13 research outputs found

    Neutralizing Aptamers from Whole-Cell SELEX Inhibit the RET Receptor Tyrosine Kinase

    Get PDF
    Targeting large transmembrane molecules, including receptor tyrosine kinases, is a major pharmacological challenge. Specific oligonucleotide ligands (aptamers) can be generated for a variety of targets through the iterative evolution of a random pool of sequences (SELEX). Nuclease-resistant aptamers that recognize the human receptor tyrosine kinase RET were obtained using RET-expressing cells as targets in a modified SELEX procedure. Remarkably, one of these aptamers blocked RET-dependent intracellular signaling pathways by interfering with receptor dimerization when the latter was induced by the physiological ligand or by an activating mutation. This strategy is generally applicable to transmembrane receptors and opens the way to targeting other members of this class of proteins that are of major biomedical importance

    An autocrine loop involving ret and glial cell-derived neurotrophic factor mediates retinoic acid-induced neuroblastoma cell differentiation.

    No full text
    In several neuroblastoma cell lines, retinoic acid (RA)-induced differentiation is coupled to increased expression of functional neurotrophic factor receptors, including Trk family receptors and the glial cell-derived neurotrophic factor receptor, Ret. In several cases, increased expression is dependent on signaling through TrkB. Unlike TrkA and TrkB, Ret has never been implicated as a prognostic marker for neuroblastomas. SK-N-BE(2) cells do not express any of Trk family receptors; therefore, they are a choice system to study the specific role of Ret in RA-induced differentiation. Using a 2'-fluoro-RNA aptamer and a truncated Ret protein as specific inhibitors of Ret, we show that RA-induced differentiation is mediated by a positive autocrine loop that sustains Ret downstream signaling and depends on glial cell-derived neurotrophic factor expression and release. This report shows that in SK-N-BE(2) cells, stimulation of Ret is a major upstream mechanism needed to mediate RA-induced differentiation. These results provide important insights on the molecular mechanism of RA action, which might be relevant for the development of biologically based therapeutic strategies

    Simple hybrid polymeric nanostructures encapsulating macro-cyclic Gd/Eu based complexes: luminescence properties and application as MRI contrast agent

    No full text
    International audienceLanthanide-based macrocycles are integrated into hybrid polyionic complexes by combining them with zirconium ions and a solution of double-hydrophilic block copolymer

    Comparison of different strategies to select aptamers against a transmembrane protein target.

    No full text
    Binding of aptamers is dependent on their target conformation, which in turn is conditioned by the target's environment. Therefore, selection of aptamers against the active forms of membrane proteins could require their correct membrane insertion in order to maintain their native conformation. Here, we compare different SELEX strategies to identify aptamers against the mutated form of the membrane receptor tyrosine kinase RET(C634Y). (1) selections S1 and S2 against living cells transformed to express the protein yielded a minority of RET-targeted aptamers while the bulk of aptamers recognized more abundant membrane proteins, suggesting that a high level of expression of the target protein is crucial to allow the isolation of aptamers at cell surface; (2) selection S3 against the purified extracellular moiety of RET yielded aptamers unable to recognize RET expressed at the cell membrane; (3) crossover selections S4 and S5 alternating cells and recombinant RET enhanced the enrichment of the aptamers directed against RET; however, these aptamers displayed a weaker affinity for Ret than those obtained with S1 and S2. In our case, using transformed cell lines as the partitioning matrix during SELEX appears to be essential in order to obtain aptamers able to recognize the RET receptor tyrosine kinase in its physiologic environment
    corecore