16 research outputs found
Occupational cataracts and lens opacities in interventional cardiology (O'CLOC study): are X-Rays involved? Radiation-induced cataracts and lens opacities.
International audienceBACKGROUND: The eye is well known to be sensitive to clearly high doses (>2 Gy) of ionizing radiation. In recent years, however, cataracts have been observed in populations exposed to lower doses. Interventional cardiologists are repeatedly and acutely exposed to scattered ionizing radiation (X-rays) during the diagnostic and therapeutic procedures they perform. These "low" exposures may cause damage to the lens of the eye and induce early cataracts, known as radiation-induced cataracts. The O'CLOC study (Occupational Cataracts and Lens Opacities in interventional Cardiology) was designed to test the hypothesis that interventional cardiologists, compared with an unexposed reference group of non-interventional cardiologists, have an increased risk of cataracts. METHOD/DESIGN: The O'CLOC study is a cross-sectional study that will include a total of 300 cardiologists aged at least 40 years: one group of exposed interventional cardiologists and another of non-interventional cardiologists. The groups will be matched for age and sex. Individual information, including risk factors for cataracts (age, diabetes, myopia, etc.), will be collected during a telephone interview. A specific section of the questionnaire for the exposed group focuses on occupational history, including a description of the procedures (type, frequency, radiation protection tool) used. These data will be used to classify subjects into "exposure level" groups according to cumulative dose estimates. Eye examinations for all participants will be performed to detect cataracts, even in the early stages (lens opacities, according to LOCS III, the international standard classification). The analysis will provide an estimation of the cataract risk in interventional cardiology compared with the unexposed reference group, while taking other risk factors into account. An analysis comparing the risks according to level of exposure is also planned. DISCUSSION: This epidemiological study will provide further evidence about the potential risk of radiation-induced cataracts at low doses and contribute to cardiologists' awareness of the importance of radiation protection. TRIAL REGISTRATION: NCT01061463
Review of skin dose calculation software in interventional cardiology
PurposeIn interventional cardiology, patients may be exposed to high doses to the skin resulting in skin burns following single or multiple procedures. Reviewing and analysing available software (online or offline) may help medical physicists assessing the maximum skin dose to the patient together with the dose distribution during (or after) these procedures.Method and resultsCapabilities and accuracy of available software were analysed through an extensive bibliography search and contacts with both vendor and authors. Their markedly differed among developers. In total, 22 software were identified and reviewed according to their algorithms and their capabilities. Special attention was dedicated to their main features and limitations of interest for the intended clinical use. While the accuracy of the 12 software products validated with measurements on phantoms was acceptable (within ± 25%), the agreement was poor for the two products validated on patients (within ± 43% and ± 76%, respectively). In addition, no software has been validated on angiographic units from all manufacturers, though several software developers claimed vendor-independent transportability. Only one software allows for multiple procedures dose calculation.ConclusionLarge differences among vendors made it clear that work remains to be done before an accurate and reliable skin dose mapping is available for all patients
EPI-CT: design, challenges and epidemiological methods of an international study on cancer risk after paediatric and young adult CT
Computed tomography (CT) has great clinical utility and its usage has increased dramatically over the years. Concerns have been raised, however, about health impacts of ionising radiation exposure from CTs, particularly in children, who have a higher risk for some radiation induced diseases. Direct estimation of the health impact of these exposures is needed, but the conduct of epidemiological studies of paediatric CT populations poses a number of challenges which, if not addressed, could invalidate the results.
The aim of the present paper is to review the main challenges of a study on the health impact of paediatric CTs and how the protocol of the European collaborative study EPI-CT, coordinated by the International Agency for Research on Cancer (IARC), is designed to address them.
The study, based on a common protocol, is being conducted in Belgium, Denmark, France, Germany, the Netherlands, Norway, Spain, Sweden and the United Kingdom and it has recruited over one million patients suitable for long-term prospective follow-up. Cohort accrual relies on records of participating hospital radiology departments. Basic demographic information and technical data on the CT procedure needed to estimate organ doses are being abstracted and passive follow-up is being conducted by linkage to population-based cancer and mortality registries. The main issues which may affect the validity of study results include missing doses from other radiological procedures, missing CTs, confounding by CT indication and socioeconomic status and dose reconstruction. Sub-studies are underway to evaluate their potential impact.
By focusing on the issues which challenge the validity of risk estimates from CT exposures, EPI-CT will be able to address limitations of previous CT studies, thus providing reliable estimates of risk of solid tumours and leukaemia from paediatric CT exposures and scientific bases for the optimisation of paediatric CT protocols and patient protection
VERIDIC: validation and estimation of radiation skin dose in interventional cardiology
Interventne procedure u radiologiji i kardiologiji povezani su sa visokim dozama za kožu pacijenta i potencijalnim radijacionim povredama kože. Različita metodologije i rešenja razvijene us za procenu maksimalne doze za kožu, čija se svojsvta, uključujuši i tačnost značajno razlikuju. U radu su prokazani ciljevi, metode i preminiran a rešenja projekta VERIDIC usmerenoj na validaciju zaličitih ofline i online softvera za procenu doze za kožu pacijenta u intervenatnoj kardiologiji.In interventional cardiology (IC), patients may be exposed to high doses to the skin resulting in tissue reactions (skin burns) following single or multiple procedures. To address this issue, online and offline software has been developed to estimate the maximum skin dose (MSD) to the patient from IC procedures. However, the capabilities and accuracy of such skin dose calculation (SDC) software to estimate MSD and 2D dose distributions markedly differ among vendors. Hence, this project focuses onthe harmonisation of RDSR (radiation dose structured report) and on the validation of SDC software products in IC, which will optimise radiation protection of patients. The outcome of the project will include the standards for digital dose reporting, development of protocols for acceptance testing and Quality Control (QC)of SDC software and setting of diagnostic reference levels per clinical complexity, assessing thefrequency of high-dose procedures as well as dose reduction strategies based on the multi-centric data collection. This paper focuses on the work performed to investigate performance of solid state dosimeters used in clinical environment.Proceedings: [http://vinar.vin.bg.ac.rs/handle/123456789/8681]XXX симпозијум ДЗЗСЦГ (Друштва за заштиту од зрачења Србије и Црне Горе), 2- 4. октобар 2019. године, Дивчибаре, Србиј
The appropriate and justified use of medical radiation in cardiovascular imaging: A position document of the ESC Associations of Cardiovascular Imaging, Percutaneous Cardiovascular Interventions and Electrophysiology
The benefits of cardiac imaging are immense, and modern medicine requires the extensive and versatile use of a variety of cardiac imaging techniques. Cardiologists are responsible for a large part of the radiation exposures every person gets per year from all medical sources. Therefore, they have a particular responsibility to avoid unjustified and non-optimized use of radiation, but sometimes are imperfectly aware of the radiological dose of the examination they prescribe or practice. This position paper aims to summarize the current knowledge on radiation effective doses (and risks) related to cardiac imaging procedures. We have reviewed the literature on radiation doses, which can range from the equivalent of 1-60 milliSievert (mSv) around a reference dose average of 15 mSv (corresponding to 750 chest X-rays) for a percutaneous coronary intervention, a cardiac radiofrequency ablation, a multidetector coronary angiography, or a myocardial perfusion imaging scintigraphy. We provide a European perspective on the best way to play an active role in implementing into clinical practice the key principle of radiation protection that: 'each patient should get the right imaging exam, at the right time, with the right radiation dose'
VERIDIC: validation and estimation of radiation skin dose in interventional cardiology
Interventne procedure u radiologiji i kardiologiji povezani su sa visokim dozama za kožu pacijenta i potencijalnim radijacionim povredama kože. Različita metodologije i rešenja razvijene us za procenu maksimalne doze za kožu, čija se svojsvta, uključujuši i tačnost značajno razlikuju. U radu su prokazani ciljevi, metode i preminiran a rešenja projekta VERIDIC usmerenoj na validaciju zaličitih ofline i online softvera za procenu doze za kožu pacijenta u intervenatnoj kardiologiji.In interventional cardiology (IC), patients may be exposed to high doses to the skin resulting in tissue reactions (skin burns) following single or multiple procedures. To address this issue, online and offline software has been developed to estimate the maximum skin dose (MSD) to the patient from IC procedures. However, the capabilities and accuracy of such skin dose calculation (SDC) software to estimate MSD and 2D dose distributions markedly differ among vendors. Hence, this project focuses onthe harmonisation of RDSR (radiation dose structured report) and on the validation of SDC software products in IC, which will optimise radiation protection of patients. The outcome of the project will include the standards for digital dose reporting, development of protocols for acceptance testing and Quality Control (QC)of SDC software and setting of diagnostic reference levels per clinical complexity, assessing thefrequency of high-dose procedures as well as dose reduction strategies based on the multi-centric data collection. This paper focuses on the work performed to investigate performance of solid state dosimeters used in clinical environment.Proceedings: [http://vinar.vin.bg.ac.rs/handle/123456789/8681]XXX симпозијум ДЗЗСЦГ (Друштва за заштиту од зрачења Србије и Црне Горе), 2- 4. октобар 2019. године, Дивчибаре, Србиј
Assessing Organ Doses from Paediatric CT Scans—A Novel Approach for an Epidemiology Study (the EPI-CT Study)
The increasing worldwide use of paediatric computed tomography (CT) has led to increasing concerns regarding the subsequent effects of exposure to radiation. In response to this concern, the international EPI-CT project was developed to study the risk of cancer in a large multi-country cohort. In radiation epidemiology, accurate estimates of organ-specific doses are essential. In EPI-CT, data collection is split into two time periods—before and after introduction of the Picture Archiving Communication System (PACS) introduced in the 1990s. Prior to PACS, only sparse information about scanner settings is available from radiology departments. Hence, a multi-level approach was developed to retrieve information from a questionnaire, surveys, scientific publications, and expert interviews. For the years after PACS was introduced, scanner settings will be extracted from Digital Imaging and Communications in Medicine (DICOM) headers, a protocol for storing medical imaging data. Radiation fields and X-ray interactions within the body will be simulated using phantoms of various ages and Monte-Carlo-based radiation transport calculations. Individual organ doses will be estimated for each child using an accepted calculation strategy, scanner settings, and the radiation transport calculations. Comprehensive analyses of missing and uncertain dosimetry data will be conducted to provide uncertainty distributions of doses
Management of pregnant or potentially pregnant patients undergoing diagnostic and interventional radiology procedures: Investigation of clinical routine practice
International audienceIt is well known that foetuses are highly sensitive to ionising radiation and special attention to justification and optimisation of radiological procedures involving a pregnant patient is required. A task to review, validate and compare different approaches to managing the pregnant patient and to estimating the associated foetal doses arising from a diagnostic or interventional radiology (DIR) procedure was designed in the framework of EURADOS working group 12.As a first step, a survey of radiation protection practice including dosimetry considerations among EURADOS members was performed using online questionnaire. Then, to evaluate the possible differences in the estimated foetal doses, a comparison of assessed dose values was made for three cases of pregnant patients that underwent different CT procedures.More than 120 professionals from 108 institutions and 17 countries that are involved in managing pregnant patients undergoing DIR procedures answered the questionnaire. Most of the respondents use national or hospital guidelines on the management of pregnant patients undergoing DIR procedures. However, the guidelines differ considerably among respondents. Comparison of foetal dose assessments performed by dosimetry experts showed the variety of methods used as well as large variability of estimated foetal doses in all three cases.Although European and International commission on radiation protection guidelines already exist, they are more than 20 years old and, in some aspects, they are obsolete. This paper shows that there is a need to revise and update these guidelines