107 research outputs found

    Chemistry and light - part 2: light and energy

    Get PDF
    The conversion of solar energy into more useful forms of energy, such as chemical fuels or electricity, is one of the central problems facing modern science. Progress in photochemistry and chemical synthesis has led to a point where light energy conversion by means of artificial molecular devices can be rationally attempted. In this article, a general approach towards this challenging goal is presented

    New Components for Dye-Sensitized Solar Cells

    Get PDF
    Dye-Sensitized Solar Cells (DSSCs) are among the most promising solar energy conversion devices of new generation, since coupling ease of fabrication and low cost offer the possibility of building integration in photovoltaic windows and facades. Although in their earliest configuration these systems are close to commercialization, fundamental studies are still required for developing new molecules and materials with more desirable properties as well as improving our understanding of the fundamental processes at the basis of the functioning of photoactive heterogeneous interfaces. In this contribution, some recent advances, made in the effort of improving DSSC devices by finding alternative materials and configurations, are reviewed

    Photoelectrochemical behavior of electrophoretically deposited hematite thin films modified with ti(IV)

    Get PDF
    : Doping hematite with different elements is a common strategy to improve the electrocatalytic activity towards the water oxidation reaction, although the exact effect of these external agents is not yet clearly understood. Using a feasible electrophoretic procedure, we prepared modified hematite films by introducing in the deposition solution Ti(IV) butoxide. Photoelectrochemical performances of all the modified electrodes were superior to the unmodified one, with a 4-fold increase in the photocurrent at 0.65 V vs. SCE in 0.1 M NaOH (pH 13.3) for the 5% Ti-modified electrode, which was the best performing electrode. Subsequent functionalization with an iron-based catalyst led, at the same potential, to a photocurrent of ca. 1.5 mA?cm-2 , one of the highest achieved with materials based on solution processing in the absence of precious elements. AFM, XPS, TEM and XANES analyses revealed the formation of different Ti(IV) oxide phases on the hematite surface, that can reduce surface state recombination and enhance hole injection through local surface field effects, as confirmed by electrochemical impedance analysis

    correction on the stability of manganese tris β diketonate complexes as redox mediators in dsscs

    Get PDF
    Correction for 'On the stability of manganese tris(β-diketonate) complexes as redox mediators in DSSCs' by Stefano Carli et al., Phys. Chem. Chem. Phys., 2016, 18, 5949–5956

    MATERIAL, ITEM AND PRODUCTS COMPRISING A COMPOSITION HAVING ANTI-MICROBIAL PROPERTIES

    No full text
    A coating product comprises a composition having the general formula AOx- (L-Men+)i, wherein AOx is a metal or metalloid oxide in which x indicates the number of the Oxygen atom(s) (O) bonded to the metal (A) atom, Men+ is a metal ion, L is a bifunctional molecule that could bind both metal oxide or metalloid oxide (AOx) and the metal ion (Men+), and i is the number of (L-Men+) groups bound to the metal oxide AOx; the value of the parameter i depending on various factors, such as the size of the nanoparticle of AOx, the nature of the, molecule L

    PROCESS FOR THE PREPARATION OF CARBOXYLATE AND PHOSPHONATE RUTHENIUM POLYPYRIDINE DYES AND A PROCESS FOR THE PREPARATION OF REACTION INTERMEDIATES USED IN SUCH PROCESS

    No full text
    The present invention relates to processes indicated by method A and B for the preparation of carboxylate and phosphonate Ruthenium Polypyridine Dyes and for the preparation of reaction intermediates used in such process

    METHOD OF PREPARATION OF MONONUCLEAR RUTHENIUM COMPLEXES

    No full text
    The invention refers to a process for the preparation of inorganic dyes, useful as spectral sensitizers for semiconductors, wherein the intermediate [Ru(dcb)2(C2O4)]4- is used

    Rapid Static Sensitizer Regeneration Enabled by Ion Pairing

    Get PDF
    An anionic CoII complex, [Co(TTT) (NCS)3]− (TTT = 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine and NCS = isothiocyanate), was synthesized for use in dye-sensitized solar cells (DSSCs). The CoII complex was found to ion-pair with the hexacationic sensitizer [Ru(tmam)2(dcb)]6+ (tmam = 4,4′-bis(trimethylaminomethyl)-2,2′-bipyridine and dcb = 4,4′-(CO2H)2-2,2′-bipyridine) anchored to TiO2 thin films immersed in acetonitrile solution. Visible light excitation of the ion pairs resulted in excited-state injection followed by rapid static regeneration of the oxidized sensitizer (<10 ns). The static component to regeneration gave an ion-pair equilibrium constant of 6000 M–1. This value is an order of magnitude smaller than the equilibrium constant determined for [Ru(tmam)2(deeb)]6+ (deeb = 4,4′-(CO2Et)2-2,2′-bipyridine) dissolved in acetonitrile. DSSC studies employing [Co(TTT) (NCS)3]− or the cationic [Co(DTB)3]2+ (DTB = 4,4′-di-tert-butyl-2,2′-bipyridine) as redox mediators revealed a 3 fold photocurrent increase in the presence of the anionic cobalt complex. As the regeneration step was greatly enhanced through the formation of Coulombic ion pairs, both electron injection and regeneration were complete within 10 ns which is unprecedented for dye-sensitization. The results obtained reveal that ground-state ion-pairing can be a powerful strategy for DSSC optimization
    • …
    corecore