18 research outputs found
Database for model analysis within the SUPWIND project – Main sources and assumptions:SUPWIND Deliverable D 5.2
Market and regulatory incentives for cost efficient integration of DG in the electricity system:IMPROGRES project. Final report
Regulatory strategies for selected Member States (Denmark, Germany, Netherlands, Spain, the UK):IMPROGRES project
Research Project supported by the European Commission, Directorate-General for Energy and Transport, under the Energy Intelligent Europe (EIE) programmeThis Work Package 6 report of the IMPROGRES project provides an overview of regulatory strategies and incentives, conducive to (i) network integration of increasing levels of distributed generation including notably intermittent renewable technology such as wind power and solar photovoltaics (PV) as well as (ii) options for reducing impacts on surging network integration costs. Similar to the IMPROGRES project in general, this report focuses on European distribution networks. It includes specific country studies of Denmark, Germany, the Netherlands, Spain and the UK. This summary presents the main findings of this report
Recommended from our members
A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios
To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs)-SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6-to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios
A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios
Bringing it all together: science priorities for improved understanding of Earth system change and to support international climate policy
We review how the international modelling community, encompassing integrated assessment models, global and regional Earth system and climate models, and impact models, has worked together over the past few decades to advance understanding of Earth system change and its impacts on society and the environment and thereby support international climate policy. We go on to recommend a number of priority research areas for the coming decade, a timescale that encompasses a number of newly starting international modelling activities, as well as the IPCC Seventh Assessment Report (AR7) and the second UNFCCC Global Stocktake. Progress in these priority areas will significantly advance our understanding of Earth system change and its impacts, increasing the quality and utility of science support to climate policy. [...
The role of alternative network response options in minimising the costs of DG integration into power networks
Funded by ComisiĂłn Europea whitin "Intelligent Energy-Europe (IEE)". Mar/201
Market and regulatory incentives for cost efficient integration of DG in the electricity system
Research Project supported by the European Commission, Directorate-General for Energy and Transport, under the Energy Intelligent Europe (EIE) programmeAchieving the European target of 20% reduction of greenhouse gases in 2020 relies for a major part on increasing the share of renewable electricity generation, and more efficient fossil fuel based generation in combined heat and power installations. Most of these renewable and CHP generators are smaller in size than conventional power plants and are therefore usually connected to distribution grids instead of transmission grids. Different support schemes for renewable energy sources (RES) have been successfully implemented and have resulted in a rapid growth of distributed generation (DG). IMPROGRES scenario analysis shows that the installed capacity of DG in the EU-25 is expected to increase from 201 GW in 2008 to about 317 GW in 2020. A large part of this increase will be made up of more variable and less controllable renewable energy sources like wind and photovoltaics. The increase of those „intermittent? renewable energy sources does not only change the generation mix, but also influences other sectors of the electricity supply chain, especially markets and networks. There is a recent tendency towards the implementation of more market-based financial support instruments such as the feed-in premiums currently applied in Denmark, the Netherlands and Spain. Such subsidies on top of the electricity prices create an additional incentive for flexible DG units to follow demand patterns by generating electricity when prices are high. This process of market integration stimulates DG to become more responsive to the overall electricity generation and demand situation. While the process of market integration of DG has started, network integration of DG in distribution networks has not yet received sufficient attention. Integration goes beyond merely connecting new DG units, by including whenever possible the potential of DG in improving system operation by reducing network losses or preventing system peaks. Network operators also have to deal with more fluctuating power flows and frequent situations in which electricity production exceeds demand and has to be exported to other regions. These issues are likely to result in barriers for further DG development, if network integration is not improved. The EU-funded IMPROGRES project (Improvement of the Social Optimal Outcome of Market Integration of DG/RES in European Electricity Markets)1 has analysed the impacts of large-scale deployment of distributed generation for the whole electricity supply system. As the viewpoint of society is taken, impacts outside the network are also included. But the primary focus in IMPROGRES has been on the integration of distributed generation in distribution networks. All electricity generation in distribution networks is included as DG. Part of this DG consists of renewable electricity generation (RES), while the non-renewable part mainly consists of Combined Heat and Power (CHP) generation. In order to take due account of the interactions between different electricity system segments, the analysis assesses the impact on the total supply system for three distribution networks in Germany