275 research outputs found

    The ESCRT machinery: new roles at new holes

    Get PDF
    The ESCRT machinery drives a diverse collection of membrane remodeling events, including multivesicular body biogenesis, release of enveloped retroviruses and both reformation of the nuclear envelope and cytokinetic abscission during mitotic exit. These events share the requirement for a topologically equivalent membrane remodeling for their completion and the cells deployment of the ESCRT machinery in these different contexts highlights its functionality as a transposable membrane-fission machinery. Here, we will examine recent data describing ESCRT-III dependent membrane remodeling and explore new roles for the ESCRT-III complex at the nuclear envelope

    Syntaxin 16 is a master recruitment factor for cytokinesis

    Get PDF
    Recently it was shown that both recycling endosome and endosomal sorting complex required for transport (ESCRT) components are required for cytokinesis, in which they are believed to act in a sequential manner to bring about secondary ingression and abscission, respectively. However, it is not clear how either of these complexes is targeted to the midbody and whether their delivery is coordinated. The trafficking of membrane vesicles between different intracellular organelles involves the formation of soluble N-ethylmalei­mide–sensitive factor attachment protein receptor (SNARE) complexes. Although membrane traffic is known to play an important role in cytokinesis, the contribution and identity of intracellular SNAREs to cytokinesis remain unclear. Here we demonstrate that syntaxin 16 is a key regulator of cytokinesis, as it is required for recruitment of both recycling endosome–associated Exocyst and ESCRT machinery during late telophase, and therefore that these two distinct facets of cytokinesis are inextricably linked

    Tumor Susceptibility Gene 101 (TSG101) Is a Novel Binding-Partner for the Class II Rab11-FIPs

    Get PDF
    The Rab11-FIPs (Rab11-family interacting proteins; henceforth, FIPs) are a family of Rab11a/Rab11b/Rab25 GTPase effector proteins implicated in an assortment of intracellular trafficking processes. Through proteomic screening, we have identified TSG101 (tumor susceptibility gene 101), a component of the ESCRT-I (endosomal sorting complex required for transport) complex, as a novel FIP4-binding protein, which we find can also bind FIP3. We show that α-helical coiled-coil regions of both TSG101 and FIP4 mediate the interaction with the cognate protein, and that point mutations in the coiled-coil regions of both TSG101 and FIP4 abrogate the interaction. We find that expression of TSG101 and FIP4 mutants cause cytokinesis defects, but that the TSG101-FIP4 interaction is not required for localisation of TSG101 to the midbody/Flemming body during abscission. Together, these data suggest functional overlap between Rab11-controlled processes and components of the ESCRT pathway

    Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour

    Get PDF
    The central portion of the midbody, a cytoplasmic bridge between nascent daughter cells at the end of cell division, has generally been thought to be retained by one of the daughter cells, but has, recently, also been shown to be released into the extracellular space. The significance of midbody-retention versus -release is unknown. Here we show, by quantitatively analysing midbody-fate in various cell lines under different growth conditions, that the extent of midbody-release is significantly greater in stem cells than cancer-derived cells. Induction of cell differentiation is accompanied by an increase in midbody-release. Knockdown of the endosomal sorting complex required for transport family members, Alix and tumour-suppressor gene 101, or of their interaction partner, centrosomal protein 55, impairs midbody-release, suggesting mechanistic similarities to abscission. Cells with such impaired midbody-release exhibit enhanced responsiveness to a differentiation stimulus. Taken together, midbody-release emerges as a characteristic feature of cells capable of differentiation

    The Aurora B specificity switch is required to protect from non-disjunction at the metaphase/anaphase transition

    Get PDF
    The Aurora B abscission checkpoint delays cytokinesis until resolution of DNA trapped in the cleavage furrow. This process involves PKCε phosphorylation of Aurora B S227. Assessing if this PKCε-Aurora B module provides a more widely exploited genome-protective control for the cell cycle, we show Aurora B phosphorylation at S227 by PKCε also occurs during mitosis. Expression of Aurora B S227A phenocopies inhibition of PKCε in by-passing the delay and resolution at anaphase entry that is associated with non-disjunction and catenation of sister chromatids. Implementation of this anaphase delay is reflected in PKCε activation following cell cycle dependent cleavage by caspase 7; knock-down of caspase 7 phenocopies PKCε loss, in a manner rescued by ectopically expressing/generating a free PKCε catalytic domain. Molecular dynamics indicates that Aurora B S227 phosphorylation induces conformational changes and this manifests in a profound switch in specificity towards S29 TopoIIα phosphorylation, a response necessary for catenation resolution during mitosis.This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001130), the UK Medical Research Council (FC001130) and the Wellcome Trust (FC001130).Peer reviewe

    A database of antimalarial drug resistance

    Get PDF
    A large investment is required to develop, license and deploy a new antimalarial drug. Too often, that investment has been rapidly devalued by the selection of parasite populations resistant to the drug action. To understand the mechanisms of selection, detailed information on the patterns of drug use in a variety of environments, and the geographic and temporal patterns of resistance is needed. Currently, there is no publically-accessible central database that contains information on the levels of resistance to antimalaria drugs. This paper outlines the resources that are available and the steps that might be taken to create a dynamic, open access database that would include current and historical data on clinical efficacy, in vitro responses and molecular markers related to drug resistance in Plasmodium falciparum and Plasmodium vivax. The goal is to include historical and current data on resistance to commonly used drugs, like chloroquine and sulfadoxine-pyrimethamine, and on the many combinations that are now being tested in different settings. The database will be accessible to all on the Web. The information in such a database will inform optimal utilization of current drugs and sustain the longest possible therapeutic life of newly introduced drugs and combinations. The database will protect the valuable investment represented by the development and deployment of novel therapies for malaria

    Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Get PDF
    BACKGROUND: The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1) and ASIC3 (acid sensing ion channel-3) respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. METHODS: The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons), and their soma diameter was measured. RESULTS: Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1(+)/ASIC3(- )neurons with probably slow conduction velocity (small soma, neurofilament 68-negative) were significantly more frequent among pleural (35%) than pulmonary afferents (20%). TRPV1(+)/ASIC3(+ )neurons amounted to 14 and 10% respectively. TRPV1(-)/ASIC3(+ )neurons made up between 44% (lung) and 48% (pleura) of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive). CONCLUSION: Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1(+)/ASIC3(- )neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli

    Identification and Characterization of RBM44 as a Novel Intercellular Bridge Protein

    Get PDF
    Intercellular bridges are evolutionarily conserved structures that connect differentiating germ cells. We previously reported the identification of TEX14 as the first essential intercellular bridge protein, the demonstration that intercellular bridges are required for male fertility, and the finding that intercellular bridges utilize components of the cytokinesis machinery to form. Herein, we report the identification of RNA binding motif protein 44 (RBM44) as a novel germ cell intercellular bridge protein. RBM44 was identified by proteomic analysis after intercellular bridge enrichment using TEX14 as a marker protein. RBM44 is highly conserved between mouse and human and contains an RNA recognition motif of unknown function. RBM44 mRNA is enriched in testis, and immunofluorescence confirms that RBM44 is an intercellular bridge component. However, RBM44 only partially localizes to TEX14-positive intercellular bridges. RBM44 is expressed most highly in pachytene and secondary spermatocytes, but disappears abruptly in spermatids. We discovered that RBM44 interacts with itself and TEX14 using yeast two-hybrid, mammalian two-hybrid, and immunoprecipitation. To define the in vivo function of RBM44, we generated a targeted deletion of Rbm44 in mice. Rbm44 null male mice produce somewhat increased sperm, and show enhanced fertility of unknown etiology. Thus, although RBM44 localizes to intercellular bridges during meiosis, RBM44 is not required for fertility in contrast to TEX14

    A novel series of compositionally biased substitution matrices for comparing Plasmodium proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most common substitution matrices currently used (BLOSUM and PAM) are based on protein sequences with average amino acid distributions, thus they do not represent a fully accurate substitution model for proteins characterized by a biased amino acid composition. This problem has been addressed recently by adjusting existing matrices, however, to date, no empirical approach has been taken to build matrices which offer a substitution model for comparing proteins sharing an amino acid compositional bias. Here, we present a novel procedure to construct series of symmetrical substitution matrices to align proteins from similarly biased <it>Plasmodium </it>proteomes.</p> <p>Results</p> <p>We generated substitution matrices by selecting from the BLOCKS database those multiple alignments with a compositional bias similar to that of <it>P. falciparum </it>and <it>P. yoelii </it>proteins. A novel 'fuzzy' clustering method was adopted to group sequences within these alignments, showing that this method retains more complete information on the amino acid substitutions when compared to hierarchical clustering. We assessed the performance against the BLOSUM62 series and showed that the usage of our matrices results in an improvement in the performance of BLAST database searches, greatly reducing the number of false positive hits. We then demonstrated applications of the use of novel matrices to improve the annotation of homologs between the two <it>Plasmodium </it>species and to classify members of the <it>P. falciparum </it>RIFIN/STEVOR family.</p> <p>Conclusion</p> <p>We confirmed that in the case of compositionally biased proteins, standard BLOSUM matrices are not suited for optimal alignments, and specific substitution matrices are required. In addition, we showed that the usage of these matrices leads to a reduction of false positive hits, facilitating the automatic annotation process.</p
    • …
    corecore