979 research outputs found

    Coronal heating in multiple magnetic threads

    Get PDF
    Context. Heating the solar corona to several million degrees requires the conversion of magnetic energy into thermal energy. In this paper, we investigate whether an unstable magnetic thread within a coronal loop can destabilise a neighbouring magnetic thread. Aims. By running a series of simulations, we aim to understand under what conditions the destabilisation of a single magnetic thread can also trigger a release of energy in a nearby thread. Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate the temporal evolution of coronal magnetic fields during a kink instability and the subsequent relaxation process. We assume that a coronal magnetic loop consists of non-potential magnetic threads that are initially in an equilibrium state. Results. The non-linear kink instability in one magnetic thread forms a helical current sheet and initiates magnetic reconnection. The current sheet fragments, and magnetic energy is released throughout that thread. We find that, under certain conditions, this event can destabilise a nearby thread, which is a necessary requirement for starting an avalanche of energy release in magnetic threads. Conclusions. It is possible to initiate an energy release in a nearby, non-potential magnetic thread, because the energy released from one unstable magnetic thread can trigger energy release in nearby threads, provided that the nearby structures are close to marginal stability

    Highly Efficient Modeling of Dynamic Coronal Loops

    Full text link
    Observational and theoretical evidence suggests that coronal heating is impulsive and occurs on very small cross-field spatial scales. A single coronal loop could contain a hundred or more individual strands that are heated quasi-independently by nanoflares. It is therefore an enormous undertaking to model an entire active region or the global corona. Three-dimensional MHD codes have inadequate spatial resolution, and 1D hydro codes are too slow to simulate the many thousands of elemental strands that must be treated in a reasonable representation. Fortunately, thermal conduction and flows tend to smooth out plasma gradients along the magnetic field, so "0D models" are an acceptable alternative. We have developed a highly efficient model called Enthalpy-Based Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of the average temperature, pressure, and density along a coronal strand. It improves significantly upon earlier models of this type--in accuracy, flexibility, and capability. It treats both slowly varying and highly impulsive coronal heating; it provides the differential emission measure distribution, DEM(T), at the transition region footpoints; and there are options for heat flux saturation and nonthermal electron beam heating. EBTEL gives excellent agreement with far more sophisticated 1D hydro simulations despite using four orders of magnitude less computing time. It promises to be a powerful new tool for solar and stellar studies.Comment: 34 pages, 8 figures, accepted by Astrophysical Journal (minor revisions of original submitted version

    Modelling interplanetary CMEs using magnetohydrodynamic simulations

    No full text
    International audienceThe dynamics of Interplanetary Coronal Mass Ejections (ICMEs) are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength

    First Cluster results of the magnetic field structure of the mid- and high-altitude cusps

    No full text
    International audienceMagnetic field measurements from the four Cluster spacecraft from the mid- and high-altitude cusp are presented. Cluster underwent two encounters with the mid-altitude cusp during its commissioning phase (24 August 2000). Evidence for field-aligned currents (FACs) was seen in the data from all three operating spacecraft from northern and southern cusps. The extent of the FACs was of the order of 1 RE in the X-direction, and at least 300 km in the Y-direction. However, fine-scale field structures with scales of the order of the spacecraft separation (300 km) were observed within the FACs. In the northern crossing, two of the spacecraft appeared to lie along the same magnetic field line, and observed very well matched signals. However, the third spacecraft showed evidence for structuring transverse to the field on scales of a few hundred km. A crossing of the high-altitude cusp from 13 February 2001 is presented. It is revealed to be a highly dynamic structure with the boundaries moving with velocities ranging from a few km/s to tens of km/s, and having structure on timescales ranging from less than one minute up to several minutes. The cusp proper is associated with the presence of a very disordered magnetic field, which is entirely different from the magnetosheath turbulence

    Inference of heating properties from "hot" non-flaring plasmas in active region cores. I. Single nanoflares

    Get PDF
    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 10 6.6 and 10 7 K. Signatures of the actual heating may be detectable in some instances.Publisher PDFPeer reviewe

    Dynamical processes in the solar atmosphere

    Get PDF
    It has become clear that the closed-field regions of the solar atmosphere are not static (as was once thought) but that many types of steady and unsteady flows and other dynamical, processes such as flares are continually occurring, in them. This thesis investigates some theoretical aspects of these dynamical phenomena. Steady, one-dimensional flow along a coronal loop is investigated first of all. Such a flow may be driven by a pressure difference between the foot points, and a wide range of shocked and unshocked flows are found. The presence of steady flows removes the symmetry present in most static loop models, and these models are shown to form only one class of a much wider range of dynamic solutions to the equations of motion. Thermal non-equilibrium in hot coronal loops occurs if the pressure in a loop becomes too big. The non-linear evolution of this non-equilibrium state is followed, and the loop is found to cool from of order 10[super]6 K to below 10[super]5 K in a few hours. An upflow is driven, and non-equilibrium is suggested as a means of formation of either cool loop cores or prominences. Thermal non-equilibrium is also discussed as a possible mechanism for the simple-loop flare. It is suggested that a cool equilibrium at a temperature of a few times 10[super]4 K can flare to over. 10[super]7 K if the mechanical heating in the cool loop becomes too large. The evolution is followed and the loop is found to flare to over 10[super]7 K in approximately 5 minutes. Magnetohydrodynamic shock waves have long been regarded as a potentially efficient heating mechanism. Their behaviour is re-examined here, and it is found that certain types of shock can release very large amounts of energy. These results are then applied to the heating of "post"-flare loops, for which temperatures of 10[super]7 K at the loop summit may be obtained. Finally, some solutions of the magnetostatic equation are discussed, and it is pointed out that if the gas pressure is too big then magnetostatic equilibrium will break down. It is suggested that the subsequent evolution may give rise to a surge or other mass ejection

    On the ultraviolet signatures of small scale heating in coronal loops

    Full text link
    Studying the statistical properties of solar ultraviolet emission lines could provide information about the nature of small scale coronal heating. We expand on previous work to investigate these properties. We study whether the predicted statistical distribution of ion emission line intensities produced by a specified heating function is affected by the isoelectronic sequence to which the ion belongs, as well as the characteristic temperature at which it was formed. Particular emphasis is placed on the strong resonance lines belonging to the lithium isoelectronic sequence. Predictions for emission lines observed by existing space-based UV spectrometers are given. The effects on the statistics of a line when observed with a wide-band imaging instrument rather than a spectrometer are also investigated. We use a hydrodynamic model to simulate the UV emission of a loop system heated by nanoflares on small, spatially unresolved scales. We select lines emitted at similar temperatures but belonging to different isoelectronic groups: Fe IX and Ne VIII, Fe XII and Mg X, Fe XVII, Fe XIX and Fe XXIV. Our simulations confirm previous results that almost all lines have an intensity distribution that follows a power-law, in a similar way to the heating function. However, only the high temperature lines best preserve the heating function's power law index (Fe XIX being the best ion in the case presented here). The Li isoelectronic lines have different statistical properties with respect to the lines from other sequences, due to the extended high temperature tail of their contribution functions. However, this is not the case for Fe XXIV which may be used as a diagnostic of the coronal heating function. We also show that the power-law index of the heating function is effectively preserved when a line is observed by a wide-band imaging instrument rather than a spectromenter
    corecore