104 research outputs found

    Children with acute food protein-induced enterocolitis syndrome from Spain and Italy usually tolerate all other food groups.

    Get PDF
    Acute food protein-induced enterocolitis syndrome ('FPIES') is a potentially severe type of non IgE-mediated food allergy affecting mainly infants usually when foods are introduced [1]. Acute FPIES triggered by multiple unrelated foods ('multiple food FPIES') has been reported in up to two thirds of patients, particularly in the USA [2,3]. FPIES reactions are often traumatic experiences for parents and weaning leads to significant anxiety, as there is no test to identify safe new foods. This has led to complex weaning recommendations in children with FPIES in an attempt to support parents [4]. However, evidence suggests that multiple food FPIES is rare in other regions, such as Southern Europe [5,6], which questions the applicability of such weaning advice in this population. Studies including a detailed dietary history in children with FPIES are lacking

    Protein and lipid kinase inhibitors as targeted anticancer agents of the Ras/Raf/MEK and PI3K/PKB pathways

    Get PDF
    The identification and characterization of the components of individual signal transduction cascades, and advances in our understanding on how these biological signals are integrated in cancer initiation and progression, have provided new strategies for therapeutic intervention in solid tumors and hematological malignancies. To this end, pharmaceutical efforts have been directed to target different components of the Ras/Raf/MEK and PI3K/PKB pathways. This review article covers recent salient achievements in the identification and development of Raf, MEK, and PI3K inhibitors

    NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models

    Get PDF
    INTRODUCTION:Heat shock protein 90 (HSP90) is a key component of a multichaperone complex involved in the post-translational folding of a large number of client proteins, many of which play essential roles in tumorigenesis. HSP90 has emerged in recent years as a promising new target for anticancer therapies.METHODS:The concentrations of the HSP90 inhibitor NVP-AUY922 required to reduce cell numbers by 50% (GI50 values) were established in a panel of breast cancer cell lines and patient-derived human breast tumors. To investigate the properties of the compound in vivo, the pharmacokinetic profile, antitumor effect, and dose regimen were established in a BT-474 breast cancer xenograft model. The effect on HSP90-p23 complexes, client protein degradation, and heat shock response was investigated in cell culture and breast cancer xenografts by immunohistochemistry, Western blot analysis, and immunoprecipitation.RESULTS:We show that the novel small molecule HSP90 inhibitor NVP-AUY922 potently inhibits the proliferation of human breast cancer cell lines with GI50 values in the range of 3 to 126 nM. NVP-AUY922 induced proliferative inhibition concurrent with HSP70 upregulation and client protein depletion � hallmarks of HSP90 inhibition. Intravenous acute administration of NVP-AUY922 to athymic mice (30 mg/kg) bearing subcutaneous BT-474 breast tumors resulted in drug levels in excess of 1,000 times the cellular GI50 value for about 2 days. Significant growth inhibition and good tolerability were observed when the compound was administered once per week. Therapeutic effects were concordant with changes in pharmacodynamic markers, including HSP90-p23 dissociation, decreases in ERBB2 and P-AKT, and increased HSP70 protein levels.CONCLUSION:NVP-AUY922 is a potent small molecule HSP90 inhibitor showing significant activity against breast cancer cells in cellular and in vivo settings. On the basis of its mechanism of action, preclinical activity profile, tolerability, and pharmaceutical properties, the compound recently has entered clinical phase I breast cancer trials

    Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial

    Get PDF
    Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64-0.99; DM: HR: 1.16, 95% CI: 0.91-1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50-0.94; DM: HR: 1.64, 95% CI: 1.15-2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium ≥6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71-1.93; DM: HR: 2.39, 95% CI: 1.30-4.42; P = 0.07 for interaction). Conclusion This pre-specified subgroup analysis from the ASTRONAUT trial generates the hypothesis that the addition of aliskiren to standard HHF therapy in non-diabetic patients is generally well-tolerated and improves post-discharge outcomes and biomarker profiles. In contrast, diabetic patients receiving aliskiren appear to have worse post-discharge outcomes. Future prospective investigations are needed to confirm potential benefits of renin inhibition in a large cohort of HHF patients without D

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Blocking the mTOR pathway: A drug discovery perspective

    No full text
    Abstract Substantial drug discovery efforts have been devoted, over the last few years, to identifying and developing mTOR (mammalian target of rapamycin) kinase modulators. This has resulted in a number of mTOR inhibitors with different mechanisms of action and/or distinct protein and lipid kinase selectivity profiles. As briefly reviewed in the present paper, these compounds have provided us with a better understanding of the roles of mTOR and other phosphoinositide 3-kinase/mTOR pathway components in human cancer biology, and a few of them have already demonstrated clinical benefit in cancer patients

    Medicinal chemistry approaches to target the kinase activity of IGF-1R.

    No full text
    Various drug discovery approaches have been explored in recent years to modulate the function of insulin-like growth factor-1 receptor (IGF-1R). This article focuses on the contributions of low-molecular-mass inhibitors in the modulation of IGF-1R kinase activity, and provides an update on recent reviews for this type of agent. Different classes of compounds have been demonstrated to be capable of modulating the kinase activity of IGF-1R in ways that were not possible previously. Preclinical data with some of these inhibitors support the potential application of IGF-1R-targeted therapeutic strategies in the treatment of human cancers

    Blocking the insulin-like growth factor-I receptor as a strategy for targeting cancer.

    No full text
    Clear links between cancer and cellular signaling triggered by the insulin-like growth factor-I (IGF-I) receptor (IGF-IR) and its cognate ligands (IGF-I and IGF-II) have been reported throughout the past two decades. Experimental results suggest that the pharmaceutical targeting of this signaling pathway could be beneficial for the treatment of cancer. Here, more recent advances towards potentially clinically viable strategies to interfere with the function of IGF-IR will be discussed
    corecore