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SUMMARY

It has been postulated that selective temporal coor-
dination between neurons and development of func-
tional neuronal assemblies are fundamental for brain
function and behavior. Still, there is little evidence
that functionally relevant coordination emerges
preferentially in neuronal assemblies directly control-
ling behavioral output. We investigated coherence
between primary motor cortex and the dorsal stria-
tum as rats learn an abstract operant task. Striking
coherence developed between these regions during
learning. Interestingly, coherence was selectively
increased in cells controlling behavioral output rela-
tive to adjacent cells. Furthermore, the temporal
offset of these interactions aligned closely with corti-
costriatal conduction delays, demonstrating highly
precise timing. Spikes from either region were
followed by a consistent phase in the other, suggest-
ing that network feedback reinforces coherence.
Together, these results demonstrate that temporally
precise coherence develops during learning specif-
ically in output-relevant neuronal populations and
further suggest that correlations in oscillatory activity
serve to synchronize widespread brain networks to
produce behavior.

INTRODUCTION

For any given task, the nervous system must coordinate the

activity of large ensembles of individual neurons across distant

brain regions. Even in seemingly trivial motor tasks, such as

holding a cup of coffee, large ensembles of neurons must

interact to properly control the musculature andmonitor sensory

feedback. Although the nervous system is equipped with dense

anatomical connectivity to support interactions between cell

groups, these interactions must be rapidly and flexibly altered

as we move from one behavioral context to the next, and partic-

ularly as we learn a new skill.
Brain-machine interface (BMI) tasks involve learning to modu-

late neuronal activity in order to control a disembodied actuator

(Fetz, 2007) and therefore provide a completely novel learning

environment for subjects. Surprisingly, past work has shown

that neuroprosthetic skills rely on similar neural substrates as

natural motor learning (Green and Kalaska, 2011) and therefore

have similar computational requirements for rapid and flexible

information transfer. Importantly, BMI tasks offer the unique

advantage that researchers can define which neuronal ensem-

bles are directly relevant for behavioral output, therefore allow-

ing for an investigation of functional specificity within local

populations.

Recent theories have proposed that alterations in the pattern

of large-scale synchronous activity could serve as the sub-

strate for the flexible neuronal associations necessary to coor-

dinate network activity for performance of both natural and

neuroprosthetic behaviors (Womelsdorf et al., 2007; Canolty

et al., 2010). Oscillatory local field potential (LFP) activity

reflects rhythmic current flow across cell membranes in local

ensembles and is hypothesized to alter the excitability of cell

groups across different spatiotemporal scales (Buzsáki and

Draguhn, 2004; Lakatos et al., 2005; Fröhlich and McCormick,

2010). Therefore, precise temporal control in neural networks

could enhance the efficiency of information transfer in specific

populations (Wang et al., 2010; Tiesinga et al., 2001). It could

also serve as a mechanism for synaptic gain control (Zeitler

et al., 2008) and influence spike-timing-dependent plasticity

(Huerta and Lisman, 1993; Harris et al., 2003), as spikes

arriving at excitability peaks will have enhanced efficacy rela-

tive to poorly timed spikes. Temporally coordinated activity in

ensembles of neurons has been implicated in processes as

diverse as perception (Rodriguez et al., 1999), expectation

(von Stein et al., 2000), decision making (Pesaran et al.,

2008), coordination (Dean et al., 2012), memory (Pesaran

et al., 2002; Siegel et al., 2009), spatial cognition (Colgin

et al., 2009), reward processing (van der Meer and Redish,

2011), and attentional shifting (Bollimunta et al., 2011; Lakatos

et al., 2008; Fries et al., 2008). In some cases, this synchrony

manifests as spiking in one region, becoming highly coordi-

nated with LFP activity in a separate region (Pesaran et al.,

2008). Importantly, many tasks evoke changes in the temporal

pattern of spiking without concomitant changes in firing rate,
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Figure 1. Volitional Modulation of M1 Neural Activity in Awake

Behaving Rats

(A) Task schematic. M1 unit activity was entered into an online transform

algorithm that related ensemble activity to the pitch of an auditory cursor. Two

opposing ensembles were chosen, with activity of one ensemble increasing

the cursor pitch and activity of the other ensemble decreasing the cursor pitch.

Constant auditory feedback about cursor location was supplied to rodents,

and distinct rewards were supplied when rodents brought M1 activity into one

of two target states. (B) Mean M1 ensemble firing rates for units in ensemble 1

(green), ensemble 2 (blue), and M1 units not used in the transform (black) in

relation to the achievement of target 1 (top) or target 2 (bottom). Time zero

indicates target achievement (red dashed line). (C) Mean percentage of correct

responses for all rats across days 1–11 of learning. Shaded regions denote the

SEM and colored regions denote the range of days from which the early (blue)

and late (red) analyses were performed. See also Figure S1.
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suggesting that synchrony could serve as an additional

information channel in neural circuits (Riehle et al., 1997). Alter-

ations in synchrony and LFP dynamics have also been impli-

cated in pathological states such as epilepsy (Bragin et al.,

2010) and Parkinson’s disease (Costa et al., 2006), highlighting

their importance for normal brain functioning.

Despite increasing evidence that changes in synchronous LFP

activity are related to changes in behavior during learning

(DeCoteau et al., 2007), there is little evidence that temporal

coordination emerges selectively in neurons that are controlling

behavior. For example, although previous work has demon-

strated selectivity of corticomuscular coherence across hemi-

spheres (Schoffelen et al., 2011), there is less evidence of

selective coherence emerging in cells directly relevant for behav-

ioral output, largely because the differential participation of

neighboring neurons in behavior is difficult to disentangle. In

addition, investigating the progression of coherent interactions

across learning in individual animals has only recently become

possible due to the development of chronically implantable

multielectrode arrays. Corticostriatal networks exhibit plasticity

during action learning (Costa et al., 2004; Hikosaka et al.,

1999), which involves changes in coherence between distal

regions (Koralek et al., 2012), and they therefore serve as an

important model system for investigating changing interactions

across learning. Here, we examine the dynamics and specificity

of the temporal interactions between distal nodes of corticostria-

tal circuits during learning using a BMI paradigm that permits the

definition of output-relevant neurons.

RESULTS

Acquisition of a Neuroprosthetic Skill
We developed a BMI task in which rats were required to modu-

late activity in primary motor cortex (M1) irrespective of physical

movements (Figure 1A; Koralek et al., 2012). Modulation of M1

ensemble activity produced changes in the pitch of an auditory

cursor, which provided constant auditory feedback to rats about

task performance. Reward was delivered when rats precisely

modulated M1 activity to move this auditory cursor to one of

two target tones, and a trial was marked incorrect if no target

had been hit within a 30 s time limit. Two neural ensembles

consisting of two to four well-isolated units each were randomly

chosen to control the auditory cursor (see Supplemental Exper-

imental Procedures and Figure S1 available online). The action of

these ensembles opposed each other, such that increased activ-

ity in one ensemble produced increases in cursor pitch, while

increased activity in the other ensemble decreased cursor pitch.

Thus, in order to achieve a high-pitched target, rodents had to

increase activity in the first ensemble and decrease activity in

the second, while the opposite modulations were necessary to

hit a low-pitched target (Figure 1B). Firing rates were smoothed

with a moving average of the past three 200 ms time bins, and

rate modulations therefore had to be maintained for a target to

be hit. In this sense, the task required rodents to volitionally bring

M1 into a desired state irrespective of motor output. Importantly,

this task allows us to directly define cells that are relevant for

behavioral output and therefore infer the causal link between

activity in these cells and behavior.
866 Neuron 79, 865–872, September 4, 2013 ª2013 Elsevier Inc.
We chronically implanted a group of rats (n = 8) with micro-

electrode arrays to simultaneously record activity in both M1

and the dorsal striatum (DS) throughout learning and trained

them in this paradigm. A subset of these rats were used in a

previous study (Koralek et al., 2012) but underwent additional

experimental manipulations for the present work, and two addi-

tional rats were used exclusively for this study. The mean per-

centage of correct trials increased greatly over the course of

learning, following a standard learning curve (Figure 1C). There

was an initial phase of rapid improvement followed by a phase

of slower learning, representing early (days 2–4) and late (days

8–11) learning. The percentage of correct trials increased sig-

nificantly from early to late in learning (p < 0.001), demon-

strating that rats were able to properly learn the task. Analyses

of M1 firing rates further showed that rats were producing the

desired ensemble rate modulations during task performance

(Figure 1B).

Corticostriatal Coherence Develops during
Neuroprosthetic Learning
We first investigated the relationship between spiking activity

and the LFP oscillations recorded during task engagement. We

performed spike-triggered averaging of the LFP in late learning
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Figure 2. Coherence Develops in Corticostria-

tal Networks during Learning

(A) ThemeanM1 LFP (top row) or DS LFP (bottom row)

time locked to occurrences of spikes from M1 (left

column) or DS (right column). All four average traces

exhibit clear LFP oscillations with a strong component

at roughly 8 Hz, showing that phase at this frequency

influences spiking. (B) Spikes from M1 (top row) or DS

(bottom row) fire at a preferred phase of the 6–14 Hz

band in the M1 LFP (left column) or DS LFP (right

column). (C) Coherograms showing the grand average

of coherence between M1 spikes and DS LFP in early

(left) and late (right) learning time locked to target

achievement. There is a clear increase from early to

late in learning, with particularly pronounced activity in

the 6–14Hz band. (D) Mean coherence from 6–14 Hz in

early (blue) and late (red) learning time locked to target

achievement. Shaded regions denote SEM. Colored

bars above plot designate time points with significant

differences. (E) Coherograms showing the grand

average of coherence between M1 LFP and DS LFP in

early (left) and late (right) learning time locked to

target achievement. There is a clear increase in low-

frequency coherence during learning. (F) Percent in-

crease in coherence from early to late learning shows

that this effect is most pronounced in the 6–14 Hz

band. See also Figure S2.
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time locked to spikes occurring either in the same region or in the

other region. If spiking activity was independent of LFP phase,

then fluctuations would cancel and produce a flat average

LFP. Instead, we observed clear mean LFP oscillations in both

regions around action potentials from both regions; this

oscillatory activity had a strong component between 6–14 Hz

(Figure 2A). This is consistent with past work showing that oscil-

lations in this range are prominent in corticostriatal circuits when

performing well-learned tasks (Berke et al., 2004), as well as

work suggesting that M1 is predisposed to operate in this fre-

quency range (Castro-Alamancos, 2013). We therefore filtered

the raw LFP from 6–14 Hz and calculated the predominant phase

at which spikes occurred. Again, we observed clear phase lock-

ing of spikes to the ongoing 6–14 Hz LFP in both regions (Fig-

ure 2B). Although the relationship between LFP and spiking is

certainly complex and cells spike at several preferred LFP

phases, there was nevertheless a dominant phase preference

across both regions. Interestingly, both DS and M1 spikes

occurred preferentially at the peak of the striatal 6–14 Hz LFP

oscillation, suggesting that DS firing is maximal at the peak of

the DS LFP.

To further quantify these interactions and the ways they evolve

during learning, we calculated coherence between spiking activ-

ity in M1 and LFP oscillations in DS. We analyzed 1,936 spike-

field pairs (121 M1 units and 16 DS LFP channels). To avoid

effects of evoked responses on coherence estimates, we sub-

tracted the mean DS event-related potential (ERP) and M1

time-varying firing rate for each cell or LFP channel, respectively,

from individual trials before calculating coherence (Figure S2).

We saw a profound increase in spike-field coherence across a

range of low frequencies in late learning, when rats were skillfully
performing the task, relative to early learning (Figure 2C). This

effect was most pronounced at frequencies between 6 and

14 Hz and there was a significant increase in mean coherence

at these frequencies from early to late in learning (Figure 2D;

p < 0.001, Bonferroni corrected). However, while subtracting

the mean ERP often reduces the effect of evoked potentials on

estimates of coherence, it has also been shown that such a pro-

cedure can produce artifacts (Truccolo et al., 2002). We there-

fore repeated the analysis without subtracting the mean ERP

and again found a profound increase in 6–14 Hz coherence

from early to late learning (Figure S2). This change in coherence

was not due to differences in trial number between early and late

learning (Figure S2). Importantly, coherence was highest during

target reaching and decreased after trial completion at time 0

when the animals initiated movements toward reward. Before

trial completion, coherence was significantly higher on correct

relative to incorrect trials (Figure S2). In addition, coherence

between the M1 LFP and DS LFP also increased from early to

late learning (Figure 2E), and this effect was most pronounced

between 6 and 14 Hz (Figure 2F). We therefore focused further

analyses on this frequency band. These data suggest that

corticostriatal ensembles become tightly coordinated over the

course of learning.

Coherence Is Specific to Output-Relevant Neurons
and to Task Performance
We then asked whether this increase in coherence between M1

spikes and DS LFP was present in all M1 cells recorded or was

specific to task-relevant cells. The operant BMI task used here

offers the unique advantage that the cells that are directly con-

trolling the output of the BMI (hereafter ‘‘output cells’’; n = 31)
Neuron 79, 865–872, September 4, 2013 ª2013 Elsevier Inc. 867
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Figure 3. Coherence Is Specific to Task Output-Relevant Neurons and Task-Relevant Time Periods

(A) Firing rate modulation depth for output (red) and indirect (blue) cells in late learning (mean ± SEM). There is significantly greater modulation of output cells

relative to indirect cells. (B) Coherograms in late learning showing the grand average for output (left) and indirect cells (right) time locked to target achievement.

Coherence is markedly stronger in output than indirect cells. (C) Mean coherence from 6–14 Hz in late learning for output cells (red) and indirect cells (blue) time

locked to target achievement. Shaded regions denote SEM. Colored bars above plot designate time points with significant differences. (D) Coherence in late

learning is greatly reducedwhen rats are not actively engaged in the task. Plot shows the grand average across animals. (E)When rats are not performing the task,

there is no difference in coherence for output (left) and indirect (right) cells. (F) Mean coherence from 6–14 Hz in late learning when rats are not performing the task

again shows no difference between output (red) and indirect (blue) cells. Shaded regions denote SEM. See also Figure S3.

Neuron

Temporally Precise Cell-Specific Coherence
are explicitly defined. Because past work has demonstrated

enhanced rate modulations in output cells relative to cells not

entered into the BMI (Ganguly et al., 2011; hereafter ‘‘indirect

cells’’; n = 89), we first examined the firing rate modulations

that rats produced during task performance. Although indirect

cells do not directly impact cursor movement, they are

embedded in the same network as output cells and modulation

of their activity could therefore still play an indirect role in

target achievement. However, in late learning, rats modulated

output cells significantly more than indirect cells before target

achievement (Figure 3A; p < 0.001), suggesting that indirect

cells were indeed being treated as less task relevant than output

cells. Importantly, we found that the M1-DS coherence that

emerged during learning was highly specific to output cells

(Figure 3B), even when they were recorded on the same elec-

trode as indirect cells and separated from this population by

less than 100 mm. This effect again appeared to be more pro-

nounced in the 6–14 Hz range, with significantly larger coher-

ence in output relative to indirect cells (Figure 3C; p < 0.01,

Bonferroni corrected). We ensured that well-isolated units were

included in both the output and indirect populations, and further

verified that these populations did not differ in baseline firing rate

(Experimental Procedures and Figure S1). Nevertheless, coher-

ence estimates can be affected by firing rate (Lepage et al.,

2011) and the task structure required differences in firing rates

in the two populations during target achievement. We therefore

performed a thinning procedure to equate firing rates in the

two populations (Gregoriou et al., 2009; Experimental Proce-
868 Neuron 79, 865–872, September 4, 2013 ª2013 Elsevier Inc.
dures). Despite differences in firing rate being removed, there

remained a significant difference in spike-field coherence

between output cells and indirect cells (Figure S3; p < 0.001,

Bonferroni corrected), demonstrating that this effect was not

driven by firing rate differences. To further ensure that our

results were not affected by firing rate, we separated our

analysis by cell and trial type to examine trials in which output

cells were required to increase their firing rate to achieve the

target and trials in which output cells decreased their firing

rate (Figure S3). There was still a significant difference in

coherence between output cells that decreased their firing rate

relative to indirect cells (p < 0.05, Bonferroni corrected), despite

no significant difference in firing rate between these populations.

Finally, we also calculated coherence after removing cells with

low signal-to-noise ratio (SNR) from the indirect population and

coherence remained higher in output cells than indirect cells,

demonstrating that the effect was not due to differences in

SNR (Figure S3; p < 0.05, Bonferroni corrected). These coherent

interactions were greatly diminished between trials when rats

were not actively engaged in the task (Figure 3D). Furthermore,

during these periods, the difference in coherence between

output and indirect populations was abolished (Figures 3E and

3F). These results show that the corticostriatal coherence that

emerged during learning was highly specific for neurons that

are directly relevant to behavioral output, even when they are

closely intermingled with other cells, and that these precise inter-

actions are flexible and appear rapidly as needed during task

performance.
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Figure 4. M1 Spikes Are Precisely Timed to the

DS LFP during Task Performance

(A) Phase values in late learning show a negative phase

in the 6–14 Hz band relative to other frequency ranges.

By convention, this suggests that M1 spikes lead the

DS LFP. (B) The mean phase from 6–14 Hz surround-

ing target achievement exhibiting consistently nega-

tive phase. Shaded region denotes SEM. (C) The

distribution of temporal offset estimates obtained from

the coherence phase data for every trial and every

spike-field pair (see Experimental Procedures) shows

that M1 spikes most often occur 5–7 ms before the

peak of the DS 6–14 Hz LFP. (D) The distribution of

temporal offset estimates in early learning does not

show the same phase preference seen in late learning.

(E) The distribution of temporal offset estimates in late

learning when rats were not actively engaged in the

task does not show the same phase preference seen

during task engagement. (F) Mean spiking response in

the DS time locked to application of ICMS to M1. (G)

Histogram of the latency to DS spikes after application

of ICMS to M1 as a measure of the corticostriatal

conduction delay. There is a clear peak 5–7 ms after

application of ICMS. (H) The ICMS-based estimate of

the conduction delay (top) aligns remarkably well with

temporal offset estimates from the spike-field coher-

ence analysis (bottom). Temporal offsets are plotted

with a reversed x axis to correspond with the ICMS

results. (I) A working model for our results. M1 spikes

precede the DS LFP 6–14 Hz band peak by 5–7 ms,

which is on scale with the corticostriatal conduction

delay. Thus, after accounting for this delay, M1 spikes

arrive at the DS during peak excitability. See also

Figure S4.
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Precise Timing of Corticostriatal Activity
Because we found that M1 spikes occurred preferentially at the

peak of the DS LFP (Figure 2B), we next investigated the phase

offset of the spike-field coherence. From the mean phase heat

map, we see that there is a consistent negative phase offset in

the 6–14 Hz range (Figure 4A). By convention, this suggests

that M1 spikes precede the peak of the DS LFP in the 6–14 Hz

band. Indeed, the phase at 6–14 Hz was commonly negative,

as can be seen in the distribution of phase offsets for every cell

and every frequency from 6 to 14 Hz (Figure 4B). When phase

offset values are used to estimate a temporal delay between

M1 spikes and DS LFP (see Experimental Procedures), we see

a clear preference for M1 cells to fire at an offset of �5

to �7 ms relative to the DS LFP, as reflected in the mode of

this distribution (Figure 4C; SEM = 0.03 ms). This preference

developed over the course of training and was not present in

early stages of learning (Figure 4D) or in late learning when rats

were not actively engaged in the task (Figure 4E), suggesting

that it is not innately apparent in corticostriatal circuits. In addi-

tion, this temporal offset was specific to the 6–14 Hz band

(Figure S4). These results show that M1 is on average spiking

6 ms before the peak of the DS LFP when rats are performing

a well-learned task.

The DS receives strong input fromM1, and this temporal offset

is concordant with past estimates of the conduction delay

between these regions (Cowan and Wilson, 1994), suggesting

that M1 input may be driving DS firing (which occurs preferen-
tially at the peak of the DS LFP). We therefore applied intracort-

ical microstimulation (ICMS) to M1 while recording responses

in DS and estimated the delay between M1 ICMS and DS

response. Brief cathodal pulses were applied to M1 and pro-

duced a consistent spiking response in the DS (Figure S4 and

Experimental Procedures). We performed 3,245 ICMS trials in

seven animals over several sessions. The mean peristimulus

time histogram (PSTH) time locked to ICMS shows a marked

peak in DS spiking following application of ICMS to M1 (Fig-

ure 4F). For every cell, we then estimated the corticostriatal con-

duction delay by calculating the latency fromM1 stimulation until

the first DS spike occurred (Figure 4G). This distribution of

latencies had a mode at 6 ms (SEM = 0.1 ms), which is on scale

with past estimates of the conduction delay (Vandermaelen and

Kitai, 1980). There was striking alignment between this estimate

of the conduction delay and the temporal offset determined

above, and these distributions were not significantly different

from each other (Figure 4H, p = 0.45). Together, these results

suggest that M1 spikes in late learning are precisely timed to

drive DS during task performance (Figure 4I).

Network Activity Drives the 6–14 Hz LFP Oscillation
Our finding of a consistent nonzero phase lag concordant with

the conduction delay between the two regions suggests that

the regions may interact directly rather than being coordinated

by a third region. To further investigate a mechanism for

these precise dynamics, we calculated spike-triggered phase
Neuron 79, 865–872, September 4, 2013 ª2013 Elsevier Inc. 869
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Figure 5. Intertrial Phase Coherence Suggests Entrainment of the

LFP by Network Spikes during Task Engagement

Colored bars above all plots denote time pointswith significant differences and

shaded regions denote SEM. (A) DS 6–14 Hz STPC time locked to M1 spikes

exhibits a marked peak immediately following M1 activity. DS STPC (black) is

significantly greater than the distribution of 6,000 STPC values obtained by

shuffling the timing of recorded spikes (blue). (B)M1 6–14HzSTPC time locked

to DS spikes also exhibits a clear peak following DS activity. M1 STPC (black)

is significantly greater than surrogate STPC values (blue). (C) DS 6–14 Hz STPC

(black) time locked to application of ICMS to M1. ICMS in M1 is followed by a

consistent phase in the DS. This is significantly greater than surrogate STPC

values (blue). (D) DS 6–14 Hz amplitude time locked to application of ICMS to

M1 (black). ICMS in M1 is followed by an increase in 6–14 Hz amplitude in the

DS. This peak is significantly greater than values obtained on a surrogate data

set (blue). See also Figure S5.
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coherence (STPC) in the 6–14 Hz band of both regions time

locked to spikes from either region (Experimental Procedures).

STPC measures phase consistency from spike to spike. This

measure will be 1 if, at a given time point, the phase is the

same surrounding every spike, and it will be 0 if the phase is

random. By investigating the time course of coherence sur-

rounding a spike, the STPC measure is suggestive of the direc-

tion of influence between spikes and LFP, although it cannot

conclusively rule out the influence of a third region. Importantly,

the DS STPC exhibited a pronounced peak after spikes from M1

are fired, showing that M1 spikes are followed by a consistent

phase in the DS (Figure 5A; p < 0.001, Bonferroni corrected).

Interestingly, we found a similar effect for the reverse calculation,

with STPC inM1 significantly enhanced following spikes from the

DS (Figure 5B; p < 0.001, Bonferroni corrected). This shows that

activity in the DS is followed by a consistent phase in M1 and un-
870 Neuron 79, 865–872, September 4, 2013 ª2013 Elsevier Inc.
derscores that corticostriatal circuits function as re-entrant

loops. To investigate whetherM1 activity caused the 6–14Hz ac-

tivity or simply coordinated ongoing activity, we also calculated

STPC in the DS surrounding application of ICMS to M1 (Fig-

ure 5C) and found that STPC was significantly enhanced after

M1 ICMS (p < 0.001, Bonferroni corrected), suggesting that

strong ICMS-induced activity in M1 produces entrainment that

drives the DS 6–14 Hz oscillation. These peaks in STPC are

significantly greater than values obtained with surrogate data

sets in which spike or event times are shuffled (Experimental

Procedures). Importantly, M1 ICMS is also followed by an

enhancement of 6–14 Hz amplitude in the DS (Figure 5D; p <

0.001, Bonferroni corrected), suggesting that strong M1 activity

drives the 6–14 Hz activity in the DS rather than coordinating

ongoing activity. Interestingly, the peak in 6–14 Hz amplitude

following ICMS precedes the peak in STPC. This amplitude

peak is again greater than values obtained with surrogate data

sets. Together, these data suggest that, after learning, spiking

inM1 or DS produces a consistent LFP phase in the other region,

resulting in reinforcement of coherent dynamics throughout the

network.

DISCUSSION

In summary, we have shown that coherence develops in cortico-

striatal networks during learning with high temporal precision

and, importantly, specifically involving cells that control behav-

ioral output, even when these cells are intermingled with other

neuronal populations. This specificity suggests that coherence

can serve to enhance communication between task-relevant

populations and bias local competitive interactions in their favor.

This, in turn, allows for rapid modulation of the functional con-

nectivity between local ensembles and distant brain structures

and for flexible routing of specific signals throughout the brain

as these signals become immediately relevant for behavior.

Interestingly, this cell-specific coherence occurred predomi-

nantly in the alpha band, between 6 and 14 Hz. This is consistent

with recent work showing low-frequency coherence betweenM1

spikes and DS spikes (Koralek et al., 2012). The slight shift in

frequency between spike-spike and spike-field coherence in

the same task may reflect that spike-spike coherence measures

similarity between output spike trains, while spike-field coher-

ence measures similarity between the output of one region and

synchronous input to another (Zeitler et al., 2006). Differences

between these measures in the dominant frequency of coher-

ence could therefore reflect individual neurons not spiking on

every cycle of the population rhythm or performing temporal

integration of inputs.

A number of distinct rhythms have been previously observed

in this frequency range. While some of these rhythms, such as

high-voltage spindles or mu rhythms, are thought to be gener-

ated in thalamocortical circuits (Hughes and Crunelli, 2005),

other forms of 6–14 Hz LFP activity in M1 are thought to be

generated via local circuit mechanisms (Castro-Alamancos,

2013). Importantly, sleep spindles in this frequency range have

been associated with memory consolidation (Steriade and Tim-

ofeev, 2003). In addition, alpha band activity in the visual system

(Kandel and Buzsáki, 1997) and mu rhythms in the sensorimotor
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system (Nicolelis et al., 1995), both centered roughly at 6–14 Hz,

are associated with disengagement from external stimuli. Thus,

our finding of enhanced phase locking of M1 spikes to the DS

alpha band LFP in late learning could reflect the rats learning

to disengage the corticostriatal system from the musculature in

order to perform our neuroprosthetic task.

In addition, the precise timing of neuronal inputs that we

observed could have consequences for network dynamics and

plasticity throughout the brain. A large body of work has

shown that temporal precision modulates the induction and

direction of long-lasting synaptic plasticity (Dan and Poo,

2004). Indeed, computational models have demonstrated the

importance of timing for spike-timing-dependent plasticity

and information transfer in neuronal networks (Wang et al.,

2010). Input timing is particularly important for the regulation

of dendritic calcium levels in striatal cells and, in turn, syn-

aptic plasticity (Kerr and Plenz, 2004). Thus, the precise

temporal dynamics demonstrated here may have important

functional consequences for corticostriatal plasticity and its

role in learning.

Our results also suggest the intriguing possibility that these

precise temporal interactions can be maintained by activity

within the network reinforcing synchronous LFP oscillations.

Corticobasal ganglia circuits are organized as closed feedback

loops (Hikosaka et al., 1999), with activity in any node influencing

the flow of information through the system. Our finding of

enhanced STPC following spikes in either M1 or DS therefore

suggests that this flow of feedback through re-entrant cortico-

striatal loops maintains the orderliness and strength of coher-

ence in the system. Indeed, while past work has suggested

that oscillations spanning a range of frequencies are produced

in the thalamus, removal of corticothalamic feedback by decor-

tication results in disordered oscillations (Contreras et al., 1996),

highlighting the importance of network feedback mechanisms in

the control and organization of coherent activity.

In summary, our data support coherence as an effective

means by which functional cell assemblies can quickly form

and disband to meet task demands, as well as demonstrating

ways in which such neuronal interactions can be learned and

adapted to support a lifetime of flexible, skilled behavior.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for details.
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