5,798 research outputs found

    The Theory of the Interleaving Distance on Multidimensional Persistence Modules

    Full text link
    In 2009, Chazal et al. introduced ϵ\epsilon-interleavings of persistence modules. ϵ\epsilon-interleavings induce a pseudometric dId_I on (isomorphism classes of) persistence modules, the interleaving distance. The definitions of ϵ\epsilon-interleavings and dId_I generalize readily to multidimensional persistence modules. In this paper, we develop the theory of multidimensional interleavings, with a view towards applications to topological data analysis. We present four main results. First, we show that on 1-D persistence modules, dId_I is equal to the bottleneck distance dBd_B. This result, which first appeared in an earlier preprint of this paper, has since appeared in several other places, and is now known as the isometry theorem. Second, we present a characterization of the ϵ\epsilon-interleaving relation on multidimensional persistence modules. This expresses transparently the sense in which two ϵ\epsilon-interleaved modules are algebraically similar. Third, using this characterization, we show that when we define our persistence modules over a prime field, dId_I satisfies a universality property. This universality result is the central result of the paper. It says that dId_I satisfies a stability property generalizing one which dBd_B is known to satisfy, and that in addition, if dd is any other pseudometric on multidimensional persistence modules satisfying the same stability property, then ddId\leq d_I. We also show that a variant of this universality result holds for dBd_B, over arbitrary fields. Finally, we show that dId_I restricts to a metric on isomorphism classes of finitely presented multidimensional persistence modules.Comment: Major revision; exposition improved throughout. To appear in Foundations of Computational Mathematics. 36 page

    Giant Monopole Resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions

    Full text link
    Background: Following the 2007 precise measurements of monopole strengths in tin isotopes, there has been a continuous theoretical effort to obtain a precise description of the experimental results. Up to now, there is no satisfactory explanation of why the tin nuclei appear to be significantly softer than 208Pb. Purpose: We determine the influence of finite-range and separable pairing interactions on monopole strength functions in semi-magic nuclei. Methods: We employ self-consistently the Quasiparticle Random Phase Approximation on top of spherical Hartree-Fock-Bogolyubov solutions. We use the Arnoldi method to solve the linear-response problem with pairing. Results: We found that the difference between centroids of Giant Monopole Resonances measured in lead and tin (about 1 MeV) always turns out to be overestimated by about 100%. We also found that the volume incompressibility, obtained by adjusting the liquid-drop expression to microscopic results, is significantly larger than the infinite-matter incompressibility. Conclusions: The zero-range and separable pairing forces cannot induce modifications of monopole strength functions in tin to match experimental data.Comment: 11 RevTeX pages, 16 figures, 1 table, extended versio

    Correlation studies of fission fragment neutron multiplicities

    Full text link
    We calculate neutron multiplicities from fission fragments with specified mass numbers for events having a specified total fragment kinetic energy. The shape evolution from the initial compound nucleus to the scission configurations is obtained with the Metropolis walk method on the five-dimensional potential-energy landscape, calculated with the macroscopic-microscopic method for the three-quadratic-surface shape family. Shape-dependent microscopic level densities are used to guide the random walk, to partition the intrinsic excitation energy between the two proto-fragments at scission, and to determine the spectrum of the neutrons evaporated from the fragments. The contributions to the total excitation energy of the resulting fragments from statistical excitation and shape distortion at scission is studied. Good agreement is obtained with available experimental data on neutron multiplicities in correlation with fission fragments from 235^{235}U(nth_{\rm th},f). At higher neutron energies a superlong fission mode appears which affects the dependence of the observables on the total fragment kinetic energy.Comment: 12 pages, 10 figure

    SUMER Observations Confirm the Dynamic Nature of the Quiet Solar Outer Atmosphere: The Inter-network Chromosphere

    Full text link
    On 12 March 1996 we obtained observations of the quiet Sun with the SUMER instrument. The observa- tions were sequences of 15-20 second exposures of ultraviolet emission line profiles and of the neighboring continua. These data contain signatures of the dynamics of the solar chromosphere that are uniquely useful because of wavelength coverage, moderate signal-to-noise ratios, and image stability. The dominant observed phenomenon is an oscillatory behavior that is analogous to the 3 minute oscillations seen in Ca II lines. The oscillations appear to be coherent over 3-8". At any time they occur over approx. 50 % of the area studied, and they appear as large perturbations in the intensities of lines and continua. The oscillations are most clearly seen in intensity variations in the UV (lambda > 912 A) continua, and they are also seen in the intensities and velocities of chromospheric lines of C I, N I and O I. Intensity brightenings are accompanied by blueshifts of typically 5 km s1^{-1}. Phase differences between continuum and line intensities also indicate the presence of upward propagating waves. Three minute intensity oscillations are occasionally seen in second spectra (C II 1335), but never in third spectra (C III and Si III). Third spectra and He I 584 show oscillations in velocity that are not simply related to the 3 minute oscillations. The continuum intensity variations are consistent with recent simulations of chromospheric dynamics (Carlsson & Stein 1994) while the line observations indicate that important ingredients are missing at higher layers in the simulations. The data show that time variations are crucial for our understanding of the chromosphere itself and for the spectral features formed there.Comment: 8 pages, 3 figs, AASTeX, Accepted for publication in APJ letter

    Class and rank of differential modules

    Full text link
    A differential module is a module equipped with a square-zero endomorphism. This structure underpins complexes of modules over rings, as well as differential graded modules over graded rings. We establish lower bounds on the class--a substitute for the length of a free complex--and on the rank of a differential module in terms of invariants of its homology. These results specialize to basic theorems in commutative algebra and algebraic topology. One instance is a common generalization of the equicharacteristic case of the New Intersection Theorem of Hochster, Peskine, P. Roberts, and Szpiro, concerning complexes over noetherian commutative rings, and of a theorem of G. Carlsson on differential graded modules over graded polynomial rings.Comment: 27 pages. Minor changes; mainly stylistic. To appear in Inventiones Mathematica

    Order-N Density-Matrix Electronic-Structure Method for General Potentials

    Full text link
    A new order-N method for calculating the electronic structure of general (non-tight-binding) potentials is presented. The method uses a combination of the ``purification''-based approaches used by Li, Nunes and Vanderbilt, and Daw, and a representation of the density matrix based on ``travelling basis orbitals''. The method is applied to several one-dimensional examples, including the free electron gas, the ``Morse'' bound-state potential, a discontinuous potential that mimics an interface, and an oscillatory potential that mimics a semiconductor. The method is found to contain Friedel oscillations, quantization of charge in bound states, and band gap formation. Quantitatively accurate agreement with exact results is found in most cases. Possible advantages with regard to treating electron-electron interactions and arbitrary boundary conditions are discussed.Comment: 13 pages, REVTEX, 7 postscript figures (not quite perfect

    Collective vibrational states with fast iterative QRPA method

    Full text link
    An iterative method we previously proposed to compute nuclear strength functions is developed to allow it to accurately calculate properties of individual nuclear states. The approach is based on the quasi-particle-random-phase approximation (QRPA) and uses an iterative non-hermitian Arnoldi diagonalization method where the QRPA matrix does not have to be explicitly calculated and stored. The method gives substantial advantages over conventional QRPA calculations with regards to the computational cost. The method is used to calculate excitation energies and decay rates of the lowest lying 2+ and 3- states in Pb, Sn, Ni and Ca isotopes using three different Skyrme interactions and a separable gaussian pairing force.Comment: 10 pages, 11 figure
    corecore