568 research outputs found

    Confocal laser scanning microscope, raman microscopy and western blotting to evaluate inflammatory response after myocardial infarction

    Get PDF
    Cardiac muscle necrosis is associated with inflammatory cascade that clears the infarct from dead cells and matrix debris, and then replaces the damaged tissue with scar, through three overlapping phases: the inflammatory phase, the proliferative phase and the maturation phase. Western blotting, laser confocal microscopy, Raman microscopy are valuable tools for studying the inflammatory response following myocardial infarction both humoral and cellular phase, allowing the identification and semiquantitative analysis of proteins produced during the inflammatory cascade activation and the topographical distribution and expression of proteins and cells involved in myocardial inflammation. Confocal laser scanning microscopy (CLSM) is a relatively new technique for microscopic imaging, that allows greater resolution, optical sectioning of the sample and three-dimensional reconstruction of the same sample. Western blotting used to detect the presence of a specific protein with antibody-antigen interaction in the midst of a complex protein mixture extracted from cells, produced semi-quantitative data quite easy to interpret. Confocal Raman microscopy combines the three-dimensional optical resolution of confocal microscopy and the sensitivity to molecular vibrations, which characterizes Raman spectroscopy. The combined use of western blotting and confocal microscope allows detecting the presence of proteins in the sample and trying to observe the exact location within the tissue, or the topographical distribution of the same. Once demonstrated the presence of proteins (cytokines, chemokines, etc.) is important to know the topographical distribution, obtaining in this way additional information regarding the extension of the inflammatory process in function of the time stayed from the time of myocardial infarction. These methods may be useful to study and define the expression of a wide range of inflammatory mediators at several different timepoints providing a more detailed analysis of the time course of the infarct

    Colonic polyps: inheritance, susceptibility, risk evaluation, and diagnostic management

    Get PDF
    Colorectal cancer (CRC) is the third-ranked neoplasm in order of incidence and mortality, worldwide, and the second cause of cancer death in industrialized countries. One of the most important environmental risk factors for CRC is a Western-type diet, which is characterized by a low-fiber and high-fat content. Up to 25% of patients with CRC have a family history for CRC, and a fraction of these patients are affected by hereditary syndromes, such as familial adenomatous polyposis, Gardner or Turcot syndromes, or hereditary nonpolyposis colorectal cancer. The onset of CRC is triggered by a well-defined combination of genetic alterations, which form the bases of the adenoma-carcinoma sequence hypothesis and justify the set-up of CRC screening techniques. Several screening and diagnostic tests for CRC are illustrated, including rectosigmoidoscopy, optical colonoscopy (OC), double contrast barium enema (DCBE), and computed tomography colonography (CTC). The strengths and weaknesses of each technique are discussed. Particular attention is paid to CTC, which has evolved from an experimental technique to an accurate and mature diagnostic approach, and gained wide acceptance and clinical validation for CRC screening. This success of CTC is due mainly to its ability to provide cross-sectional analytical images of the entire colon and secondarily detect extracolonic findings, with minimal invasiveness and lower cost than OC, and with greater detail and diagnostic accuracy than DCBE. Moreover, especially with the advent and widespread availability of modern multidetector CT scanners, excellent quality 2D and 3D reconstructions of the large bowel can be obtained routinely with a relatively low radiation dose. Computer-aided detection systems have also been developed to assist radiologists in reading CTC examinations, improving overall diagnostic accuracy and potentially speeding up the clinical workflow of CTC image interpretation

    Health-Related Quality of Life in Patients with CVID Under Different Schedules of Immunoglobulin Administration: Prospective Multicenter Study

    Get PDF
    We assessed the health-related quality of life (HRQoL) in CVID adults receiving different schedules of immunoglobulin replacement therapy (IgRT) by intravenous (IVIG), subcutaneous (SCIG), and facilitated (fSCIG) preparations. For these patients, IgRT schedule was chosen after a period focused on identifying the most suitable individual option

    FT-IR spectroscopy supported by PCA–LDA analysis for the study of embryonic stem cell differentiation

    Get PDF
    As recently pointed out in the literature, Fourier transform infrared (FT-IR) spectroscopy is emerging as a powerful tool in stem cell research. In this work we characterizedin situby FT-IR microspectroscopy the differentiation of murine embryonic stem cells (ES) to monitor possible changes in the cell macromolecular content during the early stages of differentiation. Undifferentiated and differentiating cells at 4, 7, 9 and 14 days were measured. Data were analyzed by the principal component and subsequent linear discriminant analyses (PCA–LDA) that enabled us to segregate ES cell spectra into well separate clusters and to identify the most significant spectral changes. Important changes in the lipid (3050–2800 cm–1), protein (1700–1600 cm–1) and in the nucleic acid (1050–850 cm–1) absorption regions were observed between days 4 to 7 of differentiation, indicating the appearance – at day 7 – of the new phenotype into cardiomyocyte precursors. Also the presence of DNA/RNA hybrid bands (954 cm–1and 899 cm–1) suggests that the transcriptional switch of the genome started at this stage of differentiation. Particularly noteworthy, we suggest that the 2936 cm–1shoulder we observed could reflect methyl group vibrations thus allowing the detection of variations in methylation levels of the stem cell during differentiation. These infrared results were found to be in agreement with the biochemical characterization of these differentiating cells, underlying the great potential of FT-IR spectroscopy in stem cell research

    FT-IR spectroscopy supported by PCA–LDA analysis for the study of embryonic stem cell differentiation

    Get PDF
    As recently pointed out in the literature, Fourier transform infrared (FT-IR) spectroscopy is emerging as a powerful tool in stem cell research. In this work we characterizedin situby FT-IR microspectroscopy the differentiation of murine embryonic stem cells (ES) to monitor possible changes in the cell macromolecular content during the early stages of differentiation. Undifferentiated and differentiating cells at 4, 7, 9 and 14 days were measured. Data were analyzed by the principal component and subsequent linear discriminant analyses (PCA–LDA) that enabled us to segregate ES cell spectra into well separate clusters and to identify the most significant spectral changes. Important changes in the lipid (3050–2800 cm–1), protein (1700–1600 cm–1) and in the nucleic acid (1050–850 cm–1) absorption regions were observed between days 4 to 7 of differentiation, indicating the appearance – at day 7 – of the new phenotype into cardiomyocyte precursors. Also the presence of DNA/RNA hybrid bands (954 cm–1and 899 cm–1) suggests that the transcriptional switch of the genome started at this stage of differentiation. Particularly noteworthy, we suggest that the 2936 cm–1shoulder we observed could reflect methyl group vibrations thus allowing the detection of variations in methylation levels of the stem cell during differentiation. These infrared results were found to be in agreement with the biochemical characterization of these differentiating cells, underlying the great potential of FT-IR spectroscopy in stem cell research

    Super selective arterial embolization to treat radiation-induced hemorrhagic gastritis: a case report and review of the literature

    Get PDF
    Radiation-induced hemorrhagic gastritis (RIHG) is a rare but potentially fatal event following radiotherapy for locally advanced gastric cancer; the treatment of this condition is not standardized. Only few cases of RIHG have been reported, treated with different therapeutic approaches. Here we report the case of a 79-year-old patient who underwent subtotal gastrectomy for gastric cancer, followed by adjuvant chemo-radiotherapy. Approximately 3 months after the end of the treatment, she developed recurrent diffuse bleeding originating from the entire mucosa of the gastric pouch and from a marginal ulcer. As the bleeding was refractory to several endoscopic treatments and surgery was not indicated, the patient underwent two sessions of transcatheter selective arterial embolization, with resolution of bleeding. Arterial embolization has already been reported for the treatment of hemorrhagic cystitis, developing after irradiation of the pelvis for prostate, bladder, rectum, and cervix cancer. However, to our knowledge, it has never been reported as a treatment for hemorrhagic gastritis. Based on this case, we suggest arterial embolization as an option in the management of RIHG, when standard endoscopic treatment fails

    Post-mortem computed tomography (PMCT) radiological findings and assessment in advanced decomposed bodies.

    Get PDF
    PURPOSE: The aim of the study is to report radiological findings and features in advanced decomposed bodies obtained by post-mortem computed tomography (PMCT) with autopsy correlation. MATERIALS AND METHODS: This retrospective descriptive multicentric study included 41 forensic cases examined between May 2013 and November 2016. All the bodies were PMCT-scanned prior to autopsy, and internal putrefactive state was determined using the radiological alteration index (RAI) by a radiologist with expertise in forensic radiology and a forensic pathologist trained in forensic imaging. After PMCT scans, grade of external putrefaction (GEP) was assigned during the external examination and the complete autopsy was performed by forensic pathologists. RESULTS: The PMCT images evaluation revealed that the RAI index was > 61 in all bodies, corresponding to a moderate-massive presence of putrefactive gas. The gas grade was > II in correspondence of the major vessels, heart cavities, liver parenchyma, vertebra L3 and subcutaneous pectoral tissues, and varied from I to III in correspondence of the kidney. Cadaveric external examination revealed the presence of advanced transformative phenomena, with a GEP3 and GEP4 in most of the cases, with body swelling, eyes and tongue protrusion, body fluids expulsion and fat liquefaction. CONCLUSION: Radiological imaging by PMCT as an adjunct to autopsy in advanced decomposed bodies represents a useful tool in detecting post-mortem gas, even in very small amounts. A correct interpretation process of the PMCT data is essential to avoid images pitfalls, due to natural decomposition that can be mistaken for pathologic processes
    • …
    corecore