38 research outputs found

    Morphometric differences in the grasshopper Cornops aquaticum (Bruner, 1906) from South America and South Africa

    Get PDF
    The semi-aquatic grasshopper Cornops aquaticum is native to South America and inhabits lowlands from southern Mexico to Central Argentina and Uruguay. It is host-specific to aquatic plants in the genera Eichhornia and Pontederia. A quarantine population has existed in South Africa for 10 y, and it is planned to release it there as a biological control agent of water hyacinth, E. crassipes. Various studies of C. aquaticum are coordinated under HICWA (www.mpil-ploen.mpg.de). This paper compares the morphometry of the release population and 11 native populations in South America. We tested four hypotheses: 1) South African and South American populations of C. aquaticum differ in morphology; 2) the South African laboratory population is more similar to other isolated populations in South America than to nonisolated populations; 3) morphology differs across sites; 4) morphology differs with host plant. South African populations differed from continental nonisolated populations, but not from continental isolated ones. Isolated populations presented smaller individuals than nonisolated, but there was also a change in male morphology: while in nonisolated populations male wing length was similar to their body length, in isolated populations, male wings were smaller than body length. Females were larger when on Eicchornia azurea than on E. crassipes, while males presented larger wings than their body on E. azurea, and similar lengths on E. crassipes. These morphological changes may have resulted from phenotypic plasticity, selection for small size, or because of a loss of genetic diversity in quantitative traits.Fil: Adis, Joachim. Institute for Limnology; AlemaniaFil: Sperber, Carlos F. Universidade Federal de Viçosa; BrasilFil: Brede, Edward G. Institute for Limnology; AlemaniaFil: Capello, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Franceschini, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; ArgentinaFil: Hill, Martin. Rhodes University; SudáfricaFil: Lhano, Marcos G. Universidade Federal de Viçosa; BrasilFil: Marques, Marinê. A;z M.. Universidade Federal de Mato Grosso; BrasilFil: Nunes, Ana L.. Muséu Paraense Emílio Goeldi; BrasilFil: Polar, Perry. CAB International; Trinidad y Tobag

    Two new species of Phalangopsis Serville, 1831 (Orthoptera: Grylloidea: Phalangopsidae) from Brazilian Amazon Forest

    Get PDF
    We describe here two new species of the genus Phalangopsis Serville, 1831 from the Brazilian Amazon Forest. The male genitalia and the female copulatory papilla were described, and a combination of diagnostic characteristics was given to separate both new species from the other described species. The principal morphological characteristics of this genus were discussed.Aqui foram descritas duas espécies novas do gênero Phalangopsis Serville, 1831 da Floresta Amazônica brasileira. A genitália masculina e a papila copulatória feminina são descritas, bem como uma combinação de características diagnósticas para separar ambas as novas espécies das outras espécies descritas. As principais características morfológicas foram discutidas

    Defining the Earliest Transcriptional Steps of Chondrogenic Progenitor Specification during the Formation of the Digits in the Embryonic Limb

    Get PDF
    The characterization of genes involved in the formation of cartilage is of key importance to improve cell-based cartilage regenerative therapies. Here, we have developed a suitable experimental model to identify precocious chondrogenic events in vivo by inducing an ectopic digit in the developing embryo. In this model, only 12 hr after the implantation of a Tgfβ bead, in the absence of increased cell proliferation, cartilage forms in undifferentiated interdigital mesoderm and in the course of development, becomes a structurally and morphologically normal digit. Systematic quantitative PCR expression analysis, together with other experimental approaches allowed us to establish 3 successive periods preceding the formation of cartilage. The “pre-condensation stage”, occurring within the first 3 hr of treatment, is characterized by the activation of connective tissue identity transcriptional factors (such as Sox9 and Scleraxis) and secreted factors (such as Activin A and the matricellular proteins CCN-1 and CCN-2) and the downregulation of the galectin CG-8. Next, the “condensation stage” is characterized by intense activation of Smad 1/5/8 BMP-signaling and increased expression of extracellular matrix components. During this period, the CCN matricellular proteins promote the expression of extracellular matrix and cell adhesion components. The third period, designated the “pre-cartilage period”, precedes the formation of molecularly identifiable cartilage by 2–3 hr and is characterized by the intensification of Sox 9 gene expression, along with the stimulation of other pro-chondrogenic transcription factors, such as HifIa. In summary, this work establishes a temporal hierarchy in the regulation of pro-chondrogenic genes preceding cartilage differentiation and provides new insights into the relative roles of secreted factors and cytoskeletal regulators that direct the first steps of this process in vivo

    Two new species of Phalangopsis Serville, 1831 (Orthoptera: Grylloidea: Phalangopsidae) from Brazilian Amazon Forest

    Get PDF
    We describe here two new species of the genus Phalangopsis Serville, 1831 from the Brazilian Amazon Forest. The male genitalia and the female copulatory papilla were described, and a combination of diagnostic characteristics was given to separate both new species from the other described species. The principal morphological characteristics of this genus were discussed

    Two new species of Phalangopsis Serville, 1831 (Orthoptera: Grylloidea: Phalangopsidae) from brazilian amazon forest

    No full text
    We describe here two new species of the genus Phalangopsis Serville, 1831 from the Brazilian Amazon Forest. The male genitalia and the female copulatory papilla were described, and a combination of diagnostic characteristics was given to separate both new species from the other described species. The principal morphological characteristics of this genus were discussed.Aqui foram descritas duas espécies novas do gênero Phalangopsis Serville, 1831 da Floresta Amazônica brasileira. A genitália masculina e a papila copulatória feminina são descritas, bem como uma combinação de características diagnósticas para separar ambas as novas espécies das outras espécies descritas. As principais características morfológicas foram discutidas

    Two new species of the cricket genus Eidmanacris and a new combination name for a third species (Orthoptera, Grylloidea, Phalangopsidae)

    No full text
    Two new species of the genus Eidmanacris are described (E. bidentata and E. corumbatai) and a new combination name ( E. alboannulata) is assigned for the species Arachnomimus alboannulatus Piza, 1960 (= E. bicornis Mesa & Mello, 1985). Morphological and karyologycal information are provided, and the structure of the genital sclerites is discussed. [KEY WORDS: Orthoptera, Grylloidea, Phalangopsidae, Eidmanacris, cricket, phallic sclerites, chromosomes]

    Litter disturbance and trap spatial positioning affects the number of captured individuals and genera of crickets (Orthoptera: Grylloidea)

    No full text
    There are several factors that may affect sampling with pitfall traps. Here we test the hypothesis that the mere walking of the researcher proximate to the traps could cause an increment in the capture of crickets. This would occur if the walking provoked vibration in the litter, to which crickets showed a jumping response, thus falling into the pitfall traps. We mounted 126 traps in 14 groups of nine. The traps within a group were positioned in three parallel rows of three traps each, one meter apart from each other. Each group of nine traps was separated from the other groups by at least 5 m. Each group of nine traps was submitted to one of seven levels of disturbance frequency. Exposure time was 7 d for all traps. Treatments (disturbance frequencies) were allocated randomly among trap groups. For the data analyses we adjusted mixed-effects polynomial models. We captured 723 cricket individuals, distributed in 10 genera, most in the nymphal stage. As expected, the number of captured individuals, as well as the number of genera, increased with disturbance frequency. However this response was not linear: at higher disturbance frequencies there was a decrease in captures. There was also an effect of trap positioning within each group: central traps were more affected by disturbance than peripheral ones, while peripheral traps captured more individuals and genera in the absence of disturbance. Therefore we recommend areas near pitfall traps not be visited during the trapping period. Alternatively, to enhance sampling efficiency, the researcher may do programmed visiting to the trapping area, but this must be rigorously designed to provoke exactly the same disturbance for all traps. Enhancing the distance among traps will augment efficiency in capturing individuals and capture larger cricket diversity. Further studies of the interaction between methodology and cricket behavior will refine our ability to design and interpret pitfall studies

    Small-scale patch dynamics after disturbance in litter ant communities

    No full text
    The dynamics of re-colonisation of disturbed patches may aid in the understanding of spatial variation of species richness. The present study experimentally tested the hypothesis that the variation of litter ant local species richness and composition is caused by the dynamics of re-colonisation after disturbances. We were particularly interested in whether the re-colonisation was by pre-existent species or species new to the patches, and whether the succession of species evidences the existence of dominance-controlled or founder-controlled communities. Litter patches of a forest remnant in Southeast Brazil were disturbed by removing most animals through litter drying, and litter samples were returned to the same sites from where they were removed. Ant species richness and composition were compared before and 2 months after the disturbance. Dissimilarity among disturbed and non-disturbed samples was compared to infer the succession model occurring after disturbance. Ant species richness did not recover after 2 months, and species composition of the disturbed samples showed more new colonisers than pre-existent species. Dissimilarity among samples in the disturbed plots was smaller than in the control plots, indicating a directional, or dominance-controlled, succession. The changes in species composition observed were caused by a decrease of some species, particularly predators, and an increase of species that are possibly opportunistic. Patches of litter are naturally disturbed in time and space, and evidence from the present paper indicates that succession occurring in these patches would lead to different species richness and compositions. Thus the dynamics of re-colonisation contributes to explaining the diversity of litter-dwelling ant communities at larger spatial and temporal scales. In each patch the succession seems to be directional, with opportunist species re-colonising preferentially empty plots. Therefore, these communities may attain a high diversity due to a small-scale patch dynamics model

    Effects of Forest Regeneration on Crickets: Evaluating Environmental Drivers in a 300-Year Chronosequence

    Get PDF
    We evaluated the relation of cricket species richness and composition with forest regeneration time, evaluating canopy and litter depth as environmental drivers. Effects of forest patch area, nearest distance to the 300-year patch, cricket abundance, sampling sufficiency, and nestedness were also evaluated. We collected 1174 individuals (five families, 19 species). Species richness increased asymptotically with regeneration time and linearly with canopy cover and litter depth. Canopy cover increased linearly, while litter depth increased asymptotically. Richness was not affected by patch area and nearest distance to the 300-year patch. Richness increased with cricket abundance, and this explanation could not be distinguished from regeneration time, evidencing collinearity of these two explanatory variables. Rarefaction curve slopes increased with regeneration time. Species composition differed among patches, with no nested pattern. We suggest that regeneration and consequent increases in canopy and litter promote recovery of cricket biodiversity, abundance, and changes in species composition. We conclude that the recovery of cricket diversity involves an increase along the spatial scale of complementarity, together with a change in species composition
    corecore