93 research outputs found

    TEXAS AGRICULTURE BY CONGRESSIONAL DISTRICT: 1993-1996

    Get PDF
    Texas Agriculture by Congressional Districts: 1993-96 is an update of previous editions of this publication. Commodity sales by county are estimates made by county agents and, therefore, are not official. In all but 4 of 30 Texas congressional districts, production agriculture accounts for over 100millioninsales.In18ofthedistricts,farmprogramcommoditiesrepresentover100 million in sales. In 18 of the districts, farm program commodities represent over 50 million in sales.Production Economics,

    Magnetic domain-wall velocity enhancement induced by a transverse magnetic field

    Full text link
    Spin dynamics of field-driven domain walls (DWs) guided by Permalloy nanowires are studied by high-speed magneto-optic polarimetry and numerical simulations. DW velocities and spin configurations are determined as functions of longitudinal drive field, transverse bias field, and nanowire width. Nanowires having cross-sectional dimensions large enough to support vortex wall structures exhibit regions of drive-field strength (at zero bias field) that have enhanced DW velocity resulting from coupled vortex structures that suppress oscillatory motion. Factor of ten enhancements of the DW velocity are observed above the critical longitudinal drive-field (that marks the onset of oscillatory DW motion) when a transverse bias field is applied. Nanowires having smaller cross-sectional dimensions that support transverse wall structures also exhibit a region of higher mobility above the critical field, and similar transverse-field induced velocity enhancement but with a smaller enhancement factor. The bias-field enhancement of DW velocity is explained by numerical simulations of the spin distribution and dynamics within the propagating DW that reveal dynamic stabilization of coupled vortex structures and suppression of oscillatory motion in the nanowire conduit resulting in uniform DW motion at high speed.Comment: 8 pages, 5 figure

    Strong Water Absorption in the Dayside Emission Spectrum of the Planet HD 189733b

    Full text link
    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'Hot Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial for understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report on the detection of strong water absorption in a high signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microns and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures might alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat distribution from the dayside to the night side is weak. Reconciling this with the high night side temperature will require a better understanding of atmospheric circulation or possible additional energy sources.Comment: 11 pages, 1 figure, published in Natur

    Managing Soybean Insects

    Get PDF
    36 pp., 3 tables, 18 illustrations, 28 photosThis publication details integrated pest management principles for managing soybean insects. Topics include variety selection, inspecting fields for insects and damage, soybean insect pests, and insecticide application methods. A table lists products registered for controlling soybean insects

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Photometry of Particles Ejected From Active Asteroid (101955) Bennu

    Get PDF
    AbstractNear‐Earth asteroid (101955) Bennu is an active asteroid experiencing mass loss in the form of ejection events emitting up to hundreds of millimeter‐ to centimeter‐scale particles. The close proximity of the Origins, Spectral Interpretations, Resource Identification, and Security–Regolith Explorer spacecraft enabled monitoring of particles for a 10‐month period encompassing Bennu's perihelion and aphelion. We found 18 multiparticle ejection events, with masses ranging from near zero to hundreds of grams (or thousands with uncertainties) and translational kinetic energies ranging from near zero to tens of millijoules (or hundreds with uncertainties). We estimate that Bennu ejects ~104 g per orbit. The largest event took place on 6 January 2019 and consisted of ~200 particles. The observed mass and translational kinetic energy of the event were between 459 and 528 g and 62 and 77 mJ, respectively. Hundreds of particles not associated with the multiparticle ejections were also observed. Photometry of the best‐observed particles, measured at phase angles between ~70° and 120°, was used to derive a linear phase coefficient of 0.013 ± 0.005 magnitudes per degree of phase angle. Ground‐based data back to 1999 show no evidence of past activity for Bennu; however, the currently observed activity is orders of magnitude lower than observed at other active asteroids and too low be observed remotely. There appears to be a gentle decrease in activity with distance from the Sun, suggestive of ejection processes such as meteoroid impacts and thermal fracturing, although observational bias may be a factor

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • 

    corecore