11,409 research outputs found

    Lithological maps of selected Apollo 14 Breccia samples

    Get PDF
    A booklet of mapped surfaces of some Apollo 14 samples was prepared as an intermediate step towards the preparation of a new Apollo 14 sample catalog. It contains recently obtained observations and pictures of some of the largest and less well documented Apollo breccia samples. Some of the samples (14303, 14305, 14306, and 14311) were chosen because they have large sawn surfaces. These were dusted and mapped using a binocular microscope through the window of the nitrogen cabinet

    Evaluating matrix elements relevant to some Lorenz violating operators

    Get PDF
    Carlson, Carone and Lebed have derived the Feynman rules for a consistent formulation of noncommutative QCD. The results they obtained were used to constrain the noncommutativity parameter in Lorentz violating noncommutative field theories. However, their constraint depended upon an estimate of the matrix element of the quark level operator (gamma.p - m) in a nucleon. In this paper we calculate the matrix element of (gamma.p - m), using a variety of confinement potential models. Our results are within an order of magnitude agreement with the estimate made by Carlson et al. The constraints placed on the noncommutativity parameter were very strong, and are still quite severe even if weakened by an order of magnitude.Comment: 4 pages, 3 figures, RevTex, minor change

    Partonic calculation of the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer

    Full text link
    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer through the scattering off a parton in the proton. We relate the process on the nucleon to the generalized parton distributions which also enter in other wide angle scattering processes. We find that when taking the polarization transfer determinations of the form factors as input, adding in the 2 photon correction, does reproduce the Rosenbluth data.Comment: 4 pages, 4 figure

    MHD oxidant intermediate temperature ceramic heater study

    Get PDF
    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented

    Utilization of Drought-Stricken Corn Silage by Yearling Steers

    Get PDF
    Corn silage is a very versatile and palatable feed that fits well into many cattle feeding programs. Insufficient rainfall in several areas of the country in recent years has resulted in many additional acres of corn being ensiled due to the low potential grain yield. Harvesting drought-stricken corn silage results in at least partial salvage of the crop. However, many farmers have expressed concern about the feeding value of drought-damaged corn silage and how it can be best incorporated into feedlot rations for optimal performance and maximal economic return

    Studies on the Stimulation of Poultry Growth by Soybeans Molded with Species of Aspergillus

    Get PDF
    Many workers have reported that cultures of molds grown on feedstuffs produce poisonous metabolites, mycotoxins , which depress growth of farm animals and may cause high mortality

    Modeling stretched solitary waves along magnetic field lines

    Get PDF
    International audienceA model is presented for a new type of fast solitary waves which is observed in downward current regions of the auroral zone. The three-dimensional, coherent structures are electrostatic, have a positive potential, and move along the magnetic field lines with speeds on the order of the electron drift. Their parallel potential profile is flattened and cannot fit to the Gaussian shape used in previous work. We develop a detailed BGK model which includes a flattened potential and an assumed cylindrical symmetry around a centric magnetic field line. The model envisions concentric shells of trapped electrons slowly drifting azimuthally while bouncing back and forth in the parallel direction. The electron dynamics is analysed in terms of three basic motions that occur on different time scales characterized by the cyclotron frequency We , the bounce frequency wb , and the azimuthal drift frequency wg. The ordering We >> wb >> wg is required. Self-consistent distribution functions are calculated in terms of approximate constants of motion. Constraints on the parameters characterizing the amplitude and shape of the stretched solitary wave are discussed

    Approach to Perturbative Results in the N-Delta Transition

    Full text link
    We show that constraints from perturbative QCD calculations play a role in the nucleon to Delta(1232) electromagnetic transition even at moderate momentum transfer scales. The pQCD constraints, tied to real photoproduction data and unseparated resonance response functions, lead to explicit forms for the helicity amplitudes wherein the E2/M1 ratio remains small at moderately large momentum transfer.Comment: 4 pages, 2 figures, ReVTe

    The baryonic Y-shape confining potential energy and its approximants

    Full text link
    We discuss the validity of replacing the complicated three-body confinement operator of the Y string junction type by three kinds of approximation which are numerically much simpler to handle: a one-body operator with the junction point at the centre of mass, a two-body operator corresponding to half the perimeter of the triangle formed by the three particles, and the average of both. Two different approaches for testing the quality of the approximations are proposed: a geometrical treatment based on the comparison of the potential energy strengths for the various inter quark distances, and a dynamical treatment based on the comparison of the corresponding effective string tensions using a hyperspherical approach. Both procedures give very similar results. It is shown how to simulate the genuine string junction operator by the approximations proposed above. Exact three-body calculations are presented in order to compare quantitatively the various approximations and to confirm our analysis.Comment: 28 pages, 5 figures, submitted to EPJ

    Casimir Surface Force on a Dilute Dielectric Ball

    Get PDF
    The Casimir surface force density F on a dielectric dilute spherical ball of radius a, surrounded by a vacuum, is calculated at zero temperature. We treat (n-1) (n being the refractive index) as a small parameter. The dispersive properties of the material are taken into account by adopting a simple dispersion relation, involving a sharp high frequency cutoff at omega = omega_0. For a nondispersive medium there appears (after regularization) a finite, physical, force F^{nondisp} which is repulsive. By means of a uniform asymptotic expansion of the Riccati-Bessel functions we calculate F^{nondisp} up to the fourth order in 1/nu. For a dispersive medium the main part of the force F^{disp} is also repulsive. The dominant term in F^{disp} is proportional to (n-1)^2{omega_0}^3/a, and will under usual physical conditions outweigh F^{nondisp} by several orders of magnitude.Comment: 24 pages, latex, no figures, some additions to the Acknowledments sectio
    • …
    corecore