33 research outputs found

    A sparse optimization approach to infinite infimal convolution regularization

    Get PDF
    In this paper we introduce the class of infinite infimal convolution functionals and apply these functionals to the regularization of ill-posed inverse problems. The proposed regularization involves an infimal convolution of a continuously parametrized family of convex, positively one-homogeneous functionals defined on a common Banach space X. We show that, under mild assumptions, this functional admits an equivalent convex lifting in the space of measures with values in X. This reformulation allows us to prove well-posedness of a Tikhonov regularized inverse problem and opens the door to a sparse analysis of the solutions. In the case of finite-dimensional measurements we prove a representer theorem, showing that there exists a solution of the inverse problem that is sparse, in the sense that it can be represented as a linear combination of the extremal points of the ball of the lifted infinite infimal convolution functional. Then, we design a generalized conditional gradient method for computing solutions of the inverse problem without relying on an a priori discretization of the parameter space and of the Banach space X. The iterates are constructed as linear combinations of the extremal points of the lifted infinite infimal convolution functional. We prove a sublinear rate of convergence for our algorithm and apply it to denoising of signals and images using, as regularizer, infinite infimal convolutions of fractional-Laplacian-type operators with adaptive orders of smoothness and anisotropies

    Urban mobility demand profiles: Time series for cars and bike-sharing use as a resource for transport and energy modeling

    Get PDF
    The transport sector is currently facing a significant transition, with strong drivers including decarbonization and digitalization trends, especially in urban passenger transport. The availability of monitoring data is at the basis of the development of optimization models supporting an enhanced urban mobility, with multiple benefits including lower pollutants and CO2 emissions, lower energy consumption, better transport management and land space use. This paper presents two datasets that represent time series with a high temporal resolution (five-minute time step) both for vehicles and bike sharing use in the city of Turin, located in Northern Italy. These high-resolution profiles have been obtained by the collection and elaboration of available online resources providing live information on traffic monitoring and bike sharing docking stations. The data are provided for the entire year 2018, and they represent an interesting basis for the evaluation of seasonal and daily variability patterns in urban mobility. These data may be used for different applications, ranging from the chronological distribution of mobility demand, to the estimation of passenger transport flows for the development of transport models in urban contexts. Moreover, traffic profiles are at the basis for the modeling of electric vehicles charging strategies and their interaction with the power grid

    Implicit neural representations for unsupervised super-resolution and denoising of 4D flow MRI

    Get PDF
    4D flow MRI is a non-invasive imaging method that can measure blood flow velocities over time. However, the velocity fields detected by this technique have limitations due to low resolution and measurement noise. Coordinate-based neural networks have been researched to improve accuracy, with SIRENs being suitable for super-resolution tasks. Our study investigates SIRENs for time-varying 3-directional velocity fields measured in the aorta by 4D flow MRI, achieving denoising and super-resolution. We trained our method on voxel coordinates and benchmarked our approach using synthetic measurements and a real 4D flow MRI scan. Our optimized SIREN architecture outperformed state-of-the-art techniques, producing denoised and super-resolved velocity fields from clinical data. Our approach is quick to execute and straightforward to implement for novel cases, achieving 4D super-resolution

    Seasonal variations in mortality and clinical indicators in international hemodialysis populations from the MONDO registry

    Get PDF
    BACKGROUND: Seasonal mortality differences have been reported in US hemodialysis (HD) patients. Here we examine the effect of seasons on mortality, clinical and laboratory parameters on a global scale. METHODS: Databases from the international Monitoring Dialysis Outcomes (MONDO) consortium were queried to identify patients who received in-center HD for at least 1 year. Clinics were stratified by hemisphere and climate zone (tropical or temperate). We recorded mortality and computed averages of pre-dialysis systolic blood pressure (pre-SBP), interdialytic weight gain (IDWG), serum albumin, and log C-reactive protein (CRP). We explored seasonal effects using cosinor analysis and adjusted linear mixed models globally, and after stratification. RESULTS: Data from 87,399 patients were included (northern temperate: 63,671; northern tropical: 7,159; southern temperate: 13,917; southern tropical: 2,652 patients). Globally, mortality was highest in winter. Following stratification, mortality was significantly lower in spring and summer compared to winter in temperate, but not in tropical zones. Globally, pre-SBP and IDWG were lower in summer and spring as compared to winter, although less pronounced in tropical zones. Except for southern temperate zone, serum albumin levels were higher in winter. CRP levels were highest in winter. CONCLUSION: Significant global seasonal variations in mortality, pre-SBP, IDWG, albumin and CRP were observed. Seasonal variations in mortality were most pronounced in temperate climate zones

    Behavioural determinants of perceived managerial and leadership effectiveness in Argentina

    Get PDF
    The purpose of this empirical study was to explore the perceptions of Argentinean employees about managerial and leadership effectiveness, and was guided by the following research question: How do people employed in Argentinean companies behaviorally differentiate effective managers from ineffective managers? A total of 42 employees from private and public sector organizations in Cordoba, Argentina, were interviewed using Flanagan’s (1954) critical incident technique. The interviews generated 302 critical incidents of which 155 were examples of positive (effective) managerial behavior, and 147 of negative (least effective/ineffective) managerial behavior. The findings suggest that Argentineans perceive as effective those managers who are supportive, considerate, motivating, caring, good decision makers, approachable, participative, fair-minded, communicative, actively involved, and who act as role models; and this challenges the widely held belief that Argentineans prefer authoritarian managers over democratic ones

    A convex decomposition formula for the Mumford-Shah functional in dimension one

    No full text
    We study the convex lift of Mumford-Shah type functionals in the space of rectifiable currents and we prove a generalized coarea formula in dimension one, for finite linear combinations of SBV graphs. We use this result to prove the equivalence between the minimum problems for the Mumford-Shah functional and the lifted one and, as a consequence, we obtain a weak existence result for calibrations in one dimension

    A Generalized Conditional Gradient Method for Dynamic Inverse Problems with Optimal Transport Regularization

    Get PDF
    Funder: University of GrazAbstractWe develop a dynamic generalized conditional gradient method (DGCG) for dynamic inverse problems with optimal transport regularization. We consider the framework introduced in Bredies and Fanzon (ESAIM: M2AN 54:2351–2382, 2020), where the objective functional is comprised of a fidelity term, penalizing the pointwise in time discrepancy between the observation and the unknown in time-varying Hilbert spaces, and a regularizer keeping track of the dynamics, given by the Benamou–Brenier energy constrained via the homogeneous continuity equation. Employing the characterization of the extremal points of the Benamou–Brenier energy (Bredies et al. in Bull Lond Math Soc 53(5):1436–1452, 2021), we define the atoms of the problem as measures concentrated on absolutely continuous curves in the domain. We propose a dynamic generalization of a conditional gradient method that consists of iteratively adding suitably chosen atoms to the current sparse iterate, and subsequently optimizing the coefficients in the resulting linear combination. We prove that the method converges with a sublinear rate to a minimizer of the objective functional. Additionally, we propose heuristic strategies and acceleration steps that allow to implement the algorithm efficiently. Finally, we provide numerical examples that demonstrate the effectiveness of our algorithm and model in reconstructing heavily undersampled dynamic data, together with the presence of noise.</jats:p
    corecore