861 research outputs found

    Emergence of a stable cortical map for neuroprosthetic control.

    Get PDF
    Cortical control of neuroprosthetic devices is known to require neuronal adaptations. It remains unclear whether a stable cortical representation for prosthetic function can be stored and recalled in a manner that mimics our natural recall of motor skills. Especially in light of the mixed evidence for a stationary neuron-behavior relationship in cortical motor areas, understanding this relationship during long-term neuroprosthetic control can elucidate principles of neural plasticity as well as improve prosthetic function. Here, we paired stable recordings from ensembles of primary motor cortex neurons in macaque monkeys with a constant decoder that transforms neural activity to prosthetic movements. Proficient control was closely linked to the emergence of a surprisingly stable pattern of ensemble activity, indicating that the motor cortex can consolidate a neural representation for prosthetic control in the presence of a constant decoder. The importance of such a cortical map was evident in that small perturbations to either the size of the neural ensemble or to the decoder could reversibly disrupt function. Moreover, once a cortical map became consolidated, a second map could be learned and stored. Thus, long-term use of a neuroprosthetic device is associated with the formation of a cortical map for prosthetic function that is stable across time, readily recalled, resistant to interference, and resembles a putative memory engram

    A Statistical Description of Neural Ensemble Dynamics

    Get PDF
    The growing use of multi-channel neural recording techniques in behaving animals has produced rich datasets that hold immense potential for advancing our understanding of how the brain mediates behavior. One limitation of these techniques is they do not provide important information about the underlying anatomical connections among the recorded neurons within an ensemble. Inferring these connections is often intractable because the set of possible interactions grows exponentially with ensemble size. This is a fundamental challenge one confronts when interpreting these data. Unfortunately, the combination of expert knowledge and ensemble data is often insufficient for selecting a unique model of these interactions. Our approach shifts away from modeling the network diagram of the ensemble toward analyzing changes in the dynamics of the ensemble as they relate to behavior. Our contribution consists of adapting techniques from signal processing and Bayesian statistics to track the dynamics of ensemble data on time-scales comparable with behavior. We employ a Bayesian estimator to weigh prior information against the available ensemble data, and use an adaptive quantization technique to aggregate poorly estimated regions of the ensemble data space. Importantly, our method is capable of detecting changes in both the magnitude and structure of correlations among neurons missed by firing rate metrics. We show that this method is scalable across a wide range of time-scales and ensemble sizes. Lastly, the performance of this method on both simulated and real ensemble data is used to demonstrate its utility

    Temporally Precise Cell-Specific Coherence Develops in Corticostriatal Networks during Learning

    Get PDF
    SummaryIt has been postulated that selective temporal coordination between neurons and development of functional neuronal assemblies are fundamental for brain function and behavior. Still, there is little evidence that functionally relevant coordination emerges preferentially in neuronal assemblies directly controlling behavioral output. We investigated coherence between primary motor cortex and the dorsal striatum as rats learn an abstract operant task. Striking coherence developed between these regions during learning. Interestingly, coherence was selectively increased in cells controlling behavioral output relative to adjacent cells. Furthermore, the temporal offset of these interactions aligned closely with corticostriatal conduction delays, demonstrating highly precise timing. Spikes from either region were followed by a consistent phase in the other, suggesting that network feedback reinforces coherence. Together, these results demonstrate that temporally precise coherence develops during learning specifically in output-relevant neuronal populations and further suggest that correlations in oscillatory activity serve to synchronize widespread brain networks to produce behavior

    Towards a bionic bat: A biomimetic investigation of active sensing, Doppler-shift estimation, and ear morphology design for mobile robots.

    Get PDF
    Institute of Perception, Action and BehaviourSo-called CF-FM bats are highly mobile creatures who emit long calls in which much of the energy is concentrated in a single frequency. These bats face sensor interpretation problems very similar to those of mobile robots provided with ultrasonic sensors, while navigating in cluttered environments. This dissertation presents biologically inspired engineering on the use of narrowband Sonar in mobile robotics. It replicates, using robotics as a modelling medium, how CF-FM bats process and use the constant frequency part of their emitted call for several tasks, aiming to improve the design and use of narrowband ultrasonic sensors for mobile robot navigation. The experimental platform for the work is RoBat, the biomimetic sonarhead designed by Peremans and Hallam, mounted on a commercial mobile platform as part of the work reported in this dissertation. System integration, including signal processing capabilities inspired by the batā€™s auditory system and closed loop control of both sonarhead and mobile base movements, was designed and implemented. The result is a versatile tool for studying the relationship between environmental features, their acoustic correlates and the cues computable from them, in the context of both static, and dynamic real-time closed loop, behaviour. Two models of the signal processing performed by the batā€™s cochlea were implemented, based on sets of bandpass filters followed by full-wave rectification and low-pass filtering. One filterbank uses Butterworth filters whose centre frequencies vary linearly across the set. The alternative filterbank uses gammatone filters, with centre frequencies varying non-linearly across the set. Two methods of estimating Doppler-shift from the return echoes after cochlear signal processing were implemented. The first was a simple energy-weighted average of filter centre frequencies. The second was a novel neural network-based technique. Each method was tested with each of the cochlear models, and evaluated in the context of several dynamic tasks in which RoBat was moved at different velocities towards stationary echo sources such as walls and posts. Overall, the performance of the linear filterbank was more consistent than the gammatone. The same applies to the ANN, with consistently better noise performance than the weighted average. The effect of multiple reflectors contained in a single echo was also analysed in terms of error in Doppler-shift estimation assuming a single wider reflector. Inspired by the Doppler-shift compensation and obstacle avoidance behaviours found in CF-FM bats, a Doppler-based controller suitable for collision detection and convoy navigation in robots was devised and implemented in RoBat. The performance of the controller is satisfactory despite low Doppler-shift resolution caused by lower velocity of the robot when compared to real bats. Barshanā€™s and Kucā€™s 2D object localisation method was implemented and adapted to the geometry of RoBatā€™s sonarhead. Different TOF estimation methods were tested, the parabola fitting being the most accurate. Arc scanning, the ear movement technique to recover elevation cues proposed by Walker, and tested in simulation by her, Peremans and Hallam, was here implemented on RoBat, and integrated with Barshanā€™s and Kucā€™s method in a preliminary narrowband 3D tracker. Finally, joint work with Kim, KĀØampchen and Hallam on designing optimal reflector surfaces inspired by the CF-FM batā€™s large pinnae is presented. Genetic algorithms are used for improving the current echolocating capabilities of the sonarhead for both arc scanning and IID behaviours. Multiple reflectors around the transducer using a simple ray light-like model of sound propagation are evolved. Results show phase cancellation problems and the need of a more complete model of wave propagation. Inspired by a physical model of sound diffraction and reflections in the human concha a new model is devised and used to evolve pinnae surfaces made of finite elements. Some interesting paraboloid shapes are obtained, improving performance significantly with respect to the bare transducer

    Editorial: Aurora Kinases: Classical Mitotic Roles, Non-Canonical Functions and Translational Views

    Get PDF
    Aurora kinases are key mitotic regulators that have also been associated with tumor development and progression. The interest on this highly conserved family of protein kinases has grown exponentially since they were discovered in the 1990s. Despite the steady increase in the number of laboratories involved and the consequent boost of the volume of research output during the last years, the study of Aurora kinases remains a very dynamic area in which new discoveries frequently keep coming to light. From a clinical perspective, the interest on Aurora kinase biology stems from their identification as targets for drug development; an increasing number of Aurora kinase inhibitors are being tested in preclinical projects and clinical trials. In this Frontiers Research Topic, we have aimed to not only review and revisit different aspects of the functions and regulation of Aurora kinases but also provide a forum for the publication of new developments in the field. We have been privileged to count on contributions from authors and reviewers that include some of the most experienced voices in our research area.Work in our laboratories is supported by grants from Ministerio de Economƭa, Industrƭa y Competitividad (SAF SAF2016-76929-R), Ligue Nationale Contre le Cancer (LNCC, Ʃquipe labelisƩe 2014-2016), and Wellcome Trust (073915, 077707, and 092076).S

    PASS: Panoramic Annular Semantic Segmentation

    Get PDF
    Pixel-wise semantic segmentation is capable of unifying most of driving scene perception tasks, and has enabled striking progress in the context of navigation assistance, where an entire surrounding sensing is vital. However, current mainstream semantic segmenters are predominantly benchmarked against datasets featuring narrow Field of View (FoV), and a large part of vision-based intelligent vehicles use only a forward-facing camera. In this paper, we propose a Panoramic Annular Semantic Segmentation (PASS) framework to perceive the whole surrounding based on a compact panoramic annular lens system and an online panorama unfolding process. To facilitate the training of PASS models, we leverage conventional FoV imaging datasets, bypassing the efforts entailed to create fully dense panoramic annotations. To consistently exploit the rich contextual cues in the unfolded panorama, we adapt our real-time ERF-PSPNet to predict semantically meaningful feature maps in different segments, and fuse them to fulfill panoramic scene parsing. The innovation lies in the network adaptation to enable smooth and seamless segmentation, combined with an extended set of heterogeneous data augmentations to attain robustness in panoramic imagery. A comprehensive variety of experiments demonstrates the effectiveness for real-world surrounding perception in a single PASS, while the adaptation proposal is exceptionally positive for state-of-the-art efficient networks.Ministerio de EconomĆ­a y CompetitividadComunidad de Madri

    Bridging the day and night domain gap for semantic segmentation

    Get PDF
    2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9-12 Jun. 2019Perception in autonomous vehicles has progressed exponentially in the last years thanks to the advances of visionbased methods such as Convolutional Neural Networks (CNNs). Current deep networks are both efficient and reliable, at least in standard conditions, standing as a suitable solution for the perception tasks of autonomous vehicles. However, there is a large accuracy downgrade when these methods are taken to adverse conditions such as nighttime. In this paper, we study methods to alleviate this accuracy gap by using recent techniques such as Generative Adversarial Networks (GANs). We explore diverse options such as enlarging the dataset to cover these domains in unsupervised training or adapting the images on-the-fly during inference to a comfortable domain such as sunny daylight in a pre-processing step. The results show some interesting insights and demonstrate that both proposed approaches considerably reduce the domain gap, allowing IV perception systems to work reliably also at night.Ministerio de EconomĆ­a y competitividadComunidad de Madri

    Mutations at the asp locus of Drosophila lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts

    Get PDF
    Mutations at abnormal spindle result in abnormally long and wavy microtubules in the meiotic spindles of males. Some of these spindles have a single pole and take the form of unopposed hemi-spindles. Unfertilised eggs produced by homozygous asp females may have either no nuclei, or a small number of large nuclei, consistent with there also being an effect upon female meiosis. Such eggs also display free centrosomes and independent arrays of microtubules. Embryos that have this phenotype are also present among the progeny of fertilised homozygous asp females, together with embryos that undergo varying degrees of aberrant morphogenesis, developing a variety of abnormal cuticle patterns. This latter category shows asynchronous mitoses prior to cellularisation, and has abnormal arrays of spindle microtubules. Such embryos can develop large areas that are either devoid of or have a reduced number of nuclei, in which there are centrosomes that have dissociated from the mitotic spindles. Neuroblasts in the brains of homozygous asp larvae display a high mitotic index, and have condensed chromosomes aligned as if blocked at metaphase. Immunostaining reveals that many cells contain a single centrosome connected to the metaphase chromosomes by microtubules in a hemi-spindle-like structure
    • ā€¦
    corecore