31,638 research outputs found
Stationary scalar and vector clouds around Kerr-Newman black holes
Massive bosons in the vicinity of Kerr-Newman black holes can form pure bound
states when their phase angular velocity fulills the synchronisation condition,
i.e. at the threshold of superradiance. The presence of these stationary clouds
at the linear level is intimately linked to the existence of Kerr black holes
with synchronised hair at the non-linear level. These configurations are very
similar to the atomic orbitals of the electron in a hydrogen atom. They can be
labeled by four quantum numbers: , the number of nodes in the radial
direction; , the orbital angular momentum; , the total angular
momentum; and , the azimuthal total angular momentum. These synchronised
configurations are solely allowed for particular values of the black hole's
mass, angular momentum and electric charge. Such quantization results in an
existence surface in the three-dimensional parameter space of Kerr-Newman black
holes. The phenomenology of stationary scalar clouds has been widely addressed
over the last years. However, there is a gap in the literature concerning their
vector cousins. Following the separability of the Proca equation in
Kerr(-Newman) spacetime, this work explores and compares scalar and vector
stationary clouds around Kerr and Kerr-Newman black holes, extending previous
research.Comment: 17 pages, 6 figures. Contribution to Selected Papers of the Fifth
Amazonian Symposium on Physics (accepted in IJMPD
Renormalization in a Lorentz-violating model and higher-order operators
The renormalization in a Lorentz-breaking scalar-spinor higher-derivative
model involving self-interaction and the Yukawa-like coupling is
studied. We explicitly de- monstrate that the convergence is improved in
comparison with the usual scalar-spinor model, so, the theory is
super-renormalizable, with no divergences beyond four loops. We compute the
one-loop corrections to the propagators for the scalar and fermionic fields and
show that in the presence of higher-order Lorentz invariance violation, the
poles that dominate the physical theory, are driven away from the standard
on-shell pole mass due to radiatively induced lower dimensional operators. The
new operators change the standard gamma-matrix structure of the two-point
functions, introduce large Lorentz-breaking corrections and lead to
modifications in the renormalization conditions of the theory. We found the
physical pole mass in each sector of our model.Comment: 20 pages, 5 figures. New version with modifications in the
renormalized Lagrangian. To be published in EPJ
Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string
In this paper we derive the tree-level S-matrix of the effective theory of
Goldstone bosons known as the non-linear sigma model (NLSM) from string theory.
This novel connection relies on a recent realization of tree-level
open-superstring S-matrix predictions as a double copy of super-Yang-Mills
theory with Z-theory --- the collection of putative scalar effective field
theories encoding all the alpha'-dependence of the open superstring. Here we
identify the color-ordered amplitudes of the NLSM as the low-energy limit of
abelian Z-theory. This realization also provides natural higher-derivative
corrections to the NLSM amplitudes arising from higher powers of alpha' in the
abelian Z-theory amplitudes, and through double copy also to Born-Infeld and
Volkov-Akulov theories. The Kleiss-Kuijf and Bern-Carrasco-Johansson relations
obeyed by Z-theory amplitudes thereby apply to all alpha'-corrections of the
NLSM. As such we naturally obtain a cubic-graph parameterization for the
abelian Z-theory predictions whose kinematic numerators obey the duality
between color and kinematics to all orders in alpha'.Comment: 37 pages; v2: references, explanations and arguments for
factorization added; published versio
On the backreaction of frame dragging
The backreaction on black holes due to dragging heavy, rather than test,
objects is discussed. As a case study, a regular black Saturn system where the
central black hole has vanishing intrinsic angular momentum, J^{BH}=0, is
considered. It is shown that there is a correlation between the sign of two
response functions. One is interpreted as a moment of inertia of the black ring
in the black Saturn system. The other measures the variation of the black ring
horizon angular velocity with the central black hole mass, for fixed ring mass
and angular momentum. The two different phases defined by these response
functions collapse, for small central black hole mass, to the thin and fat ring
phases. In the fat phase, the zero area limit of the black Saturn ring has
reduced spin j^2>1, which is related to the behaviour of the ring angular
velocity. Using the `gravitomagnetic clock effect', for which a universality
property is exhibited, it is shown that frame dragging measured by an
asymptotic observer decreases, in both phases, when the central black hole mass
increases, for fixed ring mass and angular momentum. A close parallelism
between the results for the fat phase and those obtained recently for the
double Kerr solution is drawn, considering also a regular black Saturn system
with J^{BH}\neq 0.Comment: 18 pages, 8 figure
Recommended from our members
Demographics and Outcomes of Pulmonary Hypertension Patients in United States Emergency Departments
Introduction: Pulmonary hypertension (PH) is a common, yet under-diagnosed, contributor to morbidity and mortality. Our objective was to characterize the prevalence of PH among adult patients presenting to United States (US) emergency departments (ED) and to identify demographic patterns and outcomes of PH patients in the ED.Methods: We analyzed the Nationwide Emergency Department Sample (NEDS) database, with a focus on ED patients aged 18 years and older, with any International Classification of Diseases, Clinical Modification (ICD)-9-CM or ICD-10-CM diagnosis code for PH from 2011 to 2015. The primary outcome was inpatient, all-cause mortality. The secondary outcomes were hospital admission rates and hospital length of stay (LOS).Results: From 2011 to 2015, in a sample of 121,503,743 ED visits, representing a weighted estimate of 545,500,486 US ED visits, patients with a diagnosis of PH accounted for 0.78% (95% confidence interval [CI], 0.75- 0.80%) of all US ED visits. Of the PH visits, 86.9% were admitted to the hospital, compared to 16.3% for all other ED visits (P <0.001). Likewise, hospital LOS and hospital-based mortality were higher in the PH group than for other ED patients (e.g., inpatient mortality 4.5% vs 2.6%, P < 0.001) with an adjusted odds ratio (aOR) of 1.34 (95% CI, 1.31–1.37). Age had the strongest association with mortality, with an aOR of 10.6 for PH patients over 80 years (95% CI, 10.06–11.22), compared to a reference of ages 18 to 30 years.Conclusion: In this nationally representative sample, presentations by patients with PH were relatively common, accounting for nearly 0.8% of US ED visits. Patients with PH were significantly more likely to be admitted to the hospital than all other patients, had longer hospital LOS, and increased risk of inpatient mortality
- …