41 research outputs found

    Vertebral body stenting: a new method for vertebral augmentation versus kyphoplasty

    Get PDF
    Vertebroplasty and kyphoplasty are well-established minimally invasive treatment options for compression fractures of osteoporotic vertebral bodies. Possible procedural disadvantages, however, include incomplete fracture reduction or a significant loss of reduction after balloon tamp deflation, prior to cement injection. A new procedure called “vertebral body stenting” (VBS) was tested in vitro and compared to kyphoplasty. VBS uses a specially designed catheter-mounted stent which can be implanted and expanded inside the vertebral body. As much as 24 fresh frozen human cadaveric vertebral bodies (T11-L5) were utilized. After creating typical compression fractures, the vertebral bodies were reduced by kyphoplasty (n = 12) or by VBS (n = 12) and then stabilized with PMMA bone cement. Each step of the procedure was performed under fluoroscopic control and analysed quantitatively. Finally, static and dynamic biomechanical tests were performed. A complete initial reduction of the fractured vertebral body height was achieved by both systems. There was a significant loss of reduction after balloon deflation in kyphoplasty compared to VBS, and a significant total height gain by VBS (mean ± SD in %, p < 0.05, demonstrated by: anterior height loss after deflation in relation to preoperative height [kyphoplasty: 11.7 ± 6.2; VBS: 3.7 ± 3.8], and total anterior height gain [kyphoplasty: 8.0 ± 9.4; VBS: 13.3 ± 7.6]). Biomechanical tests showed no significant stiffness and failure load differences between systems. VBS is an innovative technique which allows for the possibly complete reduction of vertebral compression fractures and helps maintain the restored height by means of a stent. The height loss after balloon deflation is significantly decreased by using VBS compared to kyphoplasty, thus offering a new promising option for vertebral augmentation

    Muscular MRI-based algorithm to differentiate inherited myopathies presenting with spinal rigidity

    No full text
    International audienceObjectives Inherited myopathies are major causes of muscle atrophy and are often characterized by rigid spine syndrome, a clinical feature designating patients with early spinal contractures. We aim to present a decision algorithm based on muscular whole body magnetic resonance imaging (mWB-MRI) as a unique tool to orientate the diagnosis of each inherited myopathy long before the genetically confirmed diagnosis.MethodsThis multicentre retrospective study enrolled 79 patients from referral centres in France, Brazil and Chile. The patients underwent 1.5-T or 3-T mWB-MRI. The protocol comprised STIR and T1 sequences in axial and coronal planes, from head to toe. All images were analyzed manually by multiple raters. Fatty muscle replacement was evaluated on mWB-MRI using both the Mercuri scale and statistical comparison based on the percentage of affected muscle.ResultsBetween February 2005 and December 2015, 76 patients with genetically confirmed inherited myopathy were included. They were affected by Pompe disease or harbored mutations in RYR1, Collagen VI, LMNA, SEPN1, LAMA2 and MYH7 genes. Each myopathy had a specific pattern of affected muscles recognizable on mWB-MRI. This allowed us to create a novel decision algorithm for patients with rigid spine syndrome by segregating these signs. This algorithm was validated by five external evaluators on a cohort of seven patients with a diagnostic accuracy of 94.3% compared with the genetic diagnosis.ConclusionWe provide a novel decision algorithm based on muscle fat replacement graded on mWB-MRI that allows diagnosis and differentiation of inherited myopathies presenting with spinal rigidity.Key Points center dot Inherited myopathies are rare, diagnosis is challenging and genetic tests require specialized centres and often take years.center dot Inherited myopathies are often characterized by spinal rigidity.center dot Whole body magnetic resonance imaging is a unique tool to orientate the diagnosis of each inherited myopathy presenting with spinal rigidity.center dot Each inherited myopathy in this study has a specific pattern of affected muscles that orientate diagnosis.center dot A novel MRI-based algorithm, usable by every radiologist, can help the early diagnosis of these myopathies
    corecore