286 research outputs found

    Simultaneous induction of stimulatory and inhibitory signals by PDGF

    Get PDF
    AbstractPlatelet-derived growth factor (PDGF) exerts its effects on cells via binding to structurally similar α- and β-tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation which allows docking of SH2 domain containing signal transduction molecules. At least 10 different SH2 domain molecules bind in a specific manner to 11 identified autophosphorylated tyrosine residues in the PDGF β-receptor, thereby initiating signaling pathways leading to cell growth and motility. Available information indicates that there is considerable cross-talk between different signaling pathways, and that stimulatory and inhibitory signals often are initiated in parallel

    Notch signaling is necessary for epithelial growth arrest by TGF-β

    Get PDF
    Transforming growth factor β (TGF-β) and Notch act as tumor suppressors by inhibiting epithelial cell proliferation. TGF-β additionally promotes tumor invasiveness and metastasis, whereas Notch supports oncogenic growth. We demonstrate that TGF-β and ectopic Notch1 receptor cooperatively arrest epithelial growth, whereas endogenous Notch signaling was found to be required for TGF-β to elicit cytostasis. Transcriptomic analysis after blocking endogenous Notch signaling uncovered several genes, including Notch pathway components and cell cycle and apoptosis factors, whose regulation by TGF-β requires an active Notch pathway. A prominent gene coregulated by the two pathways is the cell cycle inhibitor p21. Both transcriptional induction of the Notch ligand Jagged1 by TGF-β and endogenous levels of the Notch effector CSL contribute to p21 induction and epithelial cytostasis. Cooperative inhibition of cell proliferation by TGF-β and Notch is lost in human mammary cells in which the p21 gene has been knocked out. We establish an intimate involvement of Notch signaling in the epithelial cytostatic response to TGF-β

    Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The question of how genomic processes, such as gene duplication, give rise to co-ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of importance in developmental and evolutionary biology. Herein, we focus on the diversification of the transforming growth factor-<it>β </it>(TGF-<it>β</it>) pathway – one of the fundamental and versatile metazoan signal transduction engines.</p> <p>Results</p> <p>After an investigation of 33 genomes, we show that the emergence of the TGF-<it>β </it>pathway coincided with appearance of the first known animal species. The primordial pathway repertoire consisted of four Smads and four receptors, similar to those observed in the extant genome of the early diverging tablet animal (<it>Trichoplax adhaerens</it>). We subsequently retrace duplications in ancestral genomes on the lineage leading to humans, as well as lineage-specific duplications, such as those which gave rise to novel Smads and receptors in teleost fishes. We conclude that the diversification of the TGF-<it>β </it>pathway can be parsimoniously explained according to the 2R model, with additional rounds of duplications in teleost fishes. Finally, we investigate duplications followed by accelerated evolution which gave rise to an atypical TGF-<it>β </it>pathway in free-living bacterial feeding nematodes of the genus Rhabditis.</p> <p>Conclusion</p> <p>Our results challenge the view of well-conserved developmental pathways. The TGF-<it>β </it>signal transduction engine has expanded through gene duplication, continually adopting new functions, as animals grew in anatomical complexity, colonized new environments, and developed an active immune system.</p

    Transforming growth factor-β employs HMGA2 to elicit epithelial–mesenchymal transition

    Get PDF
    Epithelial–mesenchymal transition (EMT) occurs during embryogenesis, carcinoma invasiveness, and metastasis and can be elicited by transforming growth factor-β (TGF-β) signaling via intracellular Smad transducers. The molecular mechanisms that control the onset of EMT remain largely unexplored. Transcriptomic analysis revealed that the high mobility group A2 (HMGA2) gene is induced by the Smad pathway during EMT. Endogenous HMGA2 mediates EMT by TGF-β, whereas ectopic HMGA2 causes irreversible EMT characterized by severe E-cadherin suppression. HMGA2 provides transcriptional input for the expression control of four known regulators of EMT, the zinc-finger proteins Snail and Slug, the basic helix-loop-helix protein Twist, and inhibitor of differentiation 2. We delineate a pathway that links TGF-β signaling to the control of epithelial differentiation via HMGA2 and a cohort of major regulators of tumor invasiveness and metastasis. This network of signaling/transcription factors that work sequentially to establish EMT suggests that combinatorial detection of these proteins could serve as a new tool for EMT analysis in cancer patients

    Smad7 and protein phosphatase 1α are critical determinants in the duration of TGF-β/ALK1 signaling in endothelial cells

    Get PDF
    BACKGROUND: In endothelial cells (EC), transforming growth factor-β (TGF-β) can bind to and transduce signals through ALK1 and ALK5. The TGF-β/ALK5 and TGF-β/ALK1 pathways have opposite effects on EC behaviour. Besides differential receptor binding, the duration of TGF-β signaling is an important specificity determinant for signaling responses. TGF-β/ALK1-induced Smad1/5 phosphorylation in ECs occurs transiently. RESULTS: The temporal activation of TGF-β-induced Smad1/5 phosphorylation in ECs was found to be affected by de novo protein synthesis, and ALK1 and Smad5 expression levels determined signal strength of TGF-β/ALK1 signaling pathway. Smad7 and protein phosphatase 1α (PP1α) mRNA expression levels were found to be specifically upregulated by TGF-β/ALK1. Ectopic expression of Smad7 or PP1α potently inhibited TGF-β/ALK1-induced Smad1/5 phosphorylation in ECs. Conversely, siRNA-mediated knockdown of Smad7 or PP1α enhanced TGF-β/ALK1-induced signaling responses. PP1α interacted with ALK1 and this association was further potentiated by Smad7. Dephosphorylation of the ALK1, immunoprecipitated from cell lysates, was attenuated by a specific PP1 inhibitor. CONCLUSION: Our results suggest that upon its induction by the TGF-β/ALK1 pathway, Smad7 may recruit PP1α to ALK1, and thereby control TGF-β/ALK1-induced Smad1/5 phosphorylation

    Перспективы развития солнечной энергетики в Республике Беларусь

    Get PDF
    Материалы XVIII Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых, Гомель, 26–27 апр. 2018 г

    Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma

    Get PDF
    Understanding the complexity of changes in differentiation and cell survival in hepatocellular carcinoma (HCC) is essential for the design of new diagnostic tools and therapeutic modalities. In this context, we have analyzed the crosstalk between transforming growth factor β (TGFβ) and liver X receptor α (LXRα) pathways. TGFβ is known to promote cytostatic and pro-apoptotic responses in HCC, and to facilitate mesenchymal differentiation. We here demonstrate that stimulation of the nuclear LXRα receptor system by physiological and clinically useful agonists controls the HCC response to TGFβ. Specifically, LXRα activation antagonizes the mesenchymal, reactive oxygen species and pro-apoptotic responses to TGFβ and the mesenchymal transcription factor Snail mediates this crosstalk. In contrast, LXRα activation and TGFβ cooperate in enforcing cytostasis in HCC, which preserves their epithelial features. LXRα influences Snail expression transcriptionally, acting on the Snail promoter. These findings propose that clinically used LXR agonists may find further application to the treatment of aggressive, mesenchymal HCCs, whose progression is chronically dependent on autocrine or paracrine TGFβ

    Snail regulates BMP and TGFβ pathways to control the differentiation status of glioma-initiating cells

    Get PDF
    Glioblastoma multiforme is a brain malignancy characterized by high heterogeneity, invasiveness, and resistance to current therapies, attributes related to the occurrence of glioma stem cells (GSCs). Transforming growth factor β (TGFβ) promotes self-renewal and bone morphogenetic protein (BMP) induces differentiation of GSCs. BMP7 induces the transcription factor Snail to promote astrocytic differentiation in GSCs and suppress tumor growth in vivo. We demonstrate that Snail represses stemness in GSCs. Snail interacts with SMAD signaling mediators, generates a positive feedback loop of BMP signaling and transcriptionally represses the TGFB1 gene, decreasing TGFβ1 signaling activity. Exogenous TGFβ1 counteracts Snail function in vitro, and in vivo promotes proliferation and re-expression of Nestin, confirming the importance of TGFB1 gene repression by Snail. In conclusion, novel insight highlights mechanisms whereby Snail differentially regulates the activity of the opposing BMP and TGFβ pathways, thus promoting an astrocytic fate switch and repressing stemness in GSCs
    corecore