km from a major copper smelting mine had accumulated significant levels of 
atmospheric mercury in their tissues (Petit 2007). In another study in Arizona, pal-
lid bats (Antrozous pallidus), western pipistrelles (Parastrellus hesperus), and T. 
brasiliensis had elevated mercury levels in their liver and muscles that they most 
likely acquired via drinking from contaminated free-water sources (Reidinger 
1972; see also Syaripuddin et al. 2014).

Besides contaminated ponds, natural water flows through thousands of aban-
doned mines in the western USA (used by bats for hibernaculum and maternity 
roosts) may be highly contaminated with heavy metals. For example, at Sheep 
Tank Mine overlooking the Colorado River in Arizona, barium, manganese and 
zinc were detected in soil samples at concentrations 10 times normal levels and E. 
fuscus captured at the site had higher concentrations of these elements than those 
collected from three other sites (King et al. 2001). Other species included in the 
study had high arsenic levels as well as other contaminants (copper, lead, barium, 
manganese, and zinc) (King et al. 2001). Bats and other terrestrial vertebrates 
can also be exposed to high levels of contaminants by ingesting aquatic emergent 
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insects living in toxic streams and High levels of bioaccumulated cadmium and 
zinc are known to occur as far as 381 km downstream from the pollution source, 
whereas lead was found to be transferred from sediments to chironomids (midges) 
only as far as 40 km downstream (Cain et al. 1992). Thus, large stretches of 
streams and rivers far from the point source of contamination pose threats to bats 
and other aquatic and terrestrial wildlife.

Bats are also known to fly and possibly forage/drink over gold mines in 
Australia (Donato and Smith 2007; Smith et al. 2008). High bat activity was 
recorded over gold mine water bodies containing cyanide (Griffiths et al. 2014a). 
Griffiths et al. (2014b) suggested that elevated salt levels in water bodies at gold 
mines may decrease bat activity, foraging, and drinking. Bats, including the 
Vulnerable (IUCN 2014) ghost bat, Macroderma gigas, have also been recorded 
around an Australian copper mine in the Great Sandy Desert, although the mine’s 
effects on individuals or the population is unknown (Read 1998).

Africa is rich in mineral resources and this makes mining activities relatively 
common so likely a serious threat to water quality and therefore to bats. A matter 
of grave concern is that no research has been done in Africa in this regard. This 
situation prevails despite evidence that mining activities do pollute surface water 
in Africa (Olade 1987; Naicker et al. 2003).

8.3.3  Agriculture

Organochlorine pollution of streams and rivers, and other sources, is of major con-
cern for bats (see Bayat et al. 2014 for review). Experimental testing of organo-
chlorine insecticides such as DDT on two species widely distributed throughout the 
USA, found that Myotis lucifugus was approximately twice more sensitive than were 
E. fuscus. Furthermore, juvenile E. fuscus were 1.5 times more sensitive than adults 
(Clark et al. 1978). In addition, tests showed that individuals of T. brasiliensis poi-
soned with DDT survived for some time but later died of DDT poisoning mobilized 
from fat during active flight after being starved (Clark et al. 1975). Laboratory stud-
ies also show that presence of organochlorine in tissues can accelerate the catabolism 
of fat, causing DDE-dosed bats (M. lucifugus) to lose weight faster than control bats 
(Clark and Stafford 1981). Although banned in the USA in 1972, significant levels 
of DDT and DDE have been documented in tissues collected from bats foraging and 
drinking at the Rocky Mountain Arsenal Superfund Site (O’Shea et al. 2001). High 
DDT concentrations are also found in M. lucifugus tissues in the Eastern United 
States (Kannan et al. 2010). Furthermore, post-ban persistence of DDT in USA bats 
has been verified by sampling guano at roost sites (Clark et al. 1982; Reidinger and 
Cockrum 1978; Bennett and Thies 2007). DDT has also been found in bat tissues 
in Australia despite being banned since 1987 (Mispagel et al. 2004; Allinson et al. 
2006). DDT for agricultural use was essential banned worldwide in 2001, but recent 
work from Africa showed that DDT is probably still being used and accumulating in 
the tissues of multiple species of bats (Stechert et al. 2014).
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The two most common agricultural pollutants are nitrogen and phosphorus and 
sources of these pollutants include inorganic and organic fertilizers, leguminous 
crops, septic tanks, farm and municipal waste water treatment facilities, and, in the 
case of phosphorous, run-off from groundwater discharge and atmospheric deposi-
tion. An excess of these nutrients is the leading cause of aquatic eutrophication 
(Shabalala et al. 2013). Inorganic pollutants such as metals from agricultural and 
industrial run-off can also accumulate in these sites as well as in the tissues of 
insects using these bodies of water. Bats feedings on such insects are thus at risk 
of ingesting high levels of toxic metals such cadmium, chromium and nickel (see 
Naidoo et al. 2013).

8.3.4  Waste Water

European bats foraging in aquatic habitats are known to be largely exposed to 
toxic heavy metals which bioaccumulate in their insect food (Pikula et al. 2010). 
Organic pollution of rivers is also known to affect bat foraging, but its effects are 
variable. A British study compared the differences in bat activity found respec-
tively upstream and downstream from sewage outputs and showed that down-
stream activity of pipistrelle bats decreased whereas that of M. daubentonii 
increased relative to upstream sites (Vaughan et al. 1996). The latter species is 
thought to benefit from the higher downstream abundance of pollution-tolerant 
prey such as chironomids. However, an Irish study obtained opposite results, with 
P. pygmaeus being more common downstream of sewage effluent discharges than 
M. daubentonii (Abbott et al. 2009). Park and Cristinacce (2006) compared the 
effects of two types of sewage treatment works for foraging bats: those with perco-
lating filter beds, often hosting many insects potentially important for bats, and the 
“activated sludge” system—gradually replacing the former—in which sewage and 
bacteria-laden sludge are mixed and agitated so that they prove inhospitable for 
the invertebrate fauna. The study showed that both insect biomass and bat activity 
were higher at percolating filter beds and that bat activity there was comparable to 
that recorded at nearby natural foraging habitats. However, bats may run serious 
risks when foraging at such sewage treatment works: endocrine disrupting chemi-
cals, which may alter the endocrine functions in exposed animals, have been found 
to concentrate in bat insect prey at percolating filter beds, with potentially harmful 
effects on foraging bats (Park et al. 2009).

There has been very little research in Africa on the concentration of pollutants 
in tissues of bats and no work on the long and short term effects of these pollutants 
on the health of bats. There is some evidence of the presence of the toxic metals 
cadmium, chromium and nickel in tissues of African bats foraging at sites down-
stream of waste water treatment plants (Naidoo et al. 2013). Furthermore, bats for-
aging over waste water treatment facilities display increased haematocrit and DNA 
damage and decreased antioxidant capacity in muscle tissue compared to bats that 
forage over unpolluted sites. Although these effects were not lethal they may result 
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in long-term negative effects on the health of bats (Naidoo et al. 2014). These met-
als were probably ingested by bats via their insect prey.

There is evidence that aerial insects developing in sewage sludge and waste 
water at sewage treatment plants can accumulate pollutants that could disrupt 
endocrine functioning (Park et al. 2009). However, a similar study on the activity 
of the insectivorous bat, the banana bat, Neoromicia nana, at three urban rivers sys-
tems above and downstream of where sewage effluent enters these rivers revealed 
that the relative abundance and feeding activity of N. nana were higher at polluted 
sites downstream of where sewage entered the system than at the unpolluted sites 
upstream (Naidoo et al. 2013). In this case the bats may have been attracted by the 
higher abundance of dipterans over the polluted sites. Diptera were the dominant 
prey items in both the insect fauna at the polluted sites and in the diets of the bats 
(Naidoo et al. 2013). This also appeared to be the case for M. bocagii which also 
fed predominantly and opportunistically on Diptera (Naidoo et al. 2011).

The response by bats to rivers affected by waste water treatment effluent may 
vary both between and within species. In North America (Kalcounis-Rueppell 
et al. 2007) and England (Vaughan et al. 1996), some species were more active 
upstream from where waste water effluent entered the rivers while others were 
more active downstream. It appears that these differences arise from the differ-
ential effects of euthrophication on insect prey as well as on the responses of 
bats. Some species take advantage of eutrophication that causes an increase in the 
abundance of their preferred prey, and other species which apparently do not feed 
on insects that are affected by eutrophication, prefer to forage in less polluted 
habitats. Furthermore, these differences may also result from differences in the 
foraging behavior of the same species at different sites. For example, N. nana fed 
opportunistically on the small abundant dipterans at wastewater polluted sites, 
but at unpolluted river sites fed selectively on insects from other orders (Naidoo 
et al. 2013).

Another major anthropogenic compound found in open bodies of water in the 
USA is polychlorinated biphenyl or PCB, a common industrial waste product that 
was banned by the United States in 1979 and the United Nations in 2001. PCB 
poisoning in pregnant M. lucifugus led to stillborn young (Clark and Krynitsky 
1978). Aquatic-emergent insects are key exporters of contaminants to terrestrial 
ecosystems (Menzie 1980; Runck 2007) and data show significant lateral transfers 
of PCBs to terrestrial riparian predators such as spiders, reptiles and amphibians 
(Walters et al. 2008). High concentrations of PCB’s have been found in fat tis-
sues of M. lucifugus in New York and Kentucky (Kannan et al. 2010). Along the 
fresh water tidal river, the Biesbosch, in the Netherlands, direct transfer from river 
sediments to chironomids to pond bats occurred in concentrations known to cause 
negative reproductive effects in mink (Reinhold et al. 1999). Frick et al. (2007) 
investigated the effects of an accidental chemical spill (metam sodium) on Yuma 
myotis (Myotis yumanensis) in California and found reduced female juvenile sur-
vival, but not adult female survival. The spill-affected population declined signifi-
cantly during the first years of the study. Although the population increased in year 
four, this also coincided with an end to an extensive regional drought. Controlled 
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experimental exposure to Lindane (an organochlorine used in wood preservatives) 
at sublethal levels in P. pipstrellus increased 24 h metabolic rates of a 7.3 g indi-
vidual by 15 % and in a 6.3 g individual by 23 %, thereby posing a significant 
threat to survivorship of free-living individuals (Swanepoel et al. 1999) and show-
ing that sub-lethal exposure can affect energetic balance.

8.4  Mitigation and Restoration

Both the availability and distribution of water in drylands have been drastically 
altered by natural processes such as decline in annual precipitation, and by anthro-
pogenic developments such as irrigation for agriculture, over exploitation of 
groundwater and human-induced climate changes.

8.4.1  Restoration of Water Sources and Related Habitats

Most wetlands have been altered globally due to anthropogenic disruption, pol-
lution, and outright destruction. In some, but too few, places, humans have begun 
to restore some of those wetlands. For example, in the USA, the Sierra Nevada 
Conservancy is working in cooperation with State Parks, the Department of Toxic 
Substances, California State University Chico and others, to identify mercury 
sources and potential remediation strategies for an abandoned hydraulic mine dis-
charging sediment and heavy metals into the Yuba River and removing mercury 
from dredged sediment that have accumulated in the Combie Reservoir.

In California, restoration of the Cosumnes River floodplain re-established bat 
activity that broadly corresponded with flooding and an increase in aquatic emer-
gent insects (Rainey et al. 2006). Furthermore restoration of riparian habitat, 
frequently damaged by cattle as well as other anthropogenic uses, and wetlands 
commonly destroyed by human development, is essential and is occurring in some 
areas, but well below necessary levels for bat conservation (Goodwin et al. 1997).

Despite some of the negative effects highlighted in the previous section con-
cerning waste water effluent, wastewater reclamation is an important process espe-
cially in areas where water is scare (Anderson et al. 2001). Wastewater can be 
used to construct artificial wetlands that provide habitat for wildlife if the water is 
properly treated (Greenway and Simpson 1996; Fujioka et al. 1999; Greenway and 
Woolley 1999; Greenway 2005). Some studies have found that increased nutrient 
loads, such as those caused by wastewater effluent may have a positive effect on 
insect and bat abundance both in US and European streams (Kokurewicz 1995; 
Vaughan et al. 1996; Abbott et al. 2009). One US study found that bat activity and 
foraging levels were the same up-stream and down-stream of wastewater discharge 
but community structure was altered, with the riparian-specialist Perimyotis sub-
flavus being more abundant (Kalcounis-Rueppell et al. 2007).
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8.4.2  Artificial Water Sources

One way to overcome the diminishing of natural water sources in many drylands 
is the development of artificial catchments which are widely used for wildlife 
management (Krausman et al. 2006). There has long been controversy regarding 
the effects of catchments on local wildlife, in which critics argue that these devel-
opments do not yield expected benefits to game species and may have opposing 
impacts such as predation (O’Brien et al. 2006).

Small artificial ponds may be of utmost importance for wildlife (Russo 
et al. 2012). The large-scale expansion of intensive agriculture in semiarid 
Mediterranean climates has often been sustained by hydraulic engineering works, 
to cope with the scarcity of natural irrigation water. In southeastern Spain, Lisón 
and Calvo (2011) studied the effects on bats of a water transfer channel and 
a related network of irrigation ponds in a mixed landscape of traditional and 
intensive agricultural landscape. In general, artificial bodies of water had a pos-
itive effect on bat activity, but this mainly regarded common, generalist species 
(P. pipistrellus and P. pygmaeus) most likely because of the absence of foraging 
habitats suitable for more specialized species (those bearing a higher conserva-
tion value) such as riparian vegetation. In Catalonia, rice paddies sustain high bat 
activity, providing large amounts of insect prey. However, roost availability was 
the main limiting factor and installing bat boxes represents a valuable strategy to 
increase bat populations (Flaquer et al. 2006). In the arid Ikh Nart Nature Reserve 
in Mongolia, significantly more bats were caught at natural springs relative to 
human-made wells and no bats were captured at sites without water (Davie et al. 
2012). This suggests that at least for this area, replacing lost natural water sources 
with artificial ones may not be as effective for preserving bat populations as con-
serving natural water sources.

Paradoxically, the creation of large water reservoirs may prove harmful to the 
entire bat community. Rebelo and Rainho (2009) looked at the effects on bats of 
the largest reservoir in Europe, created by construction in 2001 of the Alqueva 
dam, in Alentejo, Southern Portugal. The project led to the deforestation and sub-
mersion of an area of ca. 250 km2. Consequently, bat populations were affected by 
the sudden disappearance of ca. 200 km of riparian habitat, together with large-
scale roost loss and the replacement of important habitat with a vast homogeneous 
one which was not used by foraging bats. Noticeably, bat activity showed a strong 
decline in the submerged areas but increased in the surrounding unaffected habitat.

The expansion of Mediterranean species into surrounding arid wildlife com-
munities may have a negative impact on local populations such as competition 
for the use of pools for drinking and foraging. Nine of the 12 Negev species of 
bats (Korine and Pinshow 2004) are associated with arid areas, and the Kuhl’s 
pipistrelle, the European free-tailed bat (Tadrida teniotis), and the rare lesser 
horseshoe bat (Rhinolophus hipposideros)—are Mediterranean species that have 
expanded their distribution into the Negev in the twentieth century (Yom-Tov 
and Mendelssohn 1988). The most common bat in some desert habitats and in 
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particular at artificial water sites in the Negev is Kuhl’s pipistrelle (Korine and 
Pinshow 2004). The expanded distribution is probably linked to human settlements 
and in particular to artificial bodies of water since non-desert species of bats must 
drink on a daily basis and drink more frequently compared with desert-dwelling 
bats (Razgour 2010). Kuhl’s pipistrelle competes for the use of pools for drinking 
and foraging, resulting in temporal and spatial partitioning between local desert 
bat species (Razgour et al. 2011). The documented competition between Kuhl’s 
pipistrelle and desert-dwelling bat species (Polak et al. 2011; Razgour et al. 2011), 
combined with the increasing development of bodies of open water in the Negev 
and other drylands, may lead to further resource competition resulting in loss to 
the region’s biodiversity. Korine et al. (2015) have shown that species richness and 
activity of desert dwelling bats did not differ between artificial and natural bod-
ies of water in the Negev desert, however several species of bats drank or foraged 
only at natural bodies of water.

8.5  Conclusion and Future Directions

Human population growth, land use change and habitat loss have led to massive 
habitat alterations and destruction, particularly of water sources in arid regions. 
The availability of water (temporary/permanent) appears to have a strong posi-
tive influence on species of bats richness and activity. This suggests that large 
temporary pools are important for the conservation of bats in arid environments. 
A reduction in the availability of temporary pools, due to intensification of arid 
conditions, is expected to predominantly affect species of bats that forage over 
water, and will most likely increase interspecific competition for foraging space 
above the pools. These problems are likely be exacerbated in species of bats that 
are able to extend into arid areas because of their association with humans. Studies 
on the distribution of bats in drylands on a large scale should be the focus of future 
research to understand how climate change and introduction of artificial bodies of 
water effect species distribution, activity and richness. Studies are strongly needed 
in arid regions to understand the best and most efficient way to provide safe arti-
ficial water sources for bats that can mitigate increased incidences of drought 
due to climate change and, in some cases, the total loss of available water, espe-
cially in the more temperate arid regions with shorter growing seasons. For exam-
ple, placement of artificial water sources near maternity roosts is instrumental in 
arid temperate areas with shorter growing seasons (Adams 2010). However, the 
introduction of artificial bodies of water may promote invasion by non-native spe-
cies and range expansion of others, leading to resource competition. In regions 
of Europe likely to become water-stressed because of human induced climate 
changes, bats may be affected as they may lack the physiological means to cope 
with water limitation (Sherwin et al. 2013).

Africa, as well as other arid areas such as the Negev and the Mongolian deserts, 
has a high diversity of bats but compared to other areas of the world its bat fauna 
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has been little studied. Fundamental research is most needed throughout Africa 
and other arid zones on how often bats need to drink and whether this varies 
across species, geographically and seasonally. Comparative studies on bats with 
distributions restricted to arid regions and species that have populations in mesic 
and arid regions would be particularly informative in this regard. For example, 
the diversity of renal capacities and habitat use amongst African species of bats of 
the same family (Happold and Happold 1988), and the emergence of robust fam-
ily level phylogenies (e.g. Stoffberg et al. 2010) provide an excellent opportunity 
to study the evolution of renal form and function in African bats in an ecologi-
cal context. Special focus should be placed on research determining the extent to 
which African bats are reliant on artificial water sources. Such research should tar-
get arid zone species of bats, especially those species that live in close association 
with humans because these are the species likely to be impacted by insufficient or 
polluted water sources.

Research is also needed on whether all water sources are used for both drinking 
and foraging and how bats respond to decreases in water quality as a result of pol-
lutants. Do certain species of bats avoid drinking from low quality bodies of water 
as shown by Korine et al. (2015)? Would bats still use polluted bodies of water for 
feeding but not for drinking? If so, how do they detect low quality water, do they 
do so before they are adversely affected by it and do they have alternative water 
sources? How are desert-dwelling bats affected by pollutants in water or by water-
borne toxins and pollutants in the insect fauna, and are such bats able to deal with 
such pollutants physiologically?

Although least is known about bats and water in sub-Sahara Africa, studies thus 
far in other regions of the world are in their infancy in terms of understanding the 
long-term effects of decreased water availability on bat and other wild popula-
tions. Due to human destruction of wetlands and riparian habitats as well as unsus-
tainable human population growth that more and more is utilizing greater amounts 
of fresh water, availability of fresh water to sustain wildlife populations are reach-
ing critically low levels, especially in areas suffering from extended droughts due 
to human-induced climate disruption. Because water is a key ingredient of all life, 
focus on this topic needs to increase and because bats act as ‘canaries in a global 
coal mine,’ studies concerning bats and water are key to better management of 
water resources in natural and artificial areas.
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