23 research outputs found
Recommended from our members
Comparison of neural substrates of temporal discounting between youth with Autism Spectrum Disorder and with Obsessive-Compulsive Disorder
Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) share abnormalities in hot executive functions such as reward-based decision-making, as measured in the temporal discounting task (TD). No studies, however, have directly compared these disorders to investigate common/distinct neural profiles underlying such abnormalities. We wanted to test whether reward-based decision-making is a shared transdiagnostic feature of both disorders with similar neurofunctional substrates or whether it is a shared phenotype with disorder-differential neurofunctional underpinnings.
Age and IQ-matched boys with ASD (N = 20), with OCD (N = 20) and 20 healthy controls, performed an individually-adjusted functional magnetic resonance imaging (fMRI) TD task. Brain activation and performance were compared between groups.
Boys with ASD showed greater choice-impulsivity than OCD and control boys. Whole-brain between-group comparison revealed shared reductions in ASD and OCD relative to control boys for delayed-immediate choices in right ventromedial/lateral orbitofrontal cortex extending into medial/inferior prefrontal cortex, and in cerebellum, posterior cingulate and precuneus. For immediate-delayed choices, patients relative to controls showed reduced activation in anterior cingulate/ventromedial prefrontal cortex reaching into left caudate, which, at a trend level, was more decreased in ASD than OCD patients, and in bilateral temporal and inferior parietal regions.
This first fMRI comparison between youth with ASD and with OCD, using a reward-based decision-making task, shows predominantly shared neurofunctional abnormalities during TD in key ventromedial, orbital- and inferior fronto-striatal, temporo-parietal and cerebellar regions of temporal foresight and reward processing, suggesting trans-diagnostic neurofunctional deficits
Focusing on Comorbidity A Novel Meta-Analytic Approach and Protocol to Disentangle the Specific Neuroanatomy of Co-occurring Mental Disorders
Background: In mental health, comorbidities are the norm rather than the exception. However, current meta-analytic methods for summarizing the neural correlates of mental disorders do not consider comorbidities, reducing them to a source of noise and bias rather than benefitting from their valuable information. Objectives: We describe and validate a novel neuroimaging meta-analytic approach that focuses on comorbidities. In addition, we present the protocol for a meta-analysis of all major mental disorders and their comorbidities. Methods: The novel approach consists of a modification of Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) in which the linear models have no intercept. As in previous SDM meta-analyses, the dependent variable is the brain anatomical difference between patients and controls in a voxel. However, there is no primary disorder, and the independent variables are the percentages of patients with each disorder and each pair of potentially comorbid disorders. We use simulations to validate and provide an example of this novel approach, which correctly disentangled the abnormalities associated with each disorder and comorbidity. We then describe a protocol for conducting the new meta-analysis of all major mental disorders and their comorbidities. Specifically, we will include all voxel-based morphometry (VBM) studies of mental disorders for which a meta-analysis has already been published, including at least 10 studies. We will use the novel approach to analyze all included studies in two separate single linear models, one for children/adolescents and one for adults. Discussion: The novel approach is a valid method to focus on comorbidities. The meta-analysis will yield a comprehensive atlas of the neuroanatomy of all major mental disorders and their comorbidities, which we hope might help develop potential diagnostic and therapeutic tools
Immunosenescence and lymphomagenesis
One of the most important determinants of aging-related changes is a complex biological process emerged recently and called \u201cimmunosenescence\u201d. Immunosenescence refers to the inability of an aging immune system to produce an appropriate and effective response to challenge. This immune dysregulation may manifest as increased susceptibility to infection, cancer, autoimmune disease, and vaccine failure. At present, the relationship between immunosenescence and lymphoma in elderly patients is not defined in a satisfactory way. This review presents a brief overview of the interplay between aging, cancer and lymphoma, and the key topic of immunosenescence is addressed in the context of two main lymphoma groups, namely Non Hodgkin Lymphoma (NHL) and Hodgkin Lymphoma (HL). Epstein Barr Virus (EBV) plays a central role in the onset of neoplastic lymphoproliferation associated with immunological changes in aging, although the pathophysiology varies vastly among different disease entities. The interaction between immune dysfunction, immunosenescence and Epstein Barr Virus (EBV) infection appears to differ between NHL and HL, as well as between NHL subtypes
Recommended from our members
Shared and Disorder-Specific Neurocomputational Mechanisms of Decision-Making in Autism Spectrum Disorder and Obsessive-Compulsive Disorder.
Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) often share phenotypes of repetitive behaviors, possibly underpinned by abnormal decision-making. To compare neural correlates underlying decision-making between these disorders, brain activation of boys with ASD (N = 24), OCD (N = 20) and typically developing controls (N = 20) during gambling was compared, and computational modeling compared performance. Patients were unimpaired on number of risky decisions, but modeling showed that both patient groups had lower choice consistency and relied less on reinforcement learning compared to controls. ASD individuals had disorder-specific choice perseverance abnormalities compared to OCD individuals. Neurofunctionally, ASD and OCD boys shared dorsolateral/inferior frontal underactivation compared to controls during decision-making. During outcome anticipation, patients shared underactivation compared to controls in lateral inferior/orbitofrontal cortex and ventral striatum. During reward receipt, ASD boys had disorder-specific enhanced activation in inferior frontal/insular regions relative to OCD boys and controls. Results showed that ASD and OCD individuals shared decision-making strategies that differed from controls to achieve comparable performance to controls. Patients showed shared abnormalities in lateral-(orbito)fronto-striatal reward circuitry, but ASD boys had disorder-specific lateral inferior frontal/insular overactivation, suggesting that shared and disorder-specific mechanisms underpin decision-making in these disorders. Findings provide evidence for shared neurobiological substrates that could serve as possible future biomarkers
Sleep-amount differentially affects fear-processing neural circuitry in pediatric anxiety: A preliminary fMRI investigation
Insufficient sleep, as well as the incidence of anxiety disorders, both peak during adolescence. While both conditions present perturbations in fear-processing-related neurocircuitry, it is unknown whether these neurofunctional alterations directly link anxiety and compromised sleep in adolescents. Fourteen anxious adolescents (AAs) and 19 healthy adolescents (HAs) were compared on a measure of sleep amount and neural responses to negatively valenced faces during fMRI. Group differences in neural response to negative faces emerged in the dorsal anterior cingulate cortex (dACC) and the hippocampus. In both regions, correlation of sleep amount with BOLD activation was positive in AAs, but negative in HAs. Follow-up psychophysiological interaction (PPI) analyses indicated positive connectivity between dACC and dorsomedial prefrontal cortex, and between hippocampus and insula. This connectivity was correlated negatively with sleep amount in AAs, but positively in HAs. In conclusion, the presence of clinical anxiety modulated the effects of sleep-amount on neural reactivity to negative faces differently among this group of adolescents, which may contribute to different clinical significance and outcomes of sleep disturbances in healthy adolescents and patients with anxiety disorders
ROS-Dependent ER Stress and Autophagy Mediate the Anti-Tumor Effects of Tributyltin (IV) Ferulate in Colon Cancer Cells
Organotin compounds represent potential cancer therapeutics due to their pro-apoptotic action. We recently synthesized the novel organotin ferulic acid derivative tributyltin (IV) ferulate (TBT-F) and demonstrated that it displays anti-tumor properties in colon cancer cells related with autophagic cell death. The purpose of the present study was to elucidate the mechanism of TBT-F action in colon cancer cells. We specifically show that TBT-F-dependent autophagy is determined by a rapid generation of reactive oxygen species (ROS) and correlated with endoplasmic reticulum (ER) stress. TBT-F evoked nuclear factor erythroid-2 related factor 2 (Nrf2)-mediated antioxidant response and Nrf2 silencing by RNA interference markedly increased the anti-tumor efficacy of the compound. Moreover, as a consequence of ROS production, TBT-F increased the levels of glucose regulated protein 78 (Grp78) and C/EBP homologous protein (CHOP), two ER stress markers. Interestingly, Grp78 silencing produced significant decreasing effects on the levels of the autophagic proteins p62 and LC3-II, while only p62 decreased in CHOP-silenced cells. Taken together, these results indicate that ROS-dependent ER stress and autophagy play a major role in the TBT-F action mechanism in colon cancer cells and open a new perspective to consider the compound as a potential candidate for colon cancer treatment
Loss aversion and 5HTT gene variants in adolescent anxiety
Loss aversion, a well-documented behavioral phenomenon, characterizes decisions under risk in adult populations. As such, loss aversion may provide a reliable measure of risky behavior. Surprisingly, little is known about loss aversion in adolescents, a group who manifests risk-taking behavior, or in anxiety disorders, which are associated with risk-avoidance. Finally, loss aversion is expected to be modulated by genotype, particularly the serotonin transporter (SERT) gene variant, based on its role in anxiety and impulsivity. This genetic modulation may also differ between anxious and healthy adolescents, given their distinct propensities for risk taking. The present work examines the modulation of loss aversion, an index of risk-taking, and reaction-time to decision, an index of impulsivity, by the serotonin-transporter-gene-linked polymorphisms (5HTTLPR) in healthy and clinically anxious adolescents. Findings show that loss aversion (1) does manifest in adolescents, (2) does not differ between healthy and clinically anxious participants, and (3), when stratified by SERT genotype, identifies a subset of anxious adolescents who are high SERT-expressers, and show excessively low loss-aversion and high impulsivity. This last finding may serve as preliminary evidence for 5HTTLPR as a risk factor for the development of comorbid disorders associated with risk-taking and impulsivity in clinically anxious adolescents
Recommended from our members
The effects of acute fluoxetine administration on temporal discounting in youth with ADHD
Background Serotonin is under-researched in attention deficit hyperactivity disorder (ADHD), despite accumulating evidence for its involvement in impulsiveness and the disorder. Serotonin further modulates temporal discounting (TD), which is typically abnormal in ADHD relative to healthy subjects, underpinned by reduced fronto-striato-limbic activation. This study tested whether a single acute dose of the selective serotonin reuptake inhibitor (SSRI) fluoxetine up-regulates and normalizes reduced fronto-striato-limbic neurofunctional activation in ADHD during TD.
Method Twelve boys with ADHD were scanned twice in a placebo-controlled randomized design under either fluoxetine (between 8 and 15 mg, titrated to weight) or placebo while performing an individually adjusted functional magnetic resonance imaging TD task. Twenty healthy controls were scanned once. Brain activation was compared in patients under either drug condition and compared to controls to test for normalization effects.
Results Repeated-measures whole-brain analysis in patients revealed significant up-regulation with fluoxetine in a large cluster comprising right inferior frontal cortex, insula, premotor cortex and basal ganglia, which further correlated trend-wise with TD performance, which was impaired relative to controls under placebo, but normalized under fluoxetine. Fluoxetine further down-regulated default mode areas of posterior cingulate and precuneus. Comparisons between controls and patients under either drug condition revealed normalization with fluoxetine in right premotor-insular-parietal activation, which was reduced in patients under placebo.
Conclusions The findings show that a serotonin agonist up-regulates activation in typical ADHD dysfunctional areas in right inferior frontal cortex, insula and striatum as well as down-regulating default mode network regions in the context of impulsivity and TD
Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: a systematic review
Neurodevelopmental disorders â including attentionâdeficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disability, motor disorders, specific learning disorders, and tic disorders â manifest themselves early in development. Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders would be highly relevant from a clinical and public health standpoint. We conducted the first systematic review of studies on candidate diagnostic biomarkers for these disorders in children and adolescents. We searched Medline and Embase + Embase Classic with terms relating to biomarkers until April 6, 2022, and conducted additional targeted searches for genomeâwide association studies (GWAS) and neuroimaging or neurophysiological studies carried out by international consortia. We considered a candidate biomarker as promising if it was reported in at least two independent studies providing evidence of sensitivity and specificity of at least 80%. After screening 10,625 references, we retained 780 studies (374 biochemical, 203 neuroimaging, 133 neurophysiological and 65 neuropsychological studies, and five GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the majority of the studies focused simply on associations, we could not find any biomarker for which there was evidence â from two or more studies from independent research groups, with results going into the same direction â of specificity and sensitivity of at least 80%. Other important metrics to assess the validity of a candidate biomarker, such as positive predictive value and negative predictive value, were infrequently reported. Limitations of the currently available studies include mostly small sample size, heterogeneous approaches and candidate biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete accounting for potential confounding factors. Future multivariable and multiâlevel approaches may be best suited to find valid candidate biomarkers, which will then need to be validated in external, independent samples and then, importantly, tested in terms of feasibility and costâeffectiveness, before they can be implemented in daily clinical practice
Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: a systematic review
Neurodevelopmental disorders â including attentionâdeficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disability, motor disorders, specific learning disorders, and tic disorders â manifest themselves early in development. Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders would be highly relevant from a clinical and public health standpoint. We conducted the first systematic review of studies on candidate diagnostic biomarkers for these disorders in children and adolescents. We searched Medline and Embase + Embase Classic with terms relating to biomarkers until April 6, 2022, and conducted additional targeted searches for genomeâwide association studies (GWAS) and neuroimaging or neurophysiological studies carried out by international consortia. We considered a candidate biomarker as promising if it was reported in at least two independent studies providing evidence of sensitivity and specificity of at least 80%. After screening 10,625 references, we retained 780 studies (374 biochemical, 203 neuroimaging, 133 neurophysiological and 65 neuropsychological studies, and five GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the majority of the studies focused simply on associations, we could not find any biomarker for which there was evidence â from two or more studies from independent research groups, with results going into the same direction â of specificity and sensitivity of at least 80%. Other important metrics to assess the validity of a candidate biomarker, such as positive predictive value and negative predictive value, were infrequently reported. Limitations of the currently available studies include mostly small sample size, heterogeneous approaches and candidate biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete accounting for potential confounding factors. Future multivariable and multiâlevel approaches may be best suited to find valid candidate biomarkers, which will then need to be validated in external, independent samples and then, importantly, tested in terms of feasibility and costâeffectiveness, before they can be implemented in daily clinical practice