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Abstract

It has become clear that the closecU.fielcj regions of 
the solar atmosphere are not static (as v;as once thought) 
but that many types of steady and unsteady flows and other 
dynamical processes such as flares are continually occurring 
in them. This thesis investigates some theoretical aspects 
of tf'1 ese dynamical phenomena.

Steady, one-dimensional flow along a coronal loop is 
investigated first of all. Such a flow may be driven by 
a pressure difference between the fodtpoints, and a wide 
range of shocked and unshocked flows are found. The 
presence of steady flows removes the symmetry present in 
most static loop models, and these models are sb.sv.ri to form 
only one class of a much wider range of dynamic solutions 
to the equations of n.otion.

Thermal non-equilibrium in hot coronal loops occurs if I
the rressure in a loop becomes too big. The non-linear
evolution of this non-equilibrium state is followed, an: the

n tloop is fouric to cool from of order 10“ K to bel^^w 10" n in
a few hours. An upflow is driven, anc non-ecuilibriu"' is
suggested as a means of formation of either cool loop cores
or prominences.

Thermal non-equilibrium is also uiscussed as a possible 
mechanism for the simple-loop flare. It is suggested that 
a cool equilibrium at a temperature of a few times 10"" h can 
flare to over 10' K if the mechanical heating in the cool 

loop becomes too large. The evolution is followed and the



7 Iloop is found to flare to over 10 K in approximately 5 minutes, j
Magnetohydrodyna'iiic shock waves have long been regarded |

1
as a potentially efficient heating mechanism. Their behaviour j

is; re-examined here, and it is i'ound that certain types of |
j

shock can release very large amounts of energy. These results j

are t hen applied to the heating of "post"-flare loops, for which j
7 jtemperatures of 10" K at the loop suiuinit may be obtained. j

Finally, some solutions of the magnetostatic equation j

are discussed, and it is pointed out that if the gas pressure |
is too big then megnetostatic equilibrium will break down. |
It is suggested that the subsequent evolution may give rise
to a surge or other mass ejection. • |
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Chapter 1: riTROj^UCTIOM

The recent Skylab and Tolar i.axirnum Mission (S .i':.M. )sat­
ellites have stressed that the solar atmosohere is not a quiet 
homogeneous structure but an active dynamic region containing 
many steady and unsteady flows. Observations have concentrated 
on coronal loops and solar flares, and it is the object of this 
thesis to examine the dynamic behaviour of such regions.

.,e begin by describing the basic equations in Section 1.1. 
Sections 1.2 - 1.4 then provide a review of coronal loop obser­
vations, flows in the transition zone and corona, and solar 
flares. Section 1.5 provides a very brief review of the aims 
of this thesis. However, in order to keep each chapter re­
latively self-contained, some of ole observations outlined 
in this chanter are repeated in subsequent chapters and, where 
necessarv, exnanded.
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1.1 The basic ecuations

The basic equations for the behaviour of an ionised gas 
(or plasma) are the kinetic equations (Boyd and Sanderson, 
1969). They describe the particle distribution but, for 
most purposes, may be approximated by the fluid equations*
This approximation holds provided the length-scales are much 
greater than the mean free path and the time-scales are much 
longer than the collision time. In this section, we state 
the equations of electromagnetism, fluid dynamics, and energy, 
and finally combine them to obtain the equations of magneto- 
hydrodynamics (referred to as r..H.D.).

1.1.1 Electrom agnetic equations
In an inertial frame the equations of electromagnetism 

are Maxwell’s equations:

X  t - - (1.1)
—  —  1

b t

\7 X. q ~ |A. i_ UL If ^ V. (1 .2)
cbt:

&  - C':' , (1 .3)
>

% CD ) (1.4)

where E is the electric field, B is the magnetic induction 
(generally referred to as the magnetic field), J is the electric 
current density and is the electric charge density, yw 
and are the magnetic permeability I a \0 H m  ) 

and dielectric constant L ̂  .ib x 10 '̂  F nf ' ] iri a vacuum.
These eouations are supplemented by Ohm’s law in the form

J -- c  I e -t V A R  ) u  .5 )
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where is zbo electrical conductivity and v is the plasma 
velocity. It is a greatly simplified version of the general
Olirn’s law (Boyd and Sanderson, equation 3.61),

1.1,2 Fluid equations

The fluid equations are the continuity equation

— Sr '■'7 , 6 ̂  ^  \ z. Ç) (1.6)

a n d  the momentum equation

P ( -  T .'’7 'i V :z ■“   ̂/  p r  cx -t- P (1 .7 )

where q is the gas pressure, y is the mass density and F 
is any general force acting on the plasma (e.g. viscosity or 
the Lorents force). The force acting due to an electromagnetic 
field is

The oressurO and density are related to the temperature, T^by 
the equation of state

?  = ^  r» T

r
o 1 _ 1where R  is the gas constant (8.26 x 10 J kg" K" ) and Cf is 

the mean molecular weight (taken as 0.5 for a fully ionised 
hydrogen olasma), It is often more convenient to work in 
terms of the number density, u , rather than the mass density

e .
If a hydrogen plasma is fully ionised ) then



“  h

where rr.ĵ is the mass of a hydrogen atom. The equation of 
state is then

p> '  ̂ (1.9)

where kg (= R/irij,) is Boltzmann's constant (1.38 x 10' J K ' h  .
He shall generally drop the su bscript ’ e ’ in the density so 
that will be assumed to mean t’ne electron number density.

1.1.3 Magnetohydrodynamic equations
he now combine the equations stated in Section (1.1.1) 

and (1.1.2) to give the equations of M.H.D. The M.H.D. approxi' 
nation holds if the characteristic speeds are non-i’elat ; vistic. 
Then, comparing the terms on the right-hand side of (1.2) gives

v_

provided V c  . In this.expression, v is a typical velocity, 
1 a typical length a n d a  typical time. Equation (1,2) then 
reduces to

(1 .1 0)
3irailar 1 y , (1.8) becomes

% I  \ % I V  %  ) X G
vr

and the momentum equation is thus

> (1 .1 1 )

{ À  -  Y- . V  )  Y, - - -  7  R -r n  „ <■' «  -V 0 _ X R



Taking the curl of Ohm’s law (1.5) and using (1.10) and 
(1,1) gives

\
'     I(1 .1 2)

which is called the induction equation.
■>"' is the magnetic diffusivity and is defined as

11 % 1.

If 10 is taken uniform, then equation (1.12) reduces to

hi- -- ?  ^-hv X  ^  j -r 11 ^  '6 , (1.13)

The ratio of the two terms on the right-hand side of (1.13) is 
known as the magnetic Reynolds number, R , defined as

C „  . vj.
'I

If . , then (1 .13) simplifies to

■>■'1 _ \7 >; L v_ X  %  \ , (1 .14)

In this case, the magnetic flux in a closed contour moving with 
the plasma is constant, which implies that the lines of magnetic
force move with the plasma and are said to be frozen into the
plasma. If I » then (1.13) becomes

: f  - " ' h  , (1.15)à f
the well-known diffusion equation. In this case, the field 
diffuses away on a timescale

V  7 ' / 11 ,

1 « 1 •4 The energy equation
The system of equations discussed in the previous three
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I
sections is not closed unless the temperature is prcscrribed. 
In genei’al, a fui’ther equation is then recuiree which is the 
energy equation. In its simplest formi it is

- L i . g r  ) ,

v/here X - C .>/Cv , the ratio of the specific heats and h(n, T) 
represents the energy losses or gains. If L « 0 then (1.16) 
im eli e s

p / f-j Y ^ con St o f rno tion , (1.1?)
the familiar adiabatic law,

'ae shall consider thiree terms in L, namely thermal con­
duction (which may be a ,rain or a loss), energy loss due to 
radiation and energy gain cue to mechanical heating.
( a ) I'herma 1 conduction

The thermal conductive gain or loss is written as

cond " 1 ,
where K is the conductivity tensor.
For present purposes, K can be considered as having two com­
ponents, one along the magnetic field (kj j) and one perpendi­
cular to it , defined for sufficiently strong magnetic
fields as

*R,1= J... . W  m  ’ L
( 1 . 1 8 )

"  1.
a.Si, .N t o ' j  i ' o  pL;^A_ 6; (1.19)

T'”- i?V
S is the particle charge, A. the positive ion mass and 

is the coulomb logarithm which depends weakly o n a n d  T 
i: and are both dependent on Z (dpitzer, 1962). For a
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hydrogen plasma and typical coronal values of n. and T,

vt. = , \ o  "'6 " VV ,rT' ' Vg

~'V, \ -V ! (1-20)^  I ( ) o Vt '/‘J oa W  . I

Priest (1978) has shown that, if 1 is a typical length across 
the field and L a length along the field, then

i- X > o  \

n ^  c;:- T v r i

if 'C , a  cx lO  ̂ I'w- ' i K  and G  h \CC-. Thus, con­
duction across a magnetic field is,for these parameters, 
negligible in the solar corona.

(b) Radiation
The optically thin radiative Ions from a plasma is 

represented by (Summers and Methirter, 1979)

Lra;l-- R - e . Q ' - - v )  VV '.w'-’ , 1

Q, L T Q  L ) \ ) ' '--'b '■  ̂ U  1" '< J . I
r  n  K

Q(H) is the radiated loss from hydrogen and is that from 
element . A large number of authors have calculated the 
loss function, their results being shown in Figure 1.1. 
However, the loss is generally approximated by a piecewise 
continuous function; that of Rosner et al, (1978) is given in 

Table 1,1.

where , f (1.21)



m

J.

CO
O

C D

i_n
C D

C D

C D

i_n
m
IC D

vO
pri
' C D

r n

'C D

Figure 1.1 ____  . The optically thin radiative loss function as
c a l c u l a t e d  b y  Cox and T u c k e r  (1969) (.....), Raymond Cox and
Smith (1976) (̂'<' ' ) and Summers and i.c,,hirter (1979) ('---). 
The aeoi’oximation to there calculations used in thesis cue 
to Rosner et al. (1978) is shown (----- ).



i Table 1,1 j
The val.ues of XI and <  in tho optically thin radiative loss !

I J
function as a function of temperature as calculated!
by Rosner et al. (1978). I

Temperature Range j1

2 X icAxc T x  4 X lO^K 1 .12 X 10’•35

4 X 1 <. T < o  X lO^K 10'■44

8 X lO^Kt K 2 . 5 x IC^K 6 .3 X 10’-35

2.5 X lO^Kc T< 5 .6x IG^K 3 .98 X 10’•24

5 .6 X 10MKC T < 2  X lO^K 1 .15 X 10’•35

2 X 10^K< Tc. 10?K 1 .86 X 10'-31

0
2
0

-2
0

2/3

The function is defined as

Q  L T  ) c ^  (1 .22)

where V and are given in Table 1 . It should be noted that
only 1 Of of this radiation comes from hydrogen, thus the
accuracy of Q(T) depends on how well solar abundances are
known. In fact, (1,22) is accurate to only a factor of 2 or 3.
(c ) Mechanical heating

This term (denoted by Epj) represents all the heat sources 
in the energy equation. In the corona, the heating is thought 
to be due to both waves propagating upward from the photosphere 
and ohmic dissipation at a rate 3"Vq- . However, the dependence 
of the heating function on the local oarameters is not clear and
so E„ is written as n

 V
(1 .2 3 )

where H, d and e are constants. In this thesis, two cases
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of (1 .2 3 ) are considered, namely heating constant per unit 
mass (d = 1, e -- -1) and heating constant per unit volume 
(d = e = 0), so that

„ P ) (1-2 4a )
f

or p  U  (1.24b)— — \

Our energy equation is thus

and the closed set of equations is

‘ V. > 6. . if j '4. % X, p ^ ('1 a 'V 'M ; (1.2$)

(1.2 6)-y \  L O V I :L Q

'6 -  O

IA-.

(1.27)

) (1.28)

\ " u T-'Â .

(1.29)

-t -t- , (1.30)
where E and J are given by

G - — V s  P  V 3 (1.31)

(1 .3 2 )
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1 .2 Observations of corona.I loops
Since the launch of the Skylab satellite it has become 

apparent that, instead of being a static, plane-stratified 
atmosphere, the solar corona is a highly structured medium.
It consists of open structures (coronal holes), which are the 
source of the solar wind, and closed structures, which are seen 
in E.U.V. and X-rays as loops. These loops typically have 
temperatures in excess of 10 ^ K , imply itig some form of energy 
deposition or heating to balance losses due to radiation and 
thermal conduction. he now outline their properties briefly 
and discuss in Section (1.3) the nature of steady and transient 
flows observed in loops and in the transition zone.

The most concise recent review of the properties of loops 
is given by Priest (1978) which we follow closely. He splits 
loops up into roughly five classifications, the properties of 
which are summarised in Table 1.2.

Table 1.2

Typical length (him) , Temperature (K) and electron 
number density (m“ ) for different types of loops.

’’Post"-flare and simple flare loops are discussed in Section 

1 .4.
Interconnecting loons link different active regions, are 

seen in E.U.V. (Sheoley et al.,1975) and X-Rays (Chase et al..

Inter- ! 
connecting

Xuiet 1 
Region

Active ; 
Région !

"Post"- 
flare

I Simple  ̂
. flare j

L 20-700 20-700 ! 10-100 j 10-100 : 5-50 j .
T 2_ J x 10& 1.8x 10̂ ' 1C r - Z $ x 10G  , 10̂- 4x 10̂ 7 •■C 4x 10 j

n 7x 10̂^ 12- 10x 1 O'*''- ' 1 4^ - 5x 10' ^ 10'7 i  io’« ! :
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1975; 3v0vStka et al., 1977). They are rooted in regions of 
strong magnetic field at the ed^o of active regions and typi­
cally have a lifetime of a day, but a system of such loops 
may last for several solar rotations.

' uiet-rerj.on loons are similar to interconnecting loops 
except that they are scmev/ha t cooler and do not connect active 
regions.

A ctive-rerion loons are somewhat more interesting than 
the previous ones: they have been studied extensively by
Foukal (1975) using hkylab 2.U.V, data. He finds cool loop 
cores nested inside regions at coronal temperatures.
The density of such a cool core is arproxiinately equal to that 
of the corona, and so the pressure in the core must be a tenth 
of the coronal pressure. Similar properties have been found 
by Jordan (1975) and discussed further by Foukal (1976),

1 ,3 Observations of steady and tr.ansient flows in the transition 
j2pn e _an d^. corona

Since the advent of space telescopes, a large range of 
flows have been observed in the solar transition zone and corona. 
These and the older ground-based observations are now summarised.

1.3.1 Grou n d - based
(a) One of the earliest flows observed on the sun was the 
Evershed flow in sunspots. This is a two-way flow, being 
directed out of the sunspot at photosphere levels and into it 
at the chromosphere (e.g. Schroter (1967)). Outward Evershed 
flow starts at the edge of the Dhotosphere umbra and moves 

radially through the penumbra at a few km s""^. ma It by (1975) 
has described inward (chromospheric) Evershed flow along



-  12 -

superpenumbral fibrils that reach an altitude of Spli. The 
flovv speed decreases abruptly in the penumbra to an undetect­
able value at a brightening. Speeds along superponurabral 
fibrils can be as much as 25-50 km s~^ and the flow lifetime is 
between I hour and 2 hours. (dee Haugen, 1967, houghhead, 

1969).

(b) Coronal rain is seen as cool downflov-ing material along
strongly curved trajectories into active regions, velocities

—1being typically 50-100.kn s'“ . A good illustration is provided 
in Iruzek and Durrant (1977) on page 101, Foukal (197o) 
discusses coronal rain moving down both legs of a loop at 
speeds in excess of 45 km from a condensation near the loop 

summit.

(c) Somewhat more transient effects are cue to surges.
These are streams of plasma ejected upwards from the leading
edge of an active region with speeds of typically 20-50 km ,

”1but sometimes as fast as 200 k'n s . They follow curved paths 
and often return to the surface along the sane path,

(d ) Spicules are jets of gas ejected from the low chromosphere 
at the boundary of- supergranular cells. Their speeds are typi­
cally 20-30 km s“  ̂and they attain a height of approximately 10imi 
before returning to the surface.

1.3.2 3pacecraft observati.ons
Persistent chromospheric and transition region flows

lasting several hours have been observed on 030-#, by Li tes
— 1et al.(1976). They describe an upflow of 6-10 km s~ at

— 150^ to the vertical around a filament, downflows of 2-5 km s” 
over the network and downflows over a sunspot of 4-6 km s“^
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at 35^ to the normal. Bruner et al. (1976) observed these
transient downflows at five minute intervals; they may well
be coronal rain falling through the field of view with a
velocity of 30 j<m s"̂  , More transient phenomenon include small-

_ -1scale downward flows over sunspots of up to 150 km s , micro-
— 1surges over a plage of 30 km s” (both unward and downward) 

and exnlosions v/ith upward or downward motions of 100 km s"^. 
(See Priest (1981b) for more details).

Flows in the upper transition zone and corona are some­
what harder to detect and X-Ray observations of coronal loops 
have not yet identified flows but recent eclipse results 
(Livingston and Harvey, 1981) have suggested that steady flows 
occur in coronal loops, the velocities lying between 3 and 15 
km s**\ However, Levine and X'ithbroe (1977) witnessed the 
rapid evacuation of a coronal loop in which large downflows 
wore observed: the (possibly) "post"-flare nature cf this
event makes interpretation difficult. Flare-related flows 
are discussed in Section 1.4.

fc arc only starting to become aware of the highly 
dynamic nature of the upper solar atmosphere, and future 
observations, in particular from the S.iu.M., should provide 
a vast new range of data.

1.4 Solar flare observations

In this section, we aim to give a general review of 
solar flare observations : more detailed analyses are given
in the relevant chapters. Good reviewsof observations are
given by Svestka (1976) ana Brown et al. (1981), and recent 
theory is summarised in Priest (19o1a) and Spicer and Brown 

(1981).
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A solar flare is often crudely defined as a brightening 
on the Sun but this is a simplistic viewpoint. More explicitly
flares can be classified into two main types:

(a) sirnple-loop (or compact) flares,
(b) two-ribbon flares, 

and we discuss these separately.

1.4,1 Two-ribbon flares
The large, two-ribbon flare occurs when an active-region 

filament, often lying along the polarity inversion line, erupts 
and two bright bands of \A emission move out from the filament 
site. The ribbons are joined by loops - called " post"-
flare loops - whose properties were stated in Table 1.2. In 
fact, the words "post"-flare are a misnomer, since energy 
release probably continues throughout the main phase.

Svestka (1976) lists many observations of flares and 
states 37 properties that flares generally appear to possess. 
Clearly, any single flare theory cannot explain all of these 
and in this thesis we shall not be concerned with a considerable 
number of them - such as those concerned with particle behaviour.

Priest (1976) has given a representation of the flare 
intensity in various wavelengths and we reproduce this in 
Figure 1.2. The flare is typically split into 4 regions:- 
preflare, impulsive, flash and main phases. During the 
preflare phase (typically 1-10 minutes) an increase in intensity 
in X-ray and S.U.Y. emission is seen. The flare itself begins 
in two stages: the flash phase and the impulsive phase.
The flash phase lasts approximately five minutes: during this 
time, the intensity and flare area increase rapidly. During 
this phase, some flares also exhibit an impulsive phase,
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Elg-re 1 .2 A schematic representation of 
in severa l v.-ave len<?-ths . 
pl-ases are: preflare
flash - five minutes;1 9 7 6 ) .

- the flare intensity 
Typical time-ocales for the various 

- ten minutes; impulsive - 1 minute; 
main phase - 1 hour. (From Priest,
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characterised by hard X-ray bursts and microwave emission.
The main phase follows the flash phase; during it the inten­

sity decreases, typically in about 1 hour.

V/e now summarise the basic observations of magnetic 
field, teiiiperature and density as listed by Svestka (1976).
(a) A bipolar field is a necessary condition for flare 
occurrence.
(b) The resnonse of the corona to an emerging bipolar field 
is heating above the emerging f l u x .  This gives rise to an 
X - R a y bright po i n t ,
(c) Flares tend to occur when an active region approaches 
maximum development.
(d) The biggest flares occur in regions where the original 
bipolar structure has become magnetically complex,
(e) The initial flare briahtenirigs in the chromosphere occur 
near the %ero line of longitudinal magnetic field,
(f) In big flares, the bright patches merge and form regular 
chromospheric ribbons, (So-called two-ribbon flares).
(g) The quiescent filament often disappears and the chromo­
spheric ribbons form along both sides of its site,
(h) These ribbons travel outwards at velocities between 1 and 
10 km s“  ̂,
(i) The ribbons mark the f o o t  points of coronal loops 
("post^*-flare loops) .
(j ) Changing magnetic fields are characteristic of active 
regions giving rise to flares,
(k) Flares tend to occur when new flux emerges inside active 
regions.
( 1 ) After the fl.are, the magnetic structure is somewhat 
simplified.

J



-  16

(m) In the preflare phase, the quiescent filament is acti­
vated minutes or tens cf minutes before the flare occurs.
This can be interpreted as a change in the field before the 
flare onset, and this change is of a non-eruptive nature.
(n) Pre-flare heating (seen in soft X-rays) is evident 
ten minutes before the flare.
(o) The earliest manifestation of the flare is an increase 
in soft X-ray and C.U.V. emission reflecting a heating in the 
transition zone or corona.
(p) The sequence of maxima during a flare is :

(1) maximum in coronal temperature;
(2) maximum in light;
(3) maximum in emission measure.

( q )  The maximum temperature deduced from soft X-rays is 
1 - with a moan electron density of 3x10^^
(r) The electron density in the chromosphere during a flare 
is 10 ^^ , but it can be as high as 4x10  ̂  ̂ m"^.
(s) The density of hydrogen in a chromospheric flare is

1 —3(t) The density decreases with height: it is 10 m"
just above the chromosphere, and 10  ̂̂  m ”'' at a height of
20,000 km above the chromospheric base.
(u) The density is two orders of magnitude higher than in 
the quiet sun.

22The total energy released in a flare is of order 10' J
25for a siiial] flare and up to 3x10 J for a large event.

Priest (1976) has estimated the various contributions for a 
large flare as



”  17 “* I

Electromagnetic radiation un to X-rays 10^^ J 1
2 5'Interplanetary blast wave 10 J i

Hard X-rays (fast narticles) 5x10^^ J 1
Subrelativistic nuclei 2x10^^ J '
Relativistic nuclei 3x10^^ J 1

Total energy output 3x10^^ J .
Brown (1975) has estimated that hard X-rays may contribute 

25up to 2x10 J . This energy release is equivalent to anniha-
7la ting a magnetic field of 300 Gauss in a cube of side 3x10' rn,

1.4,2 Simole-loon (^comoact) flares
One outstanding result of the Okylab observations was the

realisation that the compact flare occurred in a magnetic loop
or arch (Cheng and hiding;, 1973). The structure of this loop
does not aopear to change much during the flare and it has a
typical height of a few; I'jii,

During the flare, the temperature in the loop rises to
over 2x10 K and the density (deduced from the emission measure)

17 - 3reaches values of over 10 m , There is a time-lag of about 
five minutes between the temperature and density maxima. An 
extensive analysis of such flares by Moore and Datl.owe ( 1975) 
showed that the X-ray emitting region had a temperature of 
between 1.1x10^ K and 1.0x10^ K, it was visible for between 
3 and 40 minutes and was approximately.10 - 80 imn long. A 
similar analysis by Milkey et al,(1971) gave maximum temperatures 
in the range 2.5 - 3.5 x 10' K, and oscillations in the temper­
ature appeared in the cooling of the X-ray plasma (presumably 
due to radiative and conductive effects),

Cheng and hiding (1975) also observed some evidence of
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1
Iso-called 'Thermal Flares'. These are flares which, in j

the words of Cheng and hiding "no obvious evidence of violent j
dynamical processes or particle acceleration" was found, \

They comment that such a flare must possess an instability \

which results in heating only,
More recent observations by bites et al.(1981) have

—  1detected downflows of order 80 km s" in the transition zone 
and Cheng et al,(1981) have suggested that such flows are driven 
by a pressure gradient between loop summit and base.

1.5 Aims of this thesis j
In this chapter, a brief review of the Il.H.D. equations j

and observations of coronal loops and solar flares has been |
I

o r e s e n t e d .  Observations of steady and transient flows in 1
the transition zone and corona have also been discussed, and j
the dynamic nature of the solar corona is stressed throughout I
this thesis. I

Chapter 2 presents a review of the behaviour of shock- j
waves, which are of importance later in the thesis. The I
properties of ll.H.D. shocks whose incident flow and field j

are non-aligned is reinvestigated, and it is found that |
substantial extra energy release is allowed if the input ]

parameters take on certain values, i

Chapters 3, 4 and 5 are concerned with the behaviour I
of steady and unsteady flows in coronal loops, A general ^
theory of steady-state siphon flows is developed in Chapters j
3 and 4. In Chapter 3, an adiabatic energy equation is j
ernoloyed, and the general characteristics of the flow are j

■ iinvestigated, whereas Chapter 4 extends the analysis to i
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include a full energy equation. The effects of different 
boundary conditions and loop geometries are investigated, 
and the non-existence of solutions in certain cases is briefly 
discussed.

Chapter 5 investigates the non-linear evolution of 
thermal non-equilibrium in a coronal loop, which may occur 
if the .loop pressure Is too large. It is suggested that 
this could account for the formation of the observed cool 
loop cores.

Chapters 6 and 7 are concerned v/lth the solar flare 
problem. In Chapter 6, we suggest that the simple-loop flare 
is due to thermal non-equilibrium in a cool coronal loop or 
filament, and carry out a simple non-linear calculation to 
demonstrate this suggestion's viability.

Chapter 7 discusses the heating of "post"-flare loops 
in tiie context of t!ie Kopp-Pneurnan (i976) model for their 
formation. The results of Chapter 2 are used to propose 
a simple slow-shock heating model. An incompressible global 
reconnection model is also discussed.

Chapter S discusses magnetostatic equilibrium in coronal 
structures and suggests that its breakdown could be responsible 
for surges and explosive flares.
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Chapter 2: SHOCK MAVSS

2.1 Introduction

In this thesis, shock waves v/ill occur in several problems, 
and so it is convenient to summarise their behaviour here and t

iA
also to present so,no results in a new light. In an ordinary 1 
gas, a disturbance will propagate at the sound speed, c I
(where M,.; - I - / r , . )  ; those sound waves may be described j
by linear theory, but when a wave possesses a finite amplitude, 
it steepens due to the effect of the non-linear terms.
Eventually, the crest catches up with the trough and there then 
exists a region of large velocity, density mid pressure gradients
in which dissipative terms in the momentum and energy equations
become important. This is known as a _shcck wave. It travels 
in excess of the local sound speed, so information cannot pro­
pagate ahead to indicate its arrival. The gas is decelerated 
and also compressed and heated (by viscous dissipation) as it 
passes through a shock.

If the pas is electrically conducting, then the presence 
of a magnetic field may be important. If is then necessary 
to aod terms to the momentum and energy equations representing 
a Lorentz force and Poynting vector flux. The ideal time- 
dependent equations are then,

Lll h o  '/ \ — C'g (2.1 )

V r f  J ^ -  ) (2.2)
V"

J
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■ 7 .  5  -  O  . ( 2 , 3 )  
(2, i ,  )

I &  L; . (2.5)

Linearising these equations for disturbances about a 
uniform plasma and magnetic field, perturbed quantities may be 
Fourier analysed as

ueu.rf \ '0.-L/

and three types of wave result (e.g. Parker, 1979, Priest, 1982) 
which have dimensionless phase velocities

"> - f ' '►
t ;  S "  ' - o p - ) '  t

A V, 1
f 4- C - s  s i a - G  ) * •  J , ( 2 . 5 )

 ̂ J

v^- (2.7)

where

\q . J Vb k>^ ô-os

k is the wavenumber, v:., is the circular wave frequency and v. 
is the Alfven speed defined as

f) O 'N
f- VX- H r ,1 y \

The positive root gives the fast marnetoacoustic wave, the 
negative root the slow rnarnetoacoustic wave ; and (2.7) 
represents the Alfven wave.

Only the fast and slow magnetoacoustic waves can steepen 
to form shocks; the Alfven wave can propagate without steepening 

(e.g. Priest, 1982).
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An important parameter in equation (2.2) is the plasma 
beta, defined as the ratio of gas (p) to magnetic pressure 
( ̂r> “ / X ) ,

^ '/A"

In terms of Ç- , equation (2.6) is

‘t

If P><‘“ \ , the fast and slow magnetoacoustic waves become

to V ^  (fast)
(2.9)

(slow)Oc r 'c't ̂ .

Hence, the slow magnetoacoustic ware can propagate very slowly

(fast)
(2 .10)

to r Vi ' V ~ C./ ̂ ' 0  (slow).

2.2 G as 0vnami c shocks

The simplest type of shock-wave is the plane gas shock, 
the theory of which has been understood for over a century.
If we assume that variables change in the direction normal 
to the shock only, equation (2.2) is

f '' \-v -V H ^  ̂ (2.11)
IRA

i

at almost 90° to the field, but never exactly perpendicular to j 
it. '

If I , then the fast and slow modes are



— 23 —

where s is the coordinate normal to the shock.
Integrating from S = - & to 9 - &  and letting gives

\ ( 'Vyi,,v <1Y g r  \
. A >, c, /•> C )
t . , f'i-n 01, ^ o j

a t  "

V ~ -r P 1 - o J (2.12)
- t

where the integral of any quantity without a spatial derivative 
is identically zero.

Similarly equations (2.1) and (2.5) become

n ' /  I  -  O  (2 .13)

and

V '  V L  . %. C ) ,  (2.14)

where
r  4  ■]'■ - 1  ( ' .
^ ’ ' U

and '1' denotes an unshocked quantity, '2  ̂ a shocked one. 
Equations (2,12) - (2.14) are known as the Hankine - Kugeniot 
jump relations, and they represent the conservation of momentum, 
mass and energy across the shock. Inside the shock, the dis­
sipative terms neglected in (2,1) - (2,5) such as viscosity and 
thermal conduction are dominant: a complicated analysis is
then needed to determine the shock structure (See Curie, 1971,

0,31-35).
Equations (2.12) - (2.14) may be combined with, the equation 

of state to give the following expressions for the density, 
pressure and temperature ratios across the shock:
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M -  - 9  _

I V X % i \r -- \ \ 1'̂ p ' (2.15)

P -  =g  y  ;. g  - V> > (2,16)

' I ■- Y + \ ) - (Y ;- '
where

is the incident Mach number.
(2 .15) ~ (2.17) are surplemented by the constraint that the 
entropy, defined as

S  =  \ o c . .  [ i , ,  1 c  c ,  5 1  . ( 2 . 1 3 )
must never decrease.

The change in entropy across a shock is

- S  -  1  (2.19)
' • ' L p a  '

and differentiating gives

t  CVp ff, P 4 2. Yin - -  IY-, C (  1>. -r l Y - O ^ W  )

which is positive provided 1y > 1, Equations (2.15) - (2.17) 
then imply that density, cressure and temperature all increase 
across the shock.
The maximum density jump possible { iA^~>Co ) is given by

l t } \  - C Y ± _ P
I Y  -  > I

which is approximately 4 for a rnonatomic gas. The jumps in
pressure and temperature for strong shocks are directly pro- 

2portional to M,j ,
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Finally, it is worth noting that for oblique shocks ,
r e s u l t s  (2,15) - (2,17) are .modified by replacing Mj by 
? 2cos I where is the angle of incidence of the flow 

to the shock normal. The flow is deflected from the
normal on passage through the shock.

2.3 M.H.D. Shocks

In Section 2,1, it was shown that the characteristic 
velocity of propagation in a gas, , is modified by the
presence of a magnetic field and so the behaviour of shocks
will likewise change, Magnetohydrodynamic (h.H.D,) shocks 
are of itreat relevence in astrophysics, particularly in certain 
aspects of solar flare theory. Shock waves in general heat 
a plasma and certain classes of I-i.H.D, shocks are extremely
efficient at doing this. They are of importance to the
problem of steady reconnection by the Potschek (1964) mechan­
ism and are responsible for most of the plasma heating in that 
theory. The compressible Petschek mechanism has only recently 
become well understood (Soward and Priest, 1982), and the re­
sults of this section are of some relevance to their calculations.

be do not intend to develop the theory of M.IÎ.D* shocks 
along the well-trodden path of assuming that the incident flow 
and field are aligned (Bazer and Fricson, 1959, Jeffrey and 
Taniuti, 1964), but instead we set up and solve the full, non- 
aligned, jump relations. To the author's knowledge, this has 
only been attempted by Lynn (1966) who solved the equations 
in terms of the flow deflection angle. On the other hand, 
we intend to solve the equations as a function of the input ' 
parameters, giving a clearer understanding of how external

conditions affect the properties of the shock and the energy



A

unshocked 
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shocked 
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Figure 2 .1 The notation across a slow M.H.D. shock. 
Incluent and shocked quantities are denoted by subscripts 
1 and 2 respectively.
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release generated by it,
V/e consider a straight, oblique shock with the incident 

flow and field aliened at angles of and c/_ ̂ to the normal, 
respectively, (Figure 2,1) and integrate the dissipationless 
equations across a thin layer as outlined in Section 2,2,
The conservation of normal magnetic field component, mass 
flux, normal and tangential components of momentum, energy 
and tangential electric field are required, and in differential 
form they may be written

i-V''' ■- U  , (2.20)

9  O  , (2.21 )

^  I p  ^  ̂ \ _ (9  ̂ (2.22)r

-c — Wpj Jy — cV9 ) (2,23)
iVS JLS

I S -  (2 .2 4 )
-- ^ b omyp _ (J)

6 E .p. - o , (2.25)
J

where subscripts n and t denote normal and tangential components, 
respectively.
The jump relations are then

(2.26)

L- j . ) (2.:29')

\ '’'4 î w l  0 +■ i t  I "  ^  Q
VA
I
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Ü  , (2 .2 9 )
r

, V,,g^ I ' M ' Y  _ %  .2. \ r V a  4 4
U "  Y' \ /  T

—   ̂ 3.tA’ ' 1 ' -•_ <"'■ 
r  7. ' ’

(2.30.)

I ‘vY. .V 4% \ ' = o , (2.31)
where subscripts 1 and 2 denote unshocked and shocked quantities,
respectively, ihe equations are non-dimensionalised in terms of

X  -lY  ̂ h ,  •--- 'Ï-M?. , o .  -- 4'-
<1 I • R p  ' '■ --V '

\  ̂- A, >t. ̂ d 2\ "U 1_„L ‘

Upon use of (2.26) and (2.27), (2,28) - (2.31) reduce to 
the following dimensionless forms;

ll''"' -V '\ [ 13 -5 % Y'vf -t-
1  • !, 1  li / (2.32)

-V ! I -A- I Y
q i  > >

'''lo ( ' W'■ — '1'̂ A1 ) j - —s p 1 — )‘a.a V d
 ̂ X  .' ’ (2.33)

il - \ - lY-i )0:i,̂ ! ' *r 22."'15- - V '-V v^vli ) 1—
■'0 %  i “.. V--'L~  Y l ' ' f v  i I  m - n  ( \ - J _  -  V - , . v . V N X  d  Y  ( 2 . 3 4 )

Y  E .

(. Gv n X   ̂-  t~ci. n S',  ̂ ^

and

V V(3-voV';> - Hrq,-! - K  V  ̂C-""' ' ' \ i'CW v\ d.  ̂  ̂ (2,35)

Further, (2,33) and (2,3 5) may be combined to give



r
'■r. r. 41

-  28  -

and

( /Ao\

\ •'̂ An -X(V,

./*- / \  C- -C c î I

>-r-> ( 2 . 3 6 )

Vàf'A
i Y XV 4>, L O % - u L

\ ~ ' > o )
■- o ’:-! )

(2.37)

(2.3'), (2.36) and (2.37) may be substituted into (2 .3 2 ) to 
produce an equation for X alone.*

A t  M ' A-i \r> ; \ n- A'S-, — L \ -

A- \t ■ V C P ' y'  ̂ (. VTv -/\ J: 2_ \—

T  X - ,  g-, -M. *>- \ •■'■ '■ ̂'■ m \ / ^
(• V -> , - \ 1' :..f \

(2.38)

U I

A factor of (X - 1) may be removed from (2.38) to give a cubic 
in X.

Y ' t T I T  - 1 y v  t  \ -  1' V , J )_oi, : 
:z. J X

1

Y
-—X s,\ A \ v'\ X \ tV  ̂I \  f  ̂-7 1 X \ -A S'. V \ a. 1 ) __

"Y I

?'• V 8A \\tv A N A  ̂A 1 r. > \
" v

"t* >7-

'ff- C Vc.'AcX, - toC"/
V

-K- r
V

'1 ' f
0), ;

-V- %  37 A'.

r>

(2.39)
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The aim of the present analysis is to determine tlie 
shocked quantities ('Vh. ̂ o ̂ v ̂  ) as functions
of the unshocked (or incident) ones ( T  ̂ , o,,  ̂  ̂̂   ̂, S ̂ , v J  .
In theory, one can just solve equation (2.38) for X numerically 
and then deduce the other results, but it is instructive to 
first consider the general method of s'rock classification and 
a 1so some special cases.

2.3.1 M.H.D. shock classification and conditions for existence

In Section 2.1 we outlined the three basic modes of 
propagation of M.H.D. waves in a uniform medium. It will 
be recalled that of these modes, two (the fast and slow mag­
netoacoustic i.’aves) could steepen and form shocks. M.H.D. 
shocks can be classified in an analogous way in terms of fast 
and s1ow M .h.D. shocks,

Fi^*ure 2.1 and equation (2.37) show that

4  , fc ( c y  c o V  . , ,-n V  V  '

and the total change in magnetic field across the shock is 
given by

\  V'-' m - X  P  (2 .41)4 4

From equation (2.40), it can be seen that different types of 
shocks will arise, depending upon the signs of the numerator 
and denominator; Bazer and Ericson (1958) based their method 
of shock classification upon such an analysis.
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They assumed triât, provided the entropy increased 
across the shock it would propagate no matter what happened 
to the direction of the magnetic field. However, Jeffrey 
and Taniuti (1964, p. 220-238) pointed out that satisfying
the entropy condition was not sufficient for an h.M.D. shock
to propagate and that a stronger condition involving the 
behaviour of the magnetic field was needed:- this is called 
the eVO1utionary condition. Based on the theory of character­
istics, this arises if one considers the behaviour of small 
perturbations at the shock front: we just content ourselves
with stating the result. In simplest terms, it is that the 
tangential coninonent of the magnetic field cannot reverse 
scross a shock.

Thus, if we oe.r.and that the shock is compressive (Y> ' ) ,
t e  a 1.1 ov;ed sol u tion s to ( 2 .40) are

p - \ .4  ̂ g " k \ (2.42)
Y: ('■ >    ’

t

and

c l  <  ,.g Co cl-Y  J <  , (2,43)
' A U  T u ,

The s e correspond to fast and slow magnetoacoustic shocks, 
respectively. The fast shock propagates above the fast 
magnetoacoustic speed and the slow shock propagates at a 
speed between the slow macneteacouStic wave speed and the 
Alfven speed. The basic properties of these shocks are 
( a ) Fast shocks : (  ̂p  ̂,

S 9 S \ J
P -N, ,0

V
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( b ) Slow shocks :  ̂X A ̂ ,

A  S  \ )

Also, if the equality in (2.42) or (2.43) holds, then we have 
the switch-off or switch-on shocks. The switch-off shock 
occurs when the slow shock propagates at the Alfvpn speed 
and hence the tangential magnetic field vanishes (equation 
2.40). The switch-on shock occurs when the fast shock 
propagates at a velocity a 1 X <.•>>*'1 1 /tTO-'. In this case,
there is no incident tangential magnetic field, and the effect 
of the shock is to " switch-on" a tangential component.

he have not discussed other types of discontinuity such 
as contact discontinuities (a situation in which the velocity 
is zero on either side of the discontinuity but the magnetic 
field may change across it (such as a current sheet) or the 
intermediate wave (which just corresponds to the Alfven wave 
discussed in Section 2.1),

2.3.2 Special cases

Equations (2.34), (2.36), (2.37) and (2.38) may be solved 
analytically for some special cases. Due tl^ large number 
of parameters ), one can discuss many such cases
depending upon the problem that one is trying to solve. 7/e 
now outline some of the more interesting ones - bearing in mind 
our interest in the properties of slow shocks.

( a ) -A' cjC'

In this limit, equation (2.38) reduces to the standard
gas shocks outlined in oection 2,2, This is the case of a 
negligible field and outlines the fundamental difference
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betwoon fast and slow shocks. The fast shock is just a
modification of the gas shock in that the flow is rotated
away from the normal as is the field. The slow shock is 
totally different in that the fl.ov: is rotated toward the 
siiock normal and the shock disappears in the limit os ,
(b ) Sv.'i tch-off shock

Here, the equality in equation (2.42) holds and equations
(2,36)and (2.37) become

iX  Y \ A  L S  ̂— Kv.- \ f . ) .

(2.44)

(2 .34) is then

] }  -  » -V C V  - O  t 6 % U  , \  i --------- !_ -5 K a '  < , , 'o I  Y > V . '4- U /
Ti w

and equation (2,38) reduces to

■’ i \ -A- A " "  '' -  X i "-"3- V  I j

(2,46)
X  G  ,

Equation (2,45) shows that larre clasma heatinv can be expected 
for the case of small plasma beta. The case of (A, close to 
ü/f is of interest, since it is the limit of the slow shock 
as its propagation speed becomes small (equation 2,9). Then,

\ ' 1X  -  i -i p b  M t  \ i T :  ' \
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and
T 1 _ I > 4 I\

( 2 . 4 7 )1 \ A  \

For a plasma beta of 0.01, this indicates that a switch-off 
shock is a very effective heating mechanism. This is because 
in a switch-off shock, the entire energy of the tangential 
maone tic field is being converted into thermal and kinetic 
energy, a n c , if y is near u! a. , this represents an almost 
total conversion of magnetic to thermal and kinetic energy.
The ratio of inflowing magnetic energy converted to thermal 
energy may be easily derived for the case of A  ̂-o t / ' and 

. The u n s h o c k e d  magnetic energy is

'.O \
T \

and the shocked thermal energy ( )  is

\

and so the ratio of incident magnetic to shocked thermal energy 

is

r magnetic field ( \ )wO cron( c )

In many regions of the solar corona, the local magnetic 
nressure dominates the gas nressuro so that the plasma beta 
is s.mall. Th.e behaviour of shocks in these regions is of
interest. One could solve equation (2.39) in terms of an
expansion of X in powers of beta, b u t  this analysis is lengthy 
Instead, information can be gained from equations (2,34) -

(2.37).
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If \ , and ,7\ "O'-; then (2,36) becomes

 ̂ t \ - X. ) X   ̂; (2.2'g)

while (2.37) gives

J-X c o \ % A ^  ; (2.49)

and 30 <\-, ̂  A _ and '> .

One can also see that

(2.50)
which is valid provided y>̂  <c uci.Xx ̂
For now we sha11 leave X undetermined in these equations, 
since X is always a bounded quantity, given by

K -z _ -v oC(w)
■-- - L V - ‘ \ 00 . q t \ y.v v'\̂ Xx )

(2.51)
Hence, as X  ̂ increases,the temperature jump rises; this is 
only true provided is not close to otherwise one cannot
neglect terms of order p\  ̂,

2.3.3 Numerical solution of I'-i.K.D . shock relations

donation (2,39) was solved for X as a function of , ,
\ f C'v » - , and then and d ̂ v/ere deduced from

equations (2.34), (2.36) and (2.37), respectively. The vari­
ations of T^  , and with rn, are shown in Figures 2.2,
2.3 and 2.4 for an external plasma beta of 0,1 and a normal 
incident fl.ow. The solid dots denote the lower limit on *V .
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for the formation of a shock. At this point, tbo propagation 
speed is equal to the slow magnetoacouGtic wave speed and so

and asterisks denote a "switch-
off" shock, 'when.An_-o • As v;as shown analytically, the 
effect of increasing A  ̂is to increase the maximum temperature 
jumo, occurring when the tangential magnetic field is switched 
off. For (g  ̂ close tou!m , the expression (2.47) was derived 
and for  ̂ = 0.1, t%/r, p . This is in good agreement with 
numerical results. One interesting point is that the switch- 
off temperature jump appears to be approximately independent 

of oL • .
Fi-:ure 2.3 shows that h i s  always negative for a slow 

shock ; as is clear from equation (2.36). Thus, the flow is 
turned in a clockwise direction through the shock. Also, 
as the tangential magnetic field is increased, the flow is 
turned through a larger angle.

In Figure 2.5, we have relaxed the constraint that 
S y " 0  and hold - 1. As the inflow angle increases then 
the temoeraturo jump falls. The effect of decreasing^, may 
be deduced from Section 2.3. fecreasing p .j for a fixed iî  
moves the shock further from being 'switch-off'. donations 
(2,36 and (2.37) imply that as p. decreases, then b o t h 'A. and i

"Idecrease and so the flow and field are rotated through I
smaller angles. The temperature jump for a given Ik remains jIroughly fixed for (equation 2.50) but as is increased, j
smaller values of permit much higher temperature jumps. j
This is simply because the switch-off speed has increased and J
the shock can tTai propagate more quickly. If 4 = 0.01, i

'iV/T-j may be as large as 40 if s, and A ̂ are close to t /q |
and , j
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2.3.A The role of slow Il.H.D. shocks in the solar corona

In Chapter 7 of this thesis, we consider one particular 

role of shocks in some detail, namely the heating of post-flare 
loops, but it is convenient to discuss the role of slow shocks 
as a general heating mechanism. In the last few sections, it 
has been shov/n that slow shocks can release a large amount of 
magnetic energy as heat in a plasma. The maximum temperature 
rise across such a shock depends on the local plasma beta, and 
in the corona, where the beta is small, this temperature jump 
is especially large. Thus, slow-shock heating may well be one 
of the mechanisms responsible for maintaining the high coronal 
temperature.

It is generally considered (e.g. Priest, 1961b) that the 
corona is an active, dynamic structure with small-scale motions 
of magnetic field and plasma continually occurring. In such 
a medium, small current sheets may well be frequently set up, 
and, if reconnection occurs, it may proceed by the Petschek 
mechanism in its compressible form (Toward and Priest, 1962). 
Since slow shocks are an integral part of this mechanism, 
the results of the last few sections are relevant. These 
shocks are almost "switch-off" and have values of close 
to T\ ipL and S y X O  . If the plasma beta is 0.01, say, then 
such reconnection is an effective heating mechanism. This 
is seen by a simple shock analysis without the need for the 
complex solution undertaken by Soward and Priest.

It is thus important to consider the general analysis 
of M.H.D. shocks which has been considered here rather than 
the severely restrictive analysis generally attempted in which 
the flow and field are considered parallel.
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The general theory of chocks involves an analysis ox 
the jump relations (as earlier in this Chapter) and an investi­
gation of the internal structure of the shock. However, a 
third important problem is to consider how a siiock behaves in 
a medium in which dissipation (such as thermal or electrical 
conduction) is important outside the shock front. Since 
these shocks are only used briefly in this thesis, we shall 
give only a brief discussion of their behaviour.

If thermal conduction is important outside the shock 
front, then, for a field-free gas, the steady-state one- 
GiiuSnsional energy equation is

A  ' C'",,rtv i 7 v'-^ r 1 _ p

and the energy jump relation becomes

i , o V  X , —  u f  'i' ' b  1 - (■',
L. " IY-.', <0.-0/ O S  J ' (2.53)

So, as well as the velocity, pressure, density and temperature 
jumping, it appears that the temperature gradient jumps as well.

Similarly, if a magnetic field is present and the plasma 
is not infinitely conducting outside the shock, then a term 

must be added to Ohm’s law. marshall (1935) and 
Ludford (1956) analysed such an M.H.D. shock and concluded 
that while the magnetic field gradient could be discontinuous 
across the shoc%:, the field itself had to be continuous.
This can be referred to as an I soma gnetic s ho ck..

An analogous result for a gas shock with finite conduction
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is corived by Landau and Lifschitz (1936), so that the temper­
ature gradient can be discontinuous but the temperature itself 
is continuous (doseneau and Frarikenthal, 1976, 1976):

Tj_ - T  t , (2.54)
The expression (2,1$) for the density jump now becomes

r;
1 (2 .5$)

since the energy jump relation decouples from the other two. 
Finally, the shocked conductive flux is given by

c  P A )  -V
(2.$6)

I \ ; -r ' ' ' n u V ^

This is known as an I so thermal shock. It is clear that if 
one did allow a jump in temperature, then the temperature 
gradient across such a shock would behave as a delta function 
which is not realistic. The Isothermal shock may be regarded 
as spreading out the temperature variation around the shock 
rather than simply allowing it to jump.

2.$ Discussion and conclusions

In this chapter the basic theory of shock waves has been 
discussed with the needs of subsequent chapters of this thesis 
in mind. However, some cases of slow k.H.D. shocks have been 
looked at in more detail. In the view of the author, the 
literature on shocks whose incident flow and field are non-aligned 
is inadecuate (with the exception of the work of Lynn, 1966) 
and these shocks have been explored from the viewpoint of the 
temoerature jumo across them. The aligned, case in fact
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overlooks many of the most interesting features of flow 
and fiej.d topology such as the reversal of flow direction 
in a shock. Substantial temperature jumps are also found 
particularly in the case of the switch-off shock and such 
shocks may be of importance in coronal heating.

The case of slow M.H.D. shocks has been examined to the 
exclusion of other types. Fast shocks, intermediate waves 
and contact discontinuities are of great importance but are 
not involved in the work of this thesis.
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CHAPTER 3: STEADY-STATE FL0H3 TH CORCHAL MAGHETTC LOOPS

I:- ISOTHERMAL AND ADIABATIC THEORY 

3 .1 Introduction

In Chapter 1, it was noted that the ciosed-field regions 
of the solar corona are now known to be structured as loops, j

In the Following two chapters, wo examine the theoretical nature |
of steady-state siphon flows in such loops. One may pose the j
problem as follows:- given a loop of length 2L, what steady- |
state flows can be driven along the loop by prescribed foot- !
point temperatures and pressures? |

The thermal conduction perpendicular to a magnetic field |
is negligible (Chapter 1), and so each field line is thermally 
isolated from its neighbours and may be examined separately i
provided the field is force-free, and any flows are sub-Alfvenic» 
Large pressures may distort the field and make a full fi.H.D. 
calculation necessary. This problem does not generally arise 
in the modelling of coronal loops, but it may be relevant 
during simple-loop flares when extremely high temperatures and 
densities arise.

Taking the scalar product of B with the steady-state ;
momentum equation gives j

0

(3.1)
where s is the coordinate along a magnetic field line. The 
importance of gravity is measured by both the ratio of the loop 
length to the scale-height and by the angle the loop makes
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j
i^  \ one'with the vertical. In a low-lying loop ( % . 'g O  ), 

can effectively neglect gravity. The other equations for 
flow along a field line are continuity (1.26), flux conservation 
(1.26), state (1.2?) in the form

(3.2)

(3.3)

(3.4)

and energy, (1.30)
\/ 1 / ' i Ù. ( U.,, A iT \

I ,/t Y- n o  —  A' ' ) (3.5)

where A(s) is the loop cross-sectional area and the mechanical  
heating has been taken proportional to density. This set of 
equations just approximates a loop by a rigid tube if the loop 
area and geometry are prescribed, Vve wish to solve these 
equations subject to the following boundary conditions:

6 %  % L  » - d\i. ) ' = I";
I (3.6) ^

Several authors have solved equations (3.1) - (3.6) using 
various approximations as follows.

Meyer and Schmidt (1966) modelled steady Evershed flow 
out of sunspots (See Chapter 1) in a low-lying loop structure
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under the assumption that it is driven by a pressure difference 
between the two footprints. They solved the equations of 
continuity, momentum and state but do not make clear what 
energy equation is taken. It is found that the flow becomes 
sonic at an appropriate point along the loop and is slowed 
down by a shockwave in the downflowing leg. The calculated 
outflow speed is typically 6-7 km s*”  ̂ at a distance of 1$ Mm 
from the sunspot centre, Meyer and Schmidt only obtained 
flows involving sonic points and shocks,

Yeh (1977), on the other hand, considered only subsonic 
flows. He modelled a symmetric interplanetary loop, rising a 
solar radius above the surface and having a length of approxi­
mately 1$00 Mm.

The equations of continuity, state, momentum and energy, 
were solved numerically, the energy equation containing terms 
involving convection and conduction (but no heating and radiation), 
Yeh finds a large range of subsonic flows exist corresponding to 
different values of the boundary conditions, but he claims that 
supersonic flows cannot occur. He states that, if a subsonic- 
supersonic transition occurs, the plasma is rarefied to a vac- 
cuum at the transition point. This is true everywhere except 
at the sonic point, which is the only physically relevant 
transition point. It allows one to satisfy the boundary 
conditions by using a discontinuity. Yeh claims that this 
solution will never arise and states that the flux tube., 
geometry will adjust to give rise to a subsonic flow due to 
lateral force balance. However, this balance vdll, to 
zeroth order, be force-free, and so the flux tube is unable 
to adjust. The work of Yeh is, however, important in that he
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was first t:o point out that, although a loop is in static equi­
librium if rî  = Dg Cind = T p , such boundary conditions are 
extremely unlikely to arise and so a flow will in general be 
present along the loop. Whether such a flow is steady or 
transient in practice is still a very open question.

More recent attempts at the siphon flow problem have been 
made by Glencross (1960) and Noci (1961). Glcncross has modelled 
upflows in small coronal loops (of height $ Mm): he solves the
equations of continuity ana motion for a prescribed temperature 
profile. However, Glencross only considers half a loop (i.e. 
up to the summit), and so he does not need to invoke shock waves. 
Koci (1961) has studied (independently of the present author) 
the problem of siphon flows in coronal loops. He approximates 
the energy equation by the polytropic law, in the form

P ^ ^  , (3,7)

and solves this together with the equations of continuity, 
state and momentum. He considers loops of uniform cross- 
sectional area and goes on to predict the E.U.V. emission 
measure.

In this Chapter, we solve equations (3.1) - (3.4) together 
with equation (3.5) in the form

A Y  "  ' (3.8)

and so we neglect any energy sources and sinks. Approximation 
(3.6) enables us to outline the main features of the flow and 
gives a good background to the solution of the full steady- 
state problem in Chapter 4.
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i
3 .2 Gagerai solution

The equationsof adiabatic and isothermal siphon flow 
along a coronal loop are (3.1) - (3.5) in the form

A(1\/ h\/   A P _ p., , c S \

A
)

R  p. ^  cr

(3.9)

(3 .10)

(3.11 )

(3.12)

where M is the mass flux, M is the magnetic flux, h is the 
ratio of specific heats (^^3 for adiabatic flow, 1 for iso­
thermal flow) and the term cos /}„■*..) ' in the momentum equation 
represents the flux tube geometry (in this case a semi-circular 
loop as shov/n in Figure 3.1). It is worth pointing out that 
the steady-state assumption is true provided the footpoint 
pressures remain fixed for a few sound travel-tiraes. The 
sound travel-time, (T.- ) is defined as 

"T . % L. / Cc

and Table 3.1 shows h o w v a r i e s  with L and c^.
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Table 3.1

The variation of the sound-travel time,".' , { in seconds) j 
with the loop half-length, L, (i:m) and the sound speed, I
c ̂  ( km )

L
-Is 50 100 150 200

i10 !1 200 100 66 50
25 j 500 250 166 125
50 i 1000 500 333 250

100 ' 2000 1000 666 500
150 . 3000 1500 1000 750

200 4000 2000 1333 1000

The boundary conditions must also be altered since, by neglec­
ting thermal conduction, the order of the equations has been 
reduced by one. Equation (3*6) is thus replaced by

■t: O

(3.14)

and so Tp is free, Yeh (1977) claims that one should still 
apply the full boundary conditions (3.6) and that "f (or, in the 
polytropic case, oh ) should be deduced from them, so that one 
f inds

Y  -r- \ -V \o k  L \ 1 / "71 )
' o

In effect, he has overprescribed the problem, and we note that 

y  ( or \ ) should not bo determined in this way, but should be
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free to be prescribed. It will be found that, for some values 
of these boundary conditions, a continuous solution is impossible 
and a flow discontinuity must arise at some location. The 
conservation relations across such a shock are given by equations
(2 .12) - (2 .14).

Defining the local sound speed (c^) by

equations (3.9), (3.10), (3.12) and (3 .13) can be combined, to 
give a differential equation forv(s):

■ V  —  6. Ç, \ vav „ c' Cc-Si hb> \ 0-
V Ti A s  (3.15

In (3.15), one can replace v by - v and still get the same equation. 
Thus, subsonic flows may occur along the loop either from left 
to right or right to left. For shocked flows, such a reversal 
is not possible because the entropy must increase across the 
shock. If we impose p^> p^ rather than pgf P^, the supersonic 
flow will be reversed with the shock still in the dovnflov/ing 
leg.

It is convenient to non-dimensionalise the equations as 
follows,

^

where zero subscripts refer to values at s = 0 and is the
scale-height at the base of the loop defined as

i i e  - 2 "  - 1^0
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Equation (3.15) may then be written as

Â. S '

—  } "7 \ Y -- \V — -,L I \
V  Vvnï'

.S!

-A-

I (3-1

If we assume that 

(3.16) Integrates to give

1  L 0  V 7  \ -r -A., i (
\ V — I

/ e, '

^  ^ ^ ) (3.17)
which is just BevwuIIi's equation.
Equation (3.17) gives the velocity \4s) along the loop for a 
given base velocity v and cross-sectional area A(s). The 
density, pressure and temperature are then determined by

iA "z 0 
V

1

' ' (3.IS)
-- V  — \
i \

Further examination of (3*16) shows that a critical (or
sonic) point (when dv/ds is undefined) occurs at a velocity
V and location s given by Q C

T - l

' 4 ^  ) , (3.19)
(■\ C_
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and

I. 7
V .

X i.Vr Ü

— \

Ï T
A  \

(3.20)

The corresponding footpoint velocity v that gives a solution 
passing through the critical point satisfies

1 I V.: 1 I -7
'-t ! i

"A'

c
rr (3.21)

and one can then solve (3.19) -(3*21) for s^, v and v^.
There is only one free parameter in the problem, namely 

g, the ratio of the loop half-length to the base scale-height.
For a base temperature of IV - lO^K, the scale height,41^, is 
about 50Mrii { = 5x10^km), whereas coronal loop lengths lie typically 
between about 5fjn and 700Mm. Thus g varies between about .05 
and 7, but we shall concentrate in particular on the value g = 1.

It is worth noting that (3.16), (3.17) and (3.19) - (3.21) 
are very similar to the solar wind equations (Parker, 1963).
One has the same feature of a sonic point and a range of tran­
sonic and wholly subsonic solutions and one must also match 
the wind onto the interstellar medium.

3.3 Isothermal flow

3.3.1 Uniform area
A loop whose temperature and area are both uniform outside
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the shock is the simplest possible case to consider and so 
illustrates the basic physical ideas behind the siphon flow 
model. After putting A(s) % 1 and taking the limit of 
tending to 1 , equations (3 .16) and ( 3 , 1 7 )  reduce to

a. / (3.22)

; (3.23)

respectively. Equation 3.22)has a critical point at the loop 
summit (s=1) where the flow becomes sonic (v=1), as indicated 
in Figure 3.2. The starting velocity (vV) for flow to pass 
through the critical point depends on g and is given by the 
solution of

1  0 - 7 p g  , _  I P  ,

after putting v = 1, s = 1 in (3 .23).
For initial speeds (v q ) slower than Vq, the flow is sub­

sonic and symmetric about the top of the loop and the pressure 
ratio p^/pQ is unity. For Vq = Vq, the flow becomes supersonic 
after the loop summit and, for V q > Vq, the results have no 
physical meaning. VJe shall not be concerned with flows that 
start out supersonically. Clearly the infinite range of sub­
sonic solutions is a result of the model If one included
a full energy equation, the symmetry of equation (3.15) would 
be lost and the infinite range of solutions would vanish.
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Figure 3.2 Tho flow speed (v) at a distance s along a loop 
of half-length (L) equal to 50;-aa (i.e. g=1 ) . The loop has 
uniform cross-sectional area khe (unshocked) flow is
isothermal with sound speed c^^. hubsonic flows (solid)
have initial speeds less than v I . Flow (cashed) with
initial speed Vq become supersonic at the loop summit (s-I.)
and are slowed from v_ to by a shock wave. Beyond the
shock the flow has enhanced temoerature T ind slows to Vp
at the footpoint. Lotted lines indicate unphysical or 
v/ho 11 V supersonic solutions.
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Indeed this is what is found in Chapter 4.
V/hen there is no pressure difference between the ends of

the loop any of the subsonic flows may occur.
However, an imposed pressure difference forces the flow to 
become supersonic beyond the loop summit and then to be decel­
erated at a shock wave that is located at some position on the 
downflowing leg (Figure 3.1). The effect of imposing differ­
ent pressure differences is to change the location and strength 
of the shock wave and the values of the downstream speed Vg 
(Figure 3.2), These solutions may be constructed in an inverse 
manner by imposing the position of the shock and deducing the 
necessary pressure difference, as follows. For a given shock 
position, as indicated in Figure 3.2, we have prescribed the 
value of V.J , the speed ahead of the shock. This in turn deter­
mines the Mach number (M) and so f r o m (2.1$ the value of the speed 
(v^) just behind the shock. Furthermore, the temperature (T2 ) 
behind the shock is given by (2.17), and so the isothermal down­
stream flow follows one of the trajectories of (3.23), with
temperature Tp inserted in (3.22). In particular, (3.23) 
gives the flow speed w^^and the pressure (p^) at the footpoint 
follows.

Figure 3.3 is plotted for a loop of half-length 50Tîm so 
that g « 1. It can be seen that supersonic flows are possible 
when the upflow base speed Vq is 0.34. Also the smallest 
allowable pressure ratio p^/pQ is 0.75. For smaller values, 
the shock moves below the footpoint and our model fails (except 
in the case of unshocked transonic flow when P2/Pn - 0.1#).
(The model fails because it is not possible to construct steady 
solutions with the required pressure ratio: if such a prescribed
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pressure ratio is switched on, a shock wave will propagate dovni 
the loop; when it propagates out of the end of the loop the 
pressure pg is changed to the value 0,1^Pq by the passage of 
the shock and the previous value is not maintained,) Longer 
loops give a wider range of possible pressure ratios and a 
lower base speed, as indicated in Table 3.2,

Table 3.2

The variation of critical starting velocity and minimum 
pressure ratio with loop half-length (L), for isothermal flow 
in a loop of uniform area. (The coronal scale-height is 
taken as 50r*'!m,}

LC'jn) 10 25 50 1C# 200

' 0.760 0.667 0.500 0.340 0.175 0.04Ü

,P2\
 ̂ rnin

1.000 1.000 0.927 0.752 0.479 0.166 '
1

3.3.2 The effect of a varying area

ITnen the temperature is isothermal but the cross-sectional 
area varies, (3.16) and (3.17) become

V V -  4: )  L  - _  n: COÇ.; n ?  \ _L
.is ^ ^ ' ft i tft ,1s, (3.24)

i L V - - '.ra ) -r lo,, 13k \
\ ,  ' - 4  j

T  ri C ^ s.f  ‘k. n Z: O  ) (3 .2 5 )

respectively. Equation (3.24) has a critical (sonic) point at

-.1
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al e
J/; i (3.26)

For a given form A(s) of the area, (3.26) determines 
the location s of the critical point along the loop, and then 
the corresponding speed Vq follows from

1  I. -r f ÎL" ) -  ±11 -  ^1. ^ /

In particular, if d Â 'ds is positive, the sonic point lies 
before the loop summit, whereas if dA.’ds is negative it lies 
beyond the summit, V.hen the variation of the loop area is 
symmetric about the loop summit and is not too great, the 
results are very similar to those in Figures 3.2 and 3.3, 
but with slight changes of scale on the axes. Converging 
and diverging loops, however, produce new features.

Consider a converging loop whose cross-sectional area 
decreases with distance such that

I -r I ( 3 ^  ^  \

The solutions to (3.25) for v(s) are shown in Figure 3.4 for 
the case a = 0,5. The way that the footpoint speeds Vq , v^ 
vary with the pressure difference is given in Figure 3.5a.
The presence of asymmetry in Figure 3.4 means that the subsonic 
flows are now driven by a small non-zero pressure difference.
If the pressure difference is large enough, Vq becomes equal 
to Vq and shocked solutions result. It is clear from the 
nature of the asymmetry in Figure 3.4 that Vg always exceeds 
Vq , which implies that iiq exceeds n^ and Pq exceeds , so
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Phase plane v(s) for isothermal flow in a 
convcreinm loop with half length 50Km (*-i) and whose 
cross-sectional area varies as A=AQ(1-s/(AL)).
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that the flow is accelerated into the converging loop, Thi 
can be shown from (3 .2 5 ) and the equation of state which is

i n .
~h<\i

for an isothermal loop. (3 .25 ) gives

V,-. e i  ,

H,
and so

PC-

Thus, if A converges, and v^ > Vq , then clearly < Pq . Simi­
larly, if A diverges, and Vq , then > Pq . The effect
of increasing the convergence by decreasing a is to make the 
sonic point move further away from the loop susnmit and increase 
the range of values of Pp/PQ that generate subsonic flows.
Table 3.3 shows allowed range of p^/pQ for subsonic and shocked 
flows.

! Table 3.3 I
The variation with a of the critical starting velocity (v q ),'

the range of pressure ratios and the sonic point location (s^) i
for isothermal flow in a loop of length 50Mm. a is the ratio }

i
of the loop areas at the two footpoints. For converging loops I
;a F 1 and for diverging loops a > 1. |

 ̂ a i 0,33 0.5 0.Ü 1.0 1.2 1.5 2.0 i

I Vn i 0.199 0 .23g 0.301 0.340 0 .37s 0.435 0.5340

j'hi ' 0.703 0.840 0.790 0.752 0.725 0.696 0.667
'^0 min

I

Pp'
1.000 1.000 1.000 1.000 1.022 1.057 1.120

"0 max

i„ 1.429 1.236 1.071 1 .000 0.942 0 .S68 0.764
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Diverging loops with

ÎV = ' -r ^  >  '

give a phase-plane that may be obtained from Figure 3.4 by 
rotating the solutions about the loop summit s = 1. The 
corresponding footpoint flow speeds are shown in Figure 3.5b.
All the subsonic flows now have v^ smaller than Vq so that pg 
exceeds pg. The plasma is moving in the direction of increasing 
pressure, and so the flow is decelerated out of the diverging 
loop. For pp > Pq, there is also a shocked solution, so it 
is unclear which of the two possibilities vdll occur in practice. 
V/hen p^ A Pq, the flow is accelerated and only shocked solutions 
are possible. In Figure 3.5b,it should be noted that for some 
values of p^/pQ there are two possible shocked flows, similarly 
in Figure 3.5a, there are values of p^/pQ where there exist 
both subsonic and shocked flows. On the basis of the present 
model, both flows are feasible. However, it may transpire that 
one of the flows is unstable, and, in any case, which one occurs 
may depend on how they are set up.

It is worth pointing out that our loop area profiles are 
highly idealised, but one can visualise such fields being set 
up as follows. Given a u n i f o r m - a r e a  loop, continual photo- 
spheric motions will tend to twist up and compress the loop 
footooinbs giving different magnetic fields and hence different 
areas at either end of a loop,

3.4 Adiabatic flow

In this section we extend our model from the simple 
isothermal case to.one where the energy equation is approximated



C L l c f "

rxj

%

rsl

—

CTn
<0

o>

L D

o>*

O
m

L_n
CD

C D

l _ J

Figure 3 «5b The flow speeds Vq , at the loop footpoints
as a function of the imnosed pressure ratio for isothermal 
flow in a diverging loop with A - 1 + s/(2L). The notation 
is the same as Figure 3.5a.



-  5 5  -

by the adiabatic law. The equation of motion is now(3.1?} and 
the critical point is determined by (3 .19) - (3 .21 ) . By compar­
ison with the isothermal case, the temperature is lower at the 
loop summit, which reduces the pressure gradient and hence also 
the flow speed.

3.4.1 Uniform Area
Consider first the simplest case, namely a loop whose 

cross-sectional area is constant with A % 1. The equation 
(3.1?) becomes, on assuming v =1,

;  ̂ ^  ' ! r

: (3 . (3.27)

Equation (3.2?) possesses a critical point at the loop summit 
(s=1) with a flow speed

v c  - a ;'-
(3.28)

Substitution of (3.2#) into (3.21) determines the corresponding 
base speed (v q ) from

For the particular case g = 1, one finds Vq = 0.347. 
Figure 3.6 shows the resulting velocity, temperature and pres­
sure variations along the loop for a range of subsonic and 
shocked solutions. It can be seen that the effect of the 
flow is to reduce the loop temperature by typically a factor 
of 2 and to reduce the pressure by up to a factor of 10.

The effect of increasing the length of the loop through 
g is to decrease the value of Vq and thus increase the range
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of oressure ratios as shown in Table 3.4.

The variation with loop half-length L (Kim) of the critical 
starting velocity (v^) and the minimum pressure ratio for adi- j 
abatic flow in a loop of uniform area, 1

L(Mm) ! 5 25 50 100 150

V0 0.730 0.522 0.349 0.150 0.031

0.966 0.772 0.530 0.2Ü3 0.061
min

If, however, the loop is so long that g e x c e e d s s r/;,, the incre­
asing solution through the critical point starts from the s-axis 
rather than the v-axis and so only the wholly supersonic solu­
tions are possible.

3.1.2 Symmetric loops with varying area
Now suppose the loop possesses a cross-sectional area 

that varies along the loop but is symmetric about its top. The 
sonic point remains at the loop summit (s^=l), but according to 
(3 .19), the flow speed there is

''4

(3.30)

Equation (3.21) for the limiting initial speed becomes 

' 11
.4 ^ (2)

O  I ^  ^  h TT (3.31)
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If the loop is so Iona that g 7 S_'l this possesses oa.ly one
't

solution, which, for moderate area increases is supersonic
so that, as before, only supersonic solutions exist.

If the looo is so small that g <  and the area does
'r

not increase too rapidly towards the summit, (3.31) possesses 
two solutions for vl and subsonic flows do exist. However, 
when

—  %
I -  <  I. \ -  '.-.bq / n  J _ (3^32)

one solution is less than 1 and the other greater than one.
?urthermor e , when

_

^ (3.33)

there are no solutions to (3.31). These features are similar 
to those discussed by Kopp and liolzer (1976) for rapidly div­
erging coronal holes. For loops expanding up to the summit 
so much that 1(1) > ( 1 ~ 0 . o g / r r ) , 4 additional critical points 
occur as shown in Figure 3.7b. However, if (3.33) is satisfied 
as well, the form of the phase-plane changes as in Kopp and 
Kolzer (Figure 2). The critical solution no longer passes 
through the sonic point at the loop summit but through one 
near the base of the loop. The following example illustrates 

these features.
Consider for example an area which varies as

P- C%) Z \ LV- - o  3w\"- ( \  ̂ (3.34)

and in particular set k = 20, so that the loop is twenty times 
as wide at the top as it is at the base. Then the critical 
flow speed at the loop summit is



\ i.
\ 1-

( 3 . 3 5 )

For the particular case g = 3.5 (i.e. L = 175Mm) Vq follows
from

( V ; \- 
/

V O
(3.36)

and both solutions for Vq are subsonic. The first solution

of (3.36) is V0 0.15 and gives the phase plane shown in
Figure 3.?%. This value for Vq is larger than the corres­
ponding one for a loop of uniform area. One effect of the 
larae increase in area from the footpoint is to make the 
velocity first decrease to a minimum value of 0,059 before 
increasing. Initial speeds (v q ) lower than 0.15 give purely 
subsonic flows as expected, while those somewhat higher than 
0,15 give unphysical solutions. The variation of some of 
the flow properties with the area factor k is shovm in Table 
3.5.

Table 3.5

The variation of v^, (p^/PQ^uin ^rnin *ith k for 
adiabatic flow in a symmetric loop of half-length 175?im

“  O —
(g=3.5); whose area varies as A = 1 + (k-l)sin -Jsg.

v0

2̂'
^0 min

5 10 20

0.007 0.013 0.033 0.063 0.150

0.016 0.033 0.090 0.139 0.236

V nun V0 0 0 0.050 0.059
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The second solution to (3.36) is Vq  = 0.6) and also leads to 
shocked solutions of tho subsonic-supersonic-shock-subsonic 
form. The phase plane is shown in Figure 3.7b and is symmet­
ric about 3 = 1 although the topology in the region s > 1 has
been omitted for clarity. In contrast to the isothermal 
solutions, the adiabatic flows give a phase-plane that depends 
on Vq and v/e have indicated the neighbouring topology by dotted 
curves. It is noticeable that additional X- and 0-type criti­
cal points are present in Figure 3.7b the X-type point being 
at approximately s = 0.026. Such a complicated topology was 
also found by Kopp and Holzer (1976) when modelling coronal 
hole expansion. One effect of the closed trajectories on the 
solutions for Vq = 0.61 is to allow shocked solutions only for 
a small range of pressure ratios. Shocks that are located at 
s < 1.9) give rise to unacceptable solutions that end up on 
closed trajectories. The acceptable solutions possess a 
pressure ratio in the range

O . S f l  <  Tz/\L <

For initial speeds Vq between 0.6l and 0.91, the flows are 
purely subsonic, and then, above Vq = 0.91, the solutions 
become unphysical again. It should be noted that the 
pressure ratios for Vq = 0.61 are also possible if Vq = 0 .1 5 ; 
which will occur may depend on how the flow is set up,

3.4.3 Asyriimetric loops
A loop whose cross-sectional area increases or decreases 

continuously with oistance gives results that are similar to 
those in Section 3.3.2, except that now the temperature varies. 
The location (s^) of the critical point, is the solution of
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the following equation, obtained by eliminating and v 
between (3.19 - 3.21):

0

A —

'tt
S 'T

C) ( 3 . 3 7 )
In particular, for the linearly varying loop with

-  A t   ̂ ^ ) cv >  q
■-X ^

eonation (3.35) becomes

~li\ Luq( ■ \ \ -T (. ~ ' ) - 1
5 ^ L i  J

%
G Cbl

L ' X ‘sTT ( 3 . 3 2 )
This determines in terms of the parameters a and g , and
then v^, Vq follow from (3.19) and (3.21), the results being 
shown in Table 3.6

Table 3.6

The variation of s^, Vq and (Pp/PQ^min ^^^h a and g for
i adiabatic flow.

. g = a i 0 . 8I 1 . 0 1 . 2 1 . 5- - - I —  -- - . . . .
® 0 1 . 1 8 1 . 0 0 . 8 5 0 . 5 9
Ÿ Q 0 . 4 4i 0 . 5 2 0 . 6 1 0.78

• P 2 ' , 0 . 7 4 0 . 7 7 0 . 8 1 0 . 9 1
;P0' min
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a 0.5 0.8 1 .0 1 .2 1.5 2.0

1 .23 1.07 1 .0 0.94 0.86 0.73

VQ 0.24 0.3 0.35 0.39 0.46 0.6l

&
%  min

0.66 0.61 0.58 0.56 0.55 0.55

0 .5 0 . 8 1 .0 1.2 1 .5 2 . 0

1.07 1.02 1.0 0.92 0.96 0.93

^0 min

0.10 0.12 0.15 0.16 0.18 0.21

0.37 0.29 0,28 0.25 0.23 0.20

Only the subsonic solution for Vq is of interest, corresponding 
to a flow speed that increases rather than decreases through 
the critical point. It is noticeable that the range of 
possible pressure ratios is far greater than for the isothermal 
case.

3 *5 Discussion

Our results for steady siphon flow in symmetric loops 
indicate that subsonic flows can be maintained when there is 
no pressure difference between the footpoints. (This is a 
result of the simplified energy equation; a more realistic 
equation shows that a departure from the static pressure ratio



(here unity) is necessary to produce a flow:- See Chapter 4.) 
As soon as a pressure difference is maintained, the resulting 
steady flow becomes supersonic at the summit and contains a 
shock wave. The flow is accelerated from the high-pressure 
footpoint to the low-pressure one. If the pressure difference 
is too large, the shock moves right down to the base of the 
loop. As the length of the loop is increased so the base 
speed (v q ) falls in value and the range of allowable pressure 
ratios increases. If the summit cross-sectional area is large 
enough the flow speed possesses a minimum value at some point 
on the upflowing leg.

It is instructive to compare the dynamic solutions pre­
sented here with hydr os tatic solutions. For an isothermal 
loop of uniform area, the density behaves as

> ( 3 . 39)

provided velocities are neglected. One may write equation 

(3 .2 3 ) in the form

t  z n  f - i f  ( 'b ) -  A  ( V\

Since v > Vq all along the loop, then
(3.40)

^ static*
and the density is lowered all along the loop. One may show 
a similar result for adiabatic flow.

An attempt has been made by Ifoci (19o1) to compare his 
siphon flow results with observations. He calculates the
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S.U.V. emission measure and, since the emission measure 
2depends on n , one would expect a large flow to produce 

an observable difference. Noci finds that, whereas sub­
sonic flows give rise to small differences from the static 
case, supersonic flows show large variations and can be 
regarded as a signature for such flows. However, ionisation 
equilibrium has been assumed in these calculations and with 
some ions (e.g. S 1̂ .. ), substantial errors could be incurred. 
This has been considered by Raymond and Dupree (1978) and 
Joselyn et al. (1979) and should be incorporated in future 
calculations.

VJe have discussed adiabatic siphon flow in a purely 
coronal context so far, but such flows could occur elsewhere 
in the solar atmosphere wherever pressure differences exist. 
In particular, siphon flows have been proposed as an explan­
ation for Evershed flow in sunspots (Meyer and Schmidt, 1968; 
ilaItby, 1975). On expects such a flow to be along a rapidly 
diverging flux tube (such as discussed in Section 3.3.2) due 
to the large decrease in magnetic field as one leaves a sun­
spot. The converse applies to the inward flow. In fact, 
siphon flow would only appear to explain the inward flow, 

the outward case having P2 >i Pq*
In the next Chapter we improve the present simplified 

model by incorporating the energetics-of the system.
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Chanter 4: STEALY-STATH FLOv.3 1:1 CORONAL MAOrJHTJC LOOPS

II THE ElERGETICo OF THE FLOW

/{. .1 Introduction

In Chapter 3, the theory of isothermal and adiabatic 
siphon flows was developed, and the next step is to examine 
how those results are altered by the adoption of a full 
energy equation. However, it is necessary to discuss briefly 
the energetics of static coronal loops first: an extensive
recent review has been given by Monsignori-Fossi (1981), so 
we shall just outline the basic properties.

For a static loop of length 2L and negligible gravity 
(i.e. uniform pressure) the equations of state (3.4), momen­
tum (3.1) and energy (3.5) reduce to a single differential 
equation in temperature,

A  ') = ?  k

which is to be solved subject to the boundary conditions

~ “ Ü , s = o ,

K -  . ]
the summit temperature gradient vanishing due to the imposed 
symmetry around the 3.oop summit (See Vesecky et al., 1979 for 
a discussion of non-synmietric solutions). If Tq is taken as 
10^ K, the solutions of this equation depends on three para­
meters; the pressure, d , the loop length, 2L and the mech­
anical heating, h, (Hood and Priest, 1979a). (An acditional 
parameter is the form of the heating function: we have chosen 
the heating as constant per unit mass.)
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6However, by choosing Tq as 10 K, the problem of 
treating the narrow transi.tion zone has been avoided and 
several authors (Rosner et al., 1978, Vesecky et al., 1979, 
Landirii and Monsignori-Fossi, 1981 and Serio et al., 1981) 
have modelled loops down to temperatures of 2 x 10̂  ̂ K. The 
reason for this choice of Tq is that a temperature plateau 
is thought to exist at this point (Basri et al,, 1979;
Vernazza et al,, 1981) and so the conductive flux is small 
there. This has led these authors to propose that at 
T = 2 X 10^ K

- v \  -p
\o '' ' t  - ^ = o  .

I s  (4.3)
Loops satisfying this condition are said to be thermally iso­
lated . However, equation (4.1) is now oyen-prescribed and so 
some relationship must exist between the parameters p, L and 
h. This gives rise to scaling laws between the various para­
meters (See Rosner et al., 1978; Hood and Priest, 1979a; 
Roberts and Frankenthal, 1980; Levine and P y e , 1980; Chiuderi 
et al,, 1981), and they may be of use when the error in 
observations is reduced to make a comparison with such scaling 
laws worthwhile.

There are, however, serious objections to the use of 
boundary condition (4.3). All of the calculations involving 
(4.3) use an optically-thin radiative loss function. 
Unfortunately, the solar atmosphere below about $ x 10^ K is 
optically thick, as were the calculations performed that 
produced the temperature plateau at 2 x 10̂  ̂ K, and it is 
doubtful whether one can apply an optically thin model to 
this plateau. For this reason, it seems desirable to either
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start modelling above the transition zone or model dovmi to 
the temperature minimum (hagai, 1980, Peres et al., 1981),
Other transition-zone problems are the presence of non-thennal 
velocities (Jordan, 1980) and the validity of the fluid 
equations (Spicer, 1979). In this chapter, v/e adopt a 
value for Tq of 10^ K.

Equations (4.1) and (4.2) have been solved numerically 
by Craig et al., (1978), who show that the form of the emis­
sion measure does not depend significantly on the form of 
the heating function, as well as Chiuderi et a l . , (1981),
Hood and Priest (1979a), Roberts and Frankenthal (1980) 
and V/ragg and Priest (1981), who all vary tho parameters p,
L and h (in the case of h'ragg and Priest, gravity is also 
included).

The thermal stability of coronal loops has been studied 
by Antiochos (1979), Habbal and Rosner (1979), Hood and Priest 
(1980a) and Chiuderi et al, (1981). Antiochos and Hood and 
Priest find that thermally isolated loops are unstable although 
Antiochos has used an over-simplified radiative loss function 
(Chiuderi et al., 1981). On the other hand, Habbal and 
Rosner and Chiuderi et al. found that thermally isolated loops 
are stable. The analysis of Habbal and Rosner is incorrect 
due to a restrictive form of the temperature perturbation 
(Priest, 1981b), but the discrepancy between the other analyses 
is possibly due to a subtle difference in boundary conditions.

Probably the most interesting feature to come out of

static loop calculations is the possibility of thermal non- 
(jcuilibriu m . Tho energy equation (4.1) is non-linear and 
does not always possess a unique solution. As the loop
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pressure is varied, the summit temperature may take on one 
or three solutions (Figure 4.1). If the loop pressure is 
too big, the summit temperature ( )  cannot remain over 10^ K 
and drops to below 10^ K (the evolution of this cooling is 
studied in Chapter 5). This feature was first discussed in 
this context by Hood and Priest (1979a), who examined in some 
detail the existence of multiple solutions to the energy equ­
ation ,

They also found that non-equilibrium arises if the length 
is increased or heating decreased. Hood and Priest (1979a) 
ario Roberts and Frankenthal. (I960) demonstrated the existence 
of non-equilibrium analytically, and wragg and Priest (1961) 
showed that hydrostatic loops possessed the same feature.
The difference between instability and non-equilibrium is as 
follows, kith instability, an equilibrium (whose existence 
may be unlikely) becomes unstable and may evolve to a new 
equilibrium, possibly at a slow rate. With non-equilibrium, 
no e c u i librium actually exists and the evolution may be much 

more violent than with instability.
In this chapter, we examine how the solutions of the 

static energy balance equation are affected by a steady flow, 
how the adiabatic and isothermal results change and how the 
presence of steady flows alters the onset of non-eouilibriura,

4.2 Basic equations

The loop geometry is the same as in Chapter 3, namely 
s'ai’.i-circular (althou.vh we also examine a loop in which gravity 
is neglected in Section 4.5), and the cross-sectional area 
may vary along the loop length. The basic equations are
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(3.1) - (3.5) of Chapter 3 alonp; with boundary conditions 
(3.6): v;o restate tbeiTi here for convenience. The equations
of continuity, rn omen turn, state and energy are

M A V 4.y.
I

df T —  '(t u c<. n { 'X> \TP o  ̂ '' ;f'S (4.5)

- \  ̂ (4.6)

" y  Â  ! f. A  -  ..L A  UcT'R 1-^'^ A T )
Y  M  P i tls (4,7)

■- k  -- n"' X_ T

subject to

T - I'u , '' O , S - o ,
r = T  i  ̂ n  % P  z '1 L . ■

These are non-dimensionalisad as follows :
(4.3)

S - S / L  , V  z V / c ^ ^  , XI = n / ^ j

c -r X -T ̂
si - - W o , R ^ n  / , X, r ^   ̂O

r̂i H ■^o T o

X.
AcT"'/

L = I i ) 'A __,__
^ id'" ' ^ ' V X , . T p )

F,, 0. , p .  ,

Here, is the ratio ox radiation to conduction, H is the
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ratio of heating to some reference radiative loss and Fq
is the ratio of the conduction to enthalpy. g represents
the importance of gravity (as in Chapter 3), is the base
sound speed, and zero subscripts represent footpoint values.

11 —3 'n^ is a coronal reference density (taken as 5 x 10  ̂m ”" ) 
which should not be confused with the base density (n^) which 
may vary.

Combining equations (A.4) - (4.3) gives two equations,

'■ N _ L  if; _  (( Cos. ( ’}? ',1 
x n R  J À  A s  ^ /

, I
(4.9)

and

(4 .10)
F and g can be written in terras of L as follows

-1 Vi.—  -'.T  ̂ r
i“o V-ixoJli.' ,.‘t \ 'k_.i o 1

/

c

( 4 . 1 1 )

and equations (4.9) and (4.10) can be written in terms of 
four parameters ( n ^ , L, h and v^). One can understand
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the meaning of these parameters physically as follows, 
will be determined possibly by photosphcric processes twisting 
up and relaxing the magnetic field and hence altering the gas 
pressure and density. L is determined by the magnetic 
structure of the loop, Fi by the (unknown) heating mechanism 
and by the footpoint pressure ratio. Thus all four para­
meters may perhaps be physically independent.

4 .3 AnaIvtica 1 solu 1 1ons

/u. 3 .1 The asymmetric role o f conduction
4e first discuss how the position of the sonic point is 

affected by the inclusion of an energy equation. The flow 
becomes sonic when dv/ds (or cn/ds) is undefined, and, for a 
loop of uniform area, equation 14.9}implies that

and (4.12)■> 1
\

at this point. Clearly, the sonic point no longer occurs 
at the summit and its position depends on the temperature
profile. If dT/ds > 0, then ĉx-u- > \ and if dT/'ds < 0, \ ,

If we consider a loop with Tp > T , then dT/ds will be 
positive for most of the loop and the sonic point lies on the 
downflowing leg. This will produce a smaller range of super­
sonic flows; the analagous effect was found in Section 3.3.2. 
for a converging loop.

In general one cannot find the sonic point analytically 
but the numerical calculation is relatively simple. The 
effect of coupling in the energy equation to the siphon flow
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problem is to remove the symmetric features outlined in 
Chapter 3, but in doing so, it allows us to find.wholly 
subsonic flows for a loop of uniform area. It is also
worth pointing out that the critical point and the temper­
ature maximum will not generally coincide,

4.3.2 Order-of-magnitude
In the following two sections, we analyse equations

(4.9) and (1,10) by different approaches. In Section 4.3.3, 
the parameter 4 is assumed small but first a simple order-of-
magnitude analysis is attempted.

It is assumed that the velocities in the loop are small 
so that tei-QS of order v in the momentum equation can be 
neglected but those of order v^ in the energy equation retained. 
Also, if gravity and area variations are neglected, (4.9) 
becomes

p = Pg = constant^ (4.13)
and (/t-,10) reduces to

À- L Â A ?  \ - 'il -
A s  v - l  As.

(4.14)
where n^ = p^.

The temperature maximum, T^, will not be located at the 
summit, but at some distance d beyond it, as shown in Figure 
4.2. The temperature gradient is approximated by

L 4  : I 1
4  S U- r  dV i

up to and ) (4.15)

beyond the temperature maximum.
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Equation (4.1/k) is then written as two equations

" -  k-i ( I f v l ' - h .  K  )
I X  Â  v~ L -  : ,Tir,v, '

-7 c~.,̂ - \3 _ r-) .
■_ C L _  c  A  3 C  X  —  \ 3 

subtracting gives an expression for d:

i-

(4.16)

' A  _  >y V - f .  \ ( V I  4  \ n i \)
XC V  - v') o k j  —  v T X  i (4 .17)

(> ,v

and so (4.16) determines
Equation (4.17) immediately shows that the shift in 

maximum temperature beyond the summit is directly proportional 
to the flow along the loop and inversely proportional to the 
base density, heating and loop length. This is shown in 
Figure 4.3. Also, as expected, when v - > 0, (i also tends 
to zero and the results of Hood and Priest (1979a) are recov­
ered .

4.3.3 Small-parameter expansion in L

A common approach in solving complicated non-linear 
systems of ordinary differential equations is to examine 
the solution when one of the governing parameters of the 
system is small. On use of (4.11 Inequations (4.9) and
(4.10) can be written in terms of L (for uniform area) as

(•h- % -------1 ! - i T  L c v s f  lYi v s  C T  -  t
n Jn ■' (4.1â)
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and

r  J -  4 4  -  1 4 5 ]  ... 1 ,  )
lA - S (A- S.. s ,t ; ,1

C C  Ca f - a ■'- X  T ■■" ) . .
(4 .19)

The limit L 1 occurs when the loop is so short that con­
duction dominates. (In doing such an expansion, it is 
assumed that n^ is of order unity),
An expression for L in terms of L with taken as 10^ K is 

~ T — i, , a.t— z. ' "7 \ O  —̂ '
I

where L is measured in Mm, and so

L_ ^  V C " \ S \Yi ,

Consider the following solutions to (4.18) and (4.19):

/ (I,-.20)

(\ t \  '! - 2_ L '' ̂  ) I
L z Û

subject to the boundary conditions
T  L 0 \  -- T  i z ' i  I

n. Co'i  ̂ n,;, , V (4 .2 1)

“2The solutions to 0(L ) are

'T ~ 1 -r IP' 1 kPrx -

/ I  ■ ;

(4.22)
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and

&  z I -  p u t  T p  j j : p _  r e Ü . A v , A . A ( P u
i T L - P  ) ' C v - A , ‘ ) v P P T F . ; ;

L ^  k  ) -  v^ n f Ccs( __'̂- A -' ^ >    \ \. L. I

■ T o C lP) (4.23)\ \ ' . . *. )

wherevL has been set equal to zero.

Differentiating (4.22) with respoct of s gives

%':h - ''̂ '1 hveg 4. . a ,j K, ̂  4 S. ~ \ ) ^ J} u a-

(4.23)

- s.A,' xsn \ I;<- I \ • 1 ^ IV "b- ^ - '/ I' u
which is zero at some point, i > 1, Thus the maximum temp­
erature now lies on the downflowing leg, provided the radi­
ation is less than the heating at the base (generally true in 
the corona). However, one cannot deduce anything about the 
pressure ratio, since, to O(L^), n^ = n ^ .

Consider now boundary conditions which allow the temper­
ature to vary between footpoints, such as 

T  I C\ (
>

I - \ -r 0  ,

(4.24)

To order L, the solutions are

T  \ ̂  X  u  © (4.25)
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^  _ , I T  T '  , -  ;  , T r 7 \  ' l
V 3, / : ,' L ^ rr ^ '_!

(4 .26)
Hence, the temperature increases or decreases linearly along 
the loop. The footpoint density is given by

and the oressure ratio is

\ "i' o I \ —  k  —̂ d c
fo ^  ̂ ■ (4.28)

Thus, if IV ^ ; a flow will be driven from left to right
in Figure 4.2 provided p^< p^. One must solve (4,2?) to 
obtain v^ which gives the correct n ^ . Finally, if the 
temperature is given by (4.25), the sonic point is given by 
the solution of (4.12) in the form

" -i ' kâ) '
SO ^ I , as expected from Section 4.3.1.

h .4 Numerical solutions

We wish to solve (4.9) and (4.10) subject to boundary 
conditions (4.8). Firstly (4.‘i) and i h x ) must be written 
as first-order differential equations.

I f    F  r w T - " ' ^ .
( t -  L A
u  ^  A  V4 / /

1 (4.29)
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T  - vVSs J

L -  C a  Ü  -  A  X, \
(4.30)

A T  _
4 4 " 4

b\/ \

(4.31)

If gr'O, this system has no critical points (i.e. dn/ds, 
dT/ds and dw/ds never vanish simultaneously). If, however, 
g z O ,  then the system must be examined for critical points. 
Assuming that all velocities are subsonic, the pressure is 
then constant and (4,29) - (4 .3 1 ) reduce to.

(4.32)

XT =
(4.33)

If v^:i 0, Hood and Priest found that the critical point is a 
centre point (if><AV ) or a saddle point (ifk '>' ), the centre 
point corresponding to coronal values of OL. When v^i- 0 the 
critical point is given by

X - O ,

- V “p  I . ; I (4.34)
and close to the critical point, equations (4 .3 2 ) and (4.33) 
are

—  % (4.34)
i s
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^  -z C - p  )C T r  " t  T  ^ ^ T ( . " -

) (4.35)
where _

- C '::. T  -  t c  ,

CÔ = W  .. vv ,j ,
Assuming that solutions near the critical point behave as 

this gives
71 —  -T- 1.7-1, IT " M/t V, kc I p  _ ^ "■ -- 1 ) )

"X
If << Q  (as in the corona), then the centre point of Hood
and Priest has now become a sniral point. Thus the symmetry
present in the static case has been lost.

To solve (4 .2 9 ) - (4 .3 1 ) we prescribe n^ and T^ and
iterate (dT/ds) ^ to obtain T2 . Different values of
V Rive different values of n^ and hence a range of oressure o / '
ratios is found. We use a standard Runge-Kutta scheme to 
solve this system. In Sections 4 .4.1 - 4.4.4,T^ is fixed 
as 10^ K and n^ as 5 x 10̂ '̂" m “  ̂ (so that n^ = T^ = 1).
Then Section 4.5 discusses the consequences of varying h^.
We first examine how a flow affects a given static temperature 
profile with T^ = T2 , then relax this constraint and investi­
gate the range of siphon flows produced by different boundary 
conditions, and finally re-examine the cases of loops with 
varying area discussed in Chapter 3.

4.4,1 The effect of flows on a static loop
WragR and Priest (I98I) have investigated the energetics 

of loops in hydrostatic equilibrium. Such a loop is chosen
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hero with a summit temperature of 2 x 10^ K and then the 
footpoint pressure, , is gradually decreased, A flow 
will develop and we here examine how a steady flow modifies 
the static loop properties. Figures 4.4a,b show the be­
haviour 01 the loop temperature and density (dashed linos 
are the static case, solid ones the dynamic case). As 
predicted in Section 4.3, the position of the temperature 
maximum is moved alonR the downflowing leg and its value 
is decreased giving an asymmetric temperature profile.
This asymmetry can be explained by the fact that the con­
vective term in the energy equation acts as a heat sink when 
the temperature gradient is positive and as a source when 
negative. In other words, the decrease in temperature 
occurs because a flow tends to suck up cool matter towards 
the summit and transport hot material away from it. Figure 
4.4& also shows that conduction is enhanced along the down- 
flowing leg.

The density is enhanced along some of the upflowing 
leg (Fig. 4.4b), but for the rest of the loop it is decreased, 
as mentioned in Chapter 3. The density minimum (and hence 
velocity maximum) is moved to the downflowing leg, as mentioned 
in Section 4.3. Figure 4.4c shows the variation in the shift 
of maximum temperature, d , beyond the summit as a function of 
the footpoint upflow, v^, and hence pressure ratio. For a 
given loop length, an increase in pressure ratio increases 
both the base velocity and the position of maximum temper­
ature from the loop summit. This continues until v^ reaches 
its critical value (see Chapter 3): at this point, the flow
can become supersonic at the sonic point and shocked solutions
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become possible. The position of maximum temperature is 
then the shock position.

It should be pointed out that, as L varies, then so 
does the heating necessary for a summit temperature of 
2 X 10^ K, and so equation (4,17) in not relevant. It is 
interesting also to note that the values of the heating 
necessary to give summit temperatures of 2 x 10̂ '* K are see­
mingly rather high (Pi = 21,3 for L = fOlIia) . This means 
that; at 10^ K , the heating input is over 20 times the
radiative loss at the footpoint. However, if one scales 
the heating against the temperature at 2 x 10^ K (and assumes 
the pressure is constant between 10^ and 2 x 10^ K) then 1 
at 2 X 10^. Thus, the non-dimensionalisation is somewhat 
misleading.

4,4.2 The range of possible flows for uniform area
Having discussed the general effect of steady flows 

on a static loop we now examine the range of flows driven 
by a variation of the boundary conditions, (4.5).

Considering firstly subsonic flows, the solid lines 
in Figure 4.5 show the solutions generated by given foot­
point temperature and pressure ratios: the curves Piave been
drawn for different values of v^ (i.e. for given base mass 
fluxes). The first thing to point out is that the upper 
curve, denotes hydrostatic equilibrium. Hence, if one has 
two footpoints of a loop rooted in regions of different 
temperature (possibly due to different levels of magnetic 
activity), then hydrostatic equilibrium is only achieved 
incidentally. If one of the footpoint temperatures (T2 , say)
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is increased, then the range of possible subsonic solutions 
increases and the pressure ratio necessary for a shocked 
flow decreases.

One can hence make the following comment about static 
loop modelling. The static loop models considered by many 
authors (see Section 4 .1 ) comprise only one of a large family 
of solutions. The symmetric static boundary condition,
T^ = T ^ , p2 = Pq represent only one point in the p^ ~ Tg 
phase plane and it seems most unlikely that the Sun should 
always provide footpoint conditions representing static 
solutions. Hence, the general dynamic solutions discussed 
here may be of great relevance to coronal loops.

Figures 4.oa,b show the temperature and velocity profiles 
along a loop for different values of T2 . In Figure 4.6a when 
T2 = 2 , the temperature no longer possesses a maximum but in­
creases all along the loop. This seems to suggest that, as 
T2 is increased, conduction becomes the most important term 
in the energy equation. On the other hand, Figure 4.6b shows 
that the velocity always possesses a maximum (See equation 
4 .12 ). This implies that there will always be a subsonic - 
supersonic transition point, the position of which is given 
by the solution of (4 .12).

As pointed out above, the position of the sonic point 
cannot be found analytically but a numerical calculation is 
relatively straightforward. Like Chapter 3, the unshocked 
subsonic - supersonic solution permits only one value of fig, 
and so a shock-wave is necessary in the downflowing leg to 
satisfy the boundary conditions at s = 2* The jump relations 
across such a shock are given by equations (2 .54) - (2 .56),
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(The shock is isothermal, since the medium external to the 
shock possesses finite thermal conductivity (Section 2.1|.).)

The critical solution (i.e. the one to pass through the 
sonic point) is specified by a single base velocity and con­
ductive flux for given boundary conditions. Once through 
the sonic point, the solutions are generated as follows.
For a given shock position, the conductive flux out of the 
shock is automatically determined, and so also is the foot­
point temperature, T2 . If one then varies the shock position 
a range of pressure and temperature ratios will be generated. 
The shocked solutions are shov/n by dashed curves in Figure 
1. .5 ( the dotted line denoting the lower limit of the purely 
subsonic solutions). Clearly, the importance of this form 
of solution has diminished with the introduction of the full 
energy equation, but, where T ^ T ^ , the shocked solutions 
still contribute substantially to the possible range of flows. 
The large dots in Figure 4.5 indicate that the shock has 
reached the end of the loop: this is the minimum allowable
Pressure ratio,

4 .4.3 Loops with varying cross-sectional area.
I : Symmetric area
In Chapter 3, we examined siphon flow in loops whose 

area diverged up to the summit and then converged, having the 
form

(a C Î \ \ -V t W. V ) ) /

hence the magnetic field is k times weaker at the summit 
than at the base. • 'Vragg and Pr-iest (19‘'̂ 1) examined the 
statics of such loops and found that, as the summit area
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increases, the temperature also increases but the density 
decreases. Also, in Chapter 3, we found that an increase 
in area resulted in an increase in the range of possible 
loop flows and a decrease in velocity all along the loop. 

In Table 4.1, the effect on the maximum temperature 
of area divergence is shown.

Table 4.1
Symmetric loops whose area is k time bigger at the 

loop summit than at either footpoint. The variation with 
k and base speed (v^) of the maximum temperature (T^).
The loos has a length 2L ~ lOOxfn, dimensicnlcss heating 10 
and a base sound speed ~ 120 km

V k
1

so
0
0.1

0.2
0.3
0.4

1.63 

1 .66 

1.60

2

1 . 7 9  

1.7Ü 
1.75 
1.69 
1.60

1.96

1.95

1.94
1.93
1 .91

As k increases, so the maximum temperature rises, but as 
the pressure ratio decreases so this maximum falls although 
if k = 3 it is roughly constant. This is exactly what is 
expected if the results of V/ragg and Priest and Section 4.4.2 
of this chapter are combined. Figure 4.7a shows the shift 
of the maximum temperature from the summit as a function of 
base velocity. The greater the loop divergence, the smaller 
d becomes. One can interpret this in terms of the conduction
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term in the energy equation which may be written as

A l a r  \  =  F  i  (  . n  W  t  ■' M  ^  f
,t.;- ,1%: C.Ç ■ (4.36)

The second term on the right-hand side will act as a heating 
term when dT/ds and dA/ds are positive (having the same sign 
as h n ) , and so, from the order-of-magnitude relationship
(4,17), an increase in B decreases d .

Figure 4.7b shows the velocity profile along a typical 
loon. As in the adiabatic case, the velocity along much of 
the loop is reduced below the uniform area case, except for 
a small region near the footpoints. This is because the 
bulk of the divergence of the loop takes place away from the 
footpoints and we expect the flow near the footpoints to be 
simi]ar to the uniform case. Also, the sonic point occurs 
near the downflowing footpoint and so shocked flows are largely 
irrelevant,

4.4.4 Loops with varying cross-sectional a r e a .
II : - diverging or converging areas

In Chapter 3, as well as symmetric loops, we considered 
converging and diverging loops whose area behaves as 

lA L s \ =. \ -V-  ̂̂  — I > s

where o 'g a < 1 gives converging loops and a >1 gives diverging 
loops. It will be recalled that for a diverging loop, no 
subsonic flows with a pressure ratio less than unity are found.

Again, the effect of modelling the energetics can be 
oredicted from equation (4.36). For a diverging loop
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{dk/às:0 ),one has an extra heating term in equation (4.31) 
and so the loop temperature will be raised above the uniform 
area case ud to the temperature maximum and lowered beyond 
it; the converse holds for a converging loop. The sonic 

point is now miven by 
T

<9-s
r v f t  -^pc.cs( (4.32)

and so for a diverging loop this point is shifted further along 
the downflowing leg compared with the uniform case: the con­
verse holds for a converging loop.

The results for two specific cases are shov/n in Table

4.2.

Table 4.2

The.properties of loops with a non-uniform area which 
increases by a factor a from one footpoint to another. The 
variation of the position (d) and the magnitude (T^J of the 
maximum temnerature and the pressure ratio as a function of

the sta rting velocity for two loop lengths. The dimensionless

heating is 10 and the base temperature 10^ K,

(a) 2L=100%m

a v^(km 8 d ( rim ) K) j 2 ^ o _____________________

2 12.0 1 .5 1 .67 0.987

24.0 10.0 1 .64 0.962

0.5 12.0 15.0 1 .66 0.939 1
■ 2^,0 31.5 1.47 0.851

i



-

;(b)
j

2L=r200i:m

i! a V  (km s ; d ( llm ) ï,„( 1 ) ! ’ 2 ^ P o

i 2 1 12.0 10.0 2.10 0.953
iI I 24.0 21.0 1 .99 0.843

1 o n ; 12.0i 39.0 2.06 0.865
! 18.0 51.0 1 .98 0,821

For the diverging loop (a - 2), one now has subsonic solutions, 
but the position of maximum temperature is moved toward the 
summit. This is a consequence of the role of divergence as 
shown in equation (4 .3 1 ), as is the increase in maximum temp­
erature, The converse holds for converging loops.

,5 The rossibilitv oF a thermal catastrophe

In the introduction, it was mentioned that, due to the 
non-linear nature of the energy equation, there need not exist 
a unique solution. This phenomenon was called thermal non- 
eouilibrium, and it is of interest to investigate the effect 
that a steady flow has on the conditions for its onset. 
However, since the term non-equilibrium is not appropriate 
for a dynamical system, we shall here refer to the lack of 
solutions as thermal catastrophe. In this section, we show 
analytically and numerically how a steady flow affects the 
nrevious results. Also, the loop considered will experience 
a negligible gravitational force, for analytical simplicity.

Ji.5.1 An alytic a 1 solutions
In this section, the order-of-magniturie form of the
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Oîierpy equation (1,16), is used to derive some elementary 
results. If one increases the base density (n^) in a loop 
with a hot temperature ( 10^K) one eventually reaches a
point where, if n is increased further, no steady solution 
exists to the energy equation. At this point, dT^.ydn^ is 
infinite, and so, differentiating equation (1.16) with respect 
to n gives, (on settinguC = o),

-  /
' ‘-r».c h M  \ ̂c\x. *— '\ )

-cr\c r- -  - " . , -  Z  ̂ -  1 ^
V L, -r i'( ) "~~ V'^f^ ̂  ̂ ; (4.33)

E - o  u J
'' \ a. L.

(4.34)

where n . . and T . are the base density and maximum temper-O X J. 0 O ih ZL O
a turc at the point when dT^^./dn^ is infinite.

One can then solve equations (4.16), (4.33) and (4.34) 
to give d, T .. and n The results are shown in Figure

Cl lU  Cl lü  #

4.8, As expected, the introduction of a steady flow reduce; 
the threshold foi’ catastrophe considerably: a moderate flow
of 50 km s”"̂ at the base lowers the critical base density by 
almost an order of magnitude.

I, .5.2 Numerical solutions
The conclusions of the previous section may be confirmed 

by numerical solution of the energy equation, the results 
being shown in Figure 4.9. Once again, it may be seen that 
a flow of around-50 km s“  ̂ can reduce the critical density
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by an order rf magnitude.

It mao suggested by rood and rriest (1979a) that a hot
6( .b 10' K) steody flou could develop in a static loop that had 

undergone non-equilibrium. The results of this section show 
that this is impossible since a steady Clou lexers the Ijvel 
of catastrophe belou that of a static loop. In Chapter 5, 
wo discuss the possible evolution after non-equilibrium.

4 .6 Discussion and conelusions

In the last tv/o chapters, the ch lory ef steady flows in 
coronal loops has been examined in sure depth. The adiabatic 
theory developed in Chapter 3 suggested the existence of 
solutions involving a subsonic-supersonic transition and 
shocks: cue to the simplicity of the energy equation chosen,
these were the only solutions possible if she footpoint 
ore soure ratio was less than unity.

Calculations in Chapter 4 involvi ng a more realistic 
energy equation have indicated that wholly subs^aic solutions 
do exist ^ut that the shocked solutions ore still an important 
part of the total range of Hows. The shocks are necessary 
in order to satisfy the imposed footpoint boundary conditions, 
and are pas dynamic shocks in the adiabatic case and isothermal 
ones when thermal conduction is impoi'tant. In Chapter 4, it v;as 
found that a v;ide range of boundary conditions can be satisfied, 
and we again stress the point that it is extremely unlikely that 
the Dun can ever prescribe boundary conditions which give 
rise to static loops. This is furthei' evicenco that the 
corona is not a quiet, static, well-behaved atmosphere, but 
an active ano dynamic structure. ^e return to this theme
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in the next chapter.

It is of interest to compare the adiabatic results with
those derived using the full energy equation. The first
thing to note is that the loop temnerature profiles bear
little resemblance to each other. This is because in this
chanter we have not considered the parameter range which makes
the adiabatic law a good approximation to the energy equation
and it would be of interest to investigate the parameters more
fully. The adiabatic law arises if both l/n F and n I?"/?o o o ' o
are much smaller than unity. On the other hand, the adiabatic 
theory predicts the density and velocity behaviour fairly well. 
The concept of sonic points and shocked solutions carries over, 
the density behaviour in both cases is similar and the simple 
adiabatic equation enabled us to see the effect of area vari­
ations clearly. Thus, in all aspects except the temperature 
behaviour, the adiabatic calculations provide basic information 
which could well have been missed had numerical calculations 
been started straightaway.

Our calculations have tended to concentrate on the role 
of flows rather than on varying the other parameters. These
have been studied at length by Hood and Priest (1979a) and
bragg and Priest (1981), and the behaviour of the solutions 
is well tabulated. In particular, our heating, h, has always 
been taken so that the loop temperatures are between I,5 and 
3 X 10^ K in reasonable agreement with observations of inter­
connecting, quiet and active region loops.

We now turn to discuss siphon flows in terms of more
reneral theory and observations of coronal loops. Firstly, 
jt should be said that little evidence of siphon flow has
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been seen so far, (see Livingston and Harvey, 1981), although 
Noci (1981) has suggested that observations in some loops 
where only half a loop is seen may be evidence of supersonic 
flows, (and so decreased emission), on the downflov/ing leg.
The main reason for this lack of observations is that instru­
mentation has often not been designed to pick up loppler shifts 
in the corona: indeed, it is often hard enough to see individual
loops at all. It is hoped that one day instrumentation will 
improve sufficiently for further searches to be made on coronal 
loops for this sort of flow. However, a vast number of flows 
have been observed at transition zone temperatures (see Section 
1.3); and it may be that these upflows and downflows are part 
of a larger coronal network of steady or transient flows.

One of the original reasons for studying coronal loops 
was to try and obtain information about the functional form 
of the heating mechanism. In fact, this has been a largely 
unsuccessful exercise and it now seems to be accepted (Chiuderi 
et al., 1981) that the accuracy of the observations is not good 
enoumht to deduce anything. Chiuderi et al. parametrise 
their heating function as

V\ c: ‘d I
and determine from observations that - 2,2 6.7, so from the
observational side, one can learn little. In fact, there are 
other reasons why little can be learnt at present, and that 
is that too many of the parameters in the equations are un­
able to be determined to any accuracy by present observations.
For example, varying the cross-sectional area, height or 
magnitude of heating in a model will produce aifferent results 
to comcare with observations and none of these quantities can
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be determined observationally to any accuracy at present.

One must now add a siphon flow to this list of parameters. 
Varying footpoint conditions can produce a flow, and this 
produces alterations in any given model. It is therefore 
possible to vary any one of three or four parameters to give 
a model loop which may agree with current observations. To 
try - to vary one parameter to match observations, v;hen in 
fact any one of four can vary reduces comparison to a meaning­
less exercise given present observations. Future observ­
ations should be able to pin down flows, loop geometry and 
pressure to much greater accuracy and one could then le a m  

something useful about loop models.
Another problem is that loops are often part of more 

general coronal arcades and observations refer to the whole 
arcade rather than separate loops. In turn, this raises the 
problem of how a coronal arcade (a collection of loops) can 
be modelled. Priest ana Smith (1979) have modelled static 
coronal arcades, and we now discuss how a siphon flow can 
be included in such a model.

Assume that a constant pressure difference is imposed 
along the entire footpoints of the arcade. Then the higher 
loops are longer, and for some length of loop, shiocked solu­
tions will become necessary. Hence, one has a sequence of 
subsonic solutions topped by shocked.ones as shown in Figure 
4.10a - this picture results if one considers separate flux- 
tubes representing thermally-isolated field-lines. One 
possible global picture is shown in Fig. 4.10b. The shocks 
will not act as separate gas-dynamic ones but as slow oblique 
i-i.H.D. shock, as is obvious if one joins the gas shocks up.
;Je now have a much more complicated 2-dimensional problem
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and this cautions against constructing simplistic one- 
dimensional loops. Another possible application of siphon 
flows is in the formation of quiescent prominences. he 
return to this subject in Chapter 5.

finally, it is of interest to suggest some ways in
which a siphon flow can be generated. One way is by
photospheric motions compressing the magnetic field and
the plasma in it: the enhanced pressure could then be
relaxed by a flow from the compressed point. Alternatively,
a diverging photospheric flow could reduce the pressure at
one of the footpoints. Supergranular motion (typically 

_ 1
500 m s” ) could drive a downflow of this velocity in the 
intense tubes that make up the boundary of a supergranule 
cell and, due to viscous coupling, maintain a pressure in 
those tubes, which may be loop footpoints. Also, the 
pressure at a footpoint could be enhanced by local heating 
there.

In conclusion, siphon flows emphasise the dynamic 
aspect of the corona and should warn against constructing 
simplified static loop models.
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Chapter 5: MOn-.b(lUILlrlRIU:,i I :

COOLING OF HOT LOOPS

In Chapter 4, it was mentioned that the static energy 
equation did not always possess a unique solution and that 
if the parameters governing the loop structure exceeded 
certain critical values, then no hot (T^ > 10^K) solutions 
exist and the loop cools to below 10^ K. This was referred 
to as thermal non-equilibrium. In this Chapter, we oiscuss 
the evolution of a loop from the non-equilibrium point and 
suggest some possible consequences of the cooling.

5.1 Introduction

In previous chapters it has been stressed that the closed- 
field regions of the solar corona are structured as loops or 
arcades. The recent Skylab mission has emphasised the dynamic 
nature of the corona (Priest, 19#1b) and in Chapters 3 and 4 
the theory of steady-state flows in coronal loops was developed. 
However, most of the flows observed in coronal loops are of a 
transient nature: in this Chapter we discuss a possible source
of these flows, namely thermal non-equilibrium.

Recent observations of the corona (Foukal, 1975, Jordan, 
1975) have indicated that some loops have cool cores. These 
cores are present in sunspot loops and have temperatures below 
10 K and pressures typically a tenth of the ambient coronal 
cressure. The loops are typically 100 Mm long and 10 Mrn wide 

(Priest, 197&). An important question is - how do these cool 
cores form? Since thermal conduction is negligible across a

field line, the cores are insulated from the ambient hot
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coronal rncciiura but their method of formation is mere puzzling. 
Other cool structures such as prominences and coronal rain 
arc also very evident in the solar corona. Clearly, con- 
duction will also insulate them, but again, their method of 

formation is an open question. in this Chapter, thermal 
non-ooiîilibrium in coronal loops or arcades is suggested as 
a cessible method of formation of all these cool structures.

Hood and Priest (1979a) have discussed non-equilibrium 
in uniform-pressure coronal loops at some length. They find 
t} 1 at, if the ! : e atin g i s d ocreasod or the pressure in creased 
sufficiently, then the loop no longer possesses an equilibrium 
'With a temperature of order 10^ K and cools to a new equilibrium

5with a ten: per a ture below 10 H . A similar result also holds 
for variations in length: if the heating at the loop base is
less than the optically-thin radiative loss there, then the 
stretching of a short loop or the contraction of a long one 
produces thermal non-equilibrium. This behaviour carries 
over to hydrostatic loops (bragg and Priest, 1931) and to 
loops with siphon flews along them (Chapter 4).

Fig I '"3 5,1 shows the variation of the suiiimit temperature 
with the uniform loop pressure. The value pg^.. is the pressure 
at which thermal non-equilibrium occurs, and the dashed lino 
shows the oath that is followed as the loop seeks a cool 

equilibrium solution under the assumption of constant pressure. 
However, the lower equilibrium will be hydrostatic due to the 
so 311 scale-height there and so the uni forrji-pres sure assumption 
breaks down.

In this Chapter, ws follov/ the evolution of the cooling 
aft 0 r non - e o u i 1 i br i u m occ u. r s.
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5.2.1 Ba si c 0C ua t i on s
The equations of unsteady one-dimensional gas-dynamics 

in a loop of length 2L are momentum (1 .2 5 ), continuity (1.26), 
state (1.27) and energy (1.30), which may be written as

..  ̂ (5.,)

 ̂ - il 1 1 V A  \ , (5.2)
Ù -  ml

? - ’‘i ' ) (5.3)

■pT- _  I W T P n  -, _ L  A  I u g P i T " ' ’- n  )

L V, A  I l f . .  -T-  A- x_. T'' "V H  T) \ ; )
(5.4)

a 1 on g a f i s 1 d -1 in e .
Here,

-  '= -  -  '' 1 .^  t t: ^  b.
O   ̂A

V i s ' )  ■£ 3 )
\'G \ana ~

Pr - *4- is I
Honce f(s) is just a geometrical factor representing the loop 
structure and A(s) is the prescribed cross-sectional area,
(In Chapters 3 and 4, we took f(s) = cos( iTs/2L) for a semi­
circular loop.) These equations are non-dimensionalised



-  9 5  -

as follows,

T = T / i p  , O' - O / O ,  , 1  :: ^ / p c  , Irre/fi,-,

V
1   jq

^  , 1  = i T l  . T...'-- O '

) W  - " '• O , - C«a.

X-= , U'^- T c J  , K  r: 'r,-n /

In these expressions, subscripts zero denote quantities
evaluated at the loop base: in particular, T is taken as
10^ K. Subscripts c refer to a reference value, and, in

11 —1particular, n is taken as 5 x 10 m"^, a typical coronal

number density.
Hence, equations (5.1) ~ (5.4) are

IF - V  ■ ' " “  ^ 1 ?  ^ -  IF -  On: V (% ,  (5.5)
%'C '

A It -t- _A i A V X - O  , r
'.Us ' 0. 6 )

.1 "  - o
-- VvC,p, i ) ,= T -F:J ̂  S T  U  ^  -  U 'g m  -. w  ; , (5.8)

% a. \ ^

if area variations are neglected.
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As it stands, this is a complicated set of partial 
differential equations that are difficult to solve either 
analytically or numerically. However, progress can be made 
by using an order-of- magnitude approach for the spatial 
derivatives, which enables equations (5.5) - (5.#) to be 
reduced to a set of ordinary differential equations in time. 
Hence, instead of taking a large number of grid points in the 
8-direction, we take just three, namely the two footpoints 
(6 = o , 2) and the loop summit (s = 1). If some variable 
( c/ ) varies spatially, our differencing gives

-  -- (5.9)
:— -r ^

One expects such a scheme to be valid when is close 
to and'Vq : however, the accuracy seems to be good even
when they differ considerably (Hood, 1930; Hood and Priest,

1931).
If symmetry is assumed around the loop summit then, for 

all time
w  ^ I ,

\ 1 1 ? (5.10)

V ,   ̂o , J
and, evaluating all quantities at the summit, equations (5.5) 
(5.3) may be approximated by the following three ordinary 
differential equations for T.j , n.j and v^:

\ ( \ ' "**** r_L
-r 9 _ l g - n , T i  ; I t  1

h'.  ̂ ' (5.11)
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\  \ V ) (5.12)
It  ̂'

At-,  ̂ LY-,\ r f, ftg 9t 5'-'*'C \--T. > .._
Ft T, I Ir

(5.13)

These three equations form the basis of our discussion in the 
following two chapters. It should be noted that the momentum 
equation (5.5) is satisfied identically on applying (5.10), 
and so we have differentiated (5.5) with respect of s and then 
applied (5.10) to obtain (5.11).

The order-of-magniturie approximation means that we can­
not model steep gradients or shocks: its justification is
that it gives cualitative trends which are an essential pre­
paration to the full numerical solution that should be sub­
sequently attempted. It is essentially a more rigorous form 
of dimensional analysis.

5.2.2 The conditions for non-equilibrium
hood and Priest (1979a) have derived values of the 

critical pressure, length and heating necessary for non- 
equilibrium. Since we are using a different and more 
accurate radiative loss function than the one they used 
these results are rederived. The order-of-magnitude and 
static (̂  ̂s O  ) form of equations (5.11) and (5.13) are

3l(. a - mg ) V g g -v'uc ) = o . (5.14)
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a . T r ' ' C \ - T U )  r. V H o f  X t C  - W  ) , (5.15)

for heating constant per unit volume. If g is small, then 
the pressure is constant (p - p^), ana equation (5.15) is

F I  I f  -  u  j .

(5.16)
Further, if 0.562 <  < 2 then = 0 and x. = 1 and equation
(5.16) may be analysed as follows,

(a ) Non-equilibrium due to increase in pressure
Non-equilibrium occurs when dT,/dp is infinite (Figure 

5.1); the critical temperature is given by

Tec3  i \iTcru.) - -  T L " k   ̂ (5.17)
and the critical pressure follows from solving equation (5.17).

The special case of R ^ 0 gives

(5.18)
Uru; ' -F:n t„' 13 Y

(b ) Mon-eauilibrium due to increase or decrease of length 
In this case, non-equilibrium occurs when dT^/dL is 

infinite and the critical temperature is the solution of

) L  ̂ ' CfYl. S  \ cr\l ) ::: U  \ Csml: . (5.19)
2This has no solution if R%-p and so non-equilibrium only 

occurs if R <  p^. If p^, ?crit take on two values
(Pood and Priest, 1979) so that non-equilibrium occurs if a 
long loop is contracted or a short loop stretched. The
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critical length is obtained from (5.16) and for the case of

no heating,
1 " 7" '

»,

\
q \-̂ 'x { (5.20)

) I
(c ) Non-equilibrium due to decrease o f heating

Non-equilibrium occurs when dT-j/dh is infinite, so the
critical temperature is riven by

T'" " ( I "T ... T \,Cr\g ^ \ r , -- -- —  u   ̂{ \.L ,

Non-equilibrium can only exist if

(I V u  / ' (5.21)

5,2.3 Thermal stability of critical points
Having derived the position of the critical points, 

we now investigate their thermal stability. Assuming uni­
form pressure, the time-dependent energy equation (5.13) 
reduces to

O  . L ' T "  < - = m .  V , L , T ,  )
9t ms- C» (5.22)

where

u C f  . b / u m , )  = I j m T T ' H i - T N

If T-]0 i-S the 60uilibrium temperature, then

V f > I L  , ' U-, - O  .

(5.23)

( 5 . 2 4 )



-  1 0 0  -

Following Smith and Priest (1977), the stability of (5.22) 
may be tested by perturbing the temperature as

where C is a constant and o'is a non-dimensional growth rate. 
Fxnanding (5.22) in a Taylor series about ^ gives

where cr>c (<o) implies instability (stability). Thus the sta­
bility is uirectly related to the slope of the curves in 
Figure 5.1. The growth-rate,Tr is given by

cr : ' ~ ^'■ rlrj \ ' L S - l l - x )
-  D I

(5.26)

However, this analysis fails at the critical point
(T . u ..), which is neutrally stable on a linear analysis ' crit, "crit  ̂ ■'

since hr/AT\ vanishes there. Quadratic stability may be 
investigated by approximating equation (5.22) by

A t  I f ,  -  { L r

where
- —  -» j—

A - ' M  c y 7 - - x „ < )  -,

(5.27)

- 'T r .  T, -  i r  L '

T  r'Ac-ix (.'TA — a  )
In the corona,

^  o  ,

=■ 4
and 30

A '- Ç \
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If T.J <, plasma continues to cool, and if

T. > T . J. it will return towards enuilibriurn, Thus, the 1 ' criL.
critical point is cuadratically unstable and cooling occurs 
rather than heating,

5 .3 Analytical considerations

Provided that flows are subsonic and gravity is negli­
gible, the order-of-magnitude equations reduce to (5.22) and 
(5.23). These equations are amenable to analytical treatment 
in a few special cases.

Expanding the right-hand side of equation (5.22) in a 
Taylor series about the critical temperature, gives

V' L q , W   ̂L., T  ) ) - T  I p , W,, L  ̂  \ cr-.v: ) T

^  ̂\  ̂cr 11 ) >  T , / ~ d

  —  A . '
-V C T , - U . - u : V '

(5.28)

Assume that the pressure attains its critical value (Perit^ 
and is then increased beyond this by a factor  b, such that

P - ^  ̂ ^  ̂ J

so that we are in a region where no neighbouring equilibrium 
exists. Such an increase could result either from slow 
photospheric motions compressing the loop or from small-scale 
motions in the loop itself but b need not be small. Since 
no static solution exists, the loop must cool (as discussed 
in Section 5.2)
Because T^^^^ is the critical temperature, it satisfies

F I  ) U  , C  , ') -- o   ̂ (5.29)

and equation (5.23) can be written in the foi'm
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L T  \

A , l- , i \  \ = '-A LTc. '4 ; ’\Y.r\l. , L  J n

Tc,r ir f'C ') '1 ) I T  U \ , tu ) c_ )

f  L(-vx \~ a .  I f r V y. XT ^
—

, f  , u )

1'

(5.30)

Hence, (5.21) can be integrated to give as an implicit 

function of time:

"ITT
('-t - ' n  ) -  icF

(5.31)

Here, and are given by

- —  Y ̂ ̂ ̂ - Cv \ Y ̂ ̂ ̂a

3.

= -  f c t .  I f l l u A - o v u ^

-  ?b,T. b  L c 4 -  \Xc{ 4-

—  f I \ 
~t  ̂Cv'-VC

/-V C  ̂

(5.32)

where

4- ̂ c I - i. l  -\ 9 3
(5.33)
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Similar expressions can be found when L or h attain critical 
values, as fo H o w s  , where

■ r ' 'Î. U  \ ,

depending upon whether the loop is :-3tretched or contracted 

and

K ^  Cr. r - ' )  .

(a) L critical

i f  -

x - -  p '' V  P c - a.
\

u:

-V'
—- 1> > "L
• c r  IX t X s - b % rcx-\ x)

L rCt
('b) h critical

t-c ̂ — w  T ~ ^ ^  V

L ‘i-— ~ X-'̂  \t ^ \ CV'VC
- S'IL o

-V 'cx'\p b 0>S ”■ b ^
-̂v L_

(5-34)

I
I (5.35)

Use may now be made of (5.31) - (5.35) to deduce several simple 

results.

5.3.1 Estimate of coolinr: times
First, let us assume that ^ <<- I and discuss the case 

when the pressure becomes critical (the procedure is the 
same if L or h attain critical values).
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The time (-T" ) for the loop to cool (T, T .. ) may" cool ' \ crit
be estimated by setting 0 in equation (5 .3 0 ) so that

 ̂ \ 3 1 _L_ —  ^  ^   ̂':r\L " -u ̂ )
I f \C. X E'-\3 ^ ^  ^ (& -, y  ̂ -

■'■ O l i ' ' y  , (5.36)

Similar expressions of the form

' '  m  „ [ A  , ]  ,
cv-> L  0'>. j (5.37)

exist for a critical h or L, where d and e are functions of 

, &2 and . In general, if we assume that a smooth 

evolution brings about non-equilibrium, then T will be small 

and relations (5 .36) and (5 .3 7 ) will be valid.

To investigate the cooling time when &  = 0(1), consider 
an idealised loop with no heating (h = 0 ). Settingcb = 0 

(valid if 0 . 5 6 2 1  ^crit" ^^ the critical temperature, pressure 
and length are given by equations (5.1Ô) and (5.20). Using 

these results in equation (5 .3 1 ) gives for p^^^^

L t'- i H V u V - O v . q ÿ ,  I
(5.38)

and for

'T,- .i % ay h.,r ̂ f Â T  , \.CocL ~  -------- — . 1--VN I -y- ,

( Y - \  3 p  V' c I  A  / ' ( 5.39)
where

h  - =- 'lUi  ̂  y Y  Y- ~  \  U O  ,

and

I  c. 'gtP-. 1 ! -  1 .
Ur
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Thus, instead of a relationship of the form 

C i % )

which holds when 1 , vie now have an expression behaving

as
'-r 1^ woA ^  “ 7 wx

V ' - L X  ri)

So, as 1 increases, the rate at which cool decreases slows 
dov/n. Although this result has been derived for the partic­
ular case h = 0, it seems likely that a similar result holds 
for non-zero values of the heating

5.3.2 Initial evolution of cooling
As a final analytical result, consider how the loop 

cools just after equilibrium is lost. Assuming uniform 
pressure, equations (5.22) and (5.23) may be solved by 
expanding T.j in a power series as

where i is the perturbation beyond equilibriufa of the critical 
parameter p, L or h. substituting (5.40) into (5.22) gives 

a system of equations in T^^, T.^, Gtc which can be
solved analytically. The conditions that the loop is in 
equilibrium at the critical point and that^F/dTb vanish 
there give two equations for T^^^^ and namely

4 1— ~ X./"' g ycvg  ̂cVw ' " ) )
and
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3 u b s 0 i t u t in g into (5.22) g i v e s (for ■ '\ = ü ) ,

f\ - t l r i L . g -t-OCX"-)  .
A \ /  ( 5 . 4 1 )

One thuo has a linear decrease in temperature v/ith 
time, directly proportional to the perturbation of the 
critical pressure and the critical, pressure itself. This 
solution is valid provided

^  l v - \ \
Otherwise, a more detailed analysis is needed due to the non­
uniformity of our expansion.

Final''y , it may be noted that an examination of the con­
tinuity equation (5.12) in the form

t .  X -  i t  ,
Ï T ,  i t

shows that an upflow is driven when the temperature decreases 
in time.

5 .U Numerical results:- A more detailed cooling analysis
The equations of motion are governed by three tirne-scales, 

namely the conduction (7^J radiative (Xp̂ ) and sound travel (Xg) 
times, defined as 

Y  . u-

" - I t  cC .X.T 
A ,

(5.42 )

and in the corona, these are roughly of the same order. 
Consequently, little analytical progress can be made beyond 
that outlined in Section 5.3. Recently, Antiochos (19^0)
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has obtained useful separable solutions in the regime of 
radiatively-dominated cooling, but to study non-ecuilibrium 
we must follow the evolution from the start when radiation 
does not dominate.

Equations (5.11) - (5.13) are t,be solved numerically
subject to the following initial conditions at t = 0:

T\ % To-a , ^
rT\ r- n 1

— r  )  I

- Li . I
y

For now, we neglect the effects of gravity and flux-tube 
divergence. The critical pressure and temperature are 
found by solving equations (5 .16) and (5.17) and then the 
pressure is written as

= P Crii: 4 \ "V c 3 ,

The numerical results are shown in Figures 5.2a-c 
for a loop of half-length 50iln and heating, h = 2 (h = 1 
corresponds to a heating H of 2.5 x 10'^ VJm“^). Figure 
5.2a shows the variation of temperature with time for several 
perturbations. Clearly, the results depend strongly on &
(as was found by Smith and Priest, 1977, in the analogous 
problem for neutral sheets). The time for the temperature 
to fall below 2.5 x 10̂ * K (defined as X  ^ )̂ increases
dramatically as 2. decreases.

The cooling occurs in two distinct phases. A slow 
fall in temperature, the expression for which is given by
equation (5.41) is followed by a rapid cooling when the

5 5temperature drops from 3 x 10^ K to below 10”"̂ K in a few
minutes. The second phase of the cooling is driven by
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c:
the larvae increase in radiation below 8 x 10 K and the 
resulting rapid energy loss. Thus, non-equilibrium gives 
similar results to linear instability up to a certain point, 
after which a violent non-linear evolution occurs.

The corresponding behaviour of the summit density and 
base velocity are shown in Figures 5.2b and c. Initially 
the loop cools very slowly with the pressure remaining 
roughly constant but driving a small upflow. However, 
curing the non-linear phase, the summit pressure falls off 
quickly driving a large upflow which results in a substantial 
increase in the summit density. The time taken to fall from

C  I
7,5 X 10'̂  K to below 2 x 10^ K is a small part of the total 
cooling time if H 1, so we expect equation (5.31) and the 
(uniform pressure) approximations derived from it in Section
5.3 to be fairly accurate.

The dotted curve in Figure 5.2a shows the effect of 
including gravity in a semi-circular loop where g = 1 and

Ç lX') ^ j .

Gravity decreases the critical temperature but raises the 
critical base pressure (hragg and Priest, I9#2a) and hence 
increases the radiative loss function. The loop then cools 
more quickly, but gravity should not affect the dynamics 
until the temperature is of order 10^ K. Gravity will 
cause cool, dense plasma to fall until hydrostatic equili­
brium is reached, but by then, the field configuration may

have altered (see Section 5.5).
Figures 5.3 and 5.4 give the variation of the cooling

time ('T ) with the loop half-length, L, and the heating ̂ cool ^
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h, respectively. Increasing the length results in an
increase in cooling time, since longer loops possess lower
values of p crit and higher values of ï crit, thus lowering
the radiative loss. Increasing L also decreases the loss
due to conduction. The difference in T  t between loops“ cool
of 10 and 10OTLm length is just less than a factor of ten, 
giving good agreement with the analytic result (5.37).

Increasing the heating, however, lowers the cooling 
time. This is a seemingly contradictory result since, by 
increasing Fi, one is depositing more energy in the loop.
The contradiction can be explained as follows. An increase 
in h raises p crit sufficiently to increase the value of 
radiation and overcome the increase in heating. The vari­
ation in V  . with heating is not large: the cashed curve" cool
is the analytic estimate for small values of f derived in
Section 5.3.2.

The case of L becoming critical is shown in Figure 5.5.
— —2L is only critical if R p , and a loop can undergo non­
equilibrium either by stretching or contraction. The cooling 
time has been calculated from the analytic approximation (5.30). 
The lower branch of the curves are for a loop being stretched 

such that
L  -- T-'c-a 'W-vea  

and the upper branch for a loop that has been contracted.
Thus,longer loops take longer to cool, but the variation 
along the lower branch is small.

The case of R becoming critical is not so interesting, 
since only one critical value exists provided (5.21) is 
satisfied.
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5•5 D io c i ] s si on a n d c o n clusion s

In this chanter v;e have discussed the possibility of 
a coronal loop undergoing thcr;aal non-equilibrium if the 
pressure or length are increased byond certain critical 
values. The time for the loop to cool below 2 x 10^’’ K 
is strongly parameter-dependent, but the cooling times 
generally lie in the range 5000 s 10" s. The most impor­

tant parameter is k. , the magni tude by which the parameter 
(d , L or h) is pushed beyond the critical point, and for 
h 1 the cooling time is typically in the range mentioned. 
Downflows are expected to occur only when the plasma is cool 
enough 10^ K) for gravity to become important, but this
phase has not been studied in detail. The results obtained 
are relevant to a number of observed physical processes in 
the solar corona, namely the formation of quiescent promin­
ences, the cresence of cool cores in soi.io coronal loops 
(Foukal., 1975) and the loop evacuation observed by Levine and 
dit^broe (1977).

Priest and Smith (1979) pointed out that, if the foot­
prints of a coronal arcade are sheared enough, a cool region 
forms at the arcade sunrnit, This was suggested as a means 
for the formation of a quiescent prominence. Our single 
field-line model here may represent a single part of the 
arcade, and it has been shown that thermal non-equilibrium
provi.des a means of achieving the high densities observed

16 17 — 1in prominences (typically 10 - 10 ; Tandberg-rlanssen,
19710. The proposed scenario is shown in Figure 5.6a,
The high density is achieved by a siplion mechanism, which 
operates when the loop su Limit temperature and pressure fall
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Kirure 5 .6^ A possible bynarnic prominence formation model, 
. k s a result of thermal non-ec ui libriuifi, a pressure /-radient 
drives material alone a field line from the photosphere oo
the loop summit where it cools to below lO^K. If enough 
ma te ri. al collects, the fiolo lines may sag and support a 
quiescent prominence . bul''sequent ].y , plasma is lost by 
dr’ibblinc; through the ftelo lines, but it is replaced by 
new plasma sucked up along the field lines from the sides. 
(From Priest and bmith, 1979).
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so that a pressure gradient exists between the summit and 
the base, driving plasma upwards. The densities produced 
in th'S way are high (Figure 5.2b), typically above 10 ^ wC 
and the subsequent evolution is expected to be complicated, 
he suggest that, when the density is hi.gh enough, the force- 
free condition in the loop breaks down, so that the field 
lines sag and sup''ort the prominence (Kippenhahn and ochluter, 
1957; i'-ilne et al., 1979). It should be pointed out that 
this is not the same mechanism as that of Pikldner (1971).
He generated an upflow by t'.ie inhibition of mechanical heating 
at the arcade summit, whereas the above process can result 
from a smooth evolution which suddenly undergoes non-equili- 
briuiii. The time of formation of such a prominence lies 
between 10̂  ̂ and 5 x 10^ s, in agreement with the generally 
accented values. The important feature of non-equilibrium 
is the sudden, non-linear development when the temperature 
falls from f x 10 K. A linear analysis would give sub­
stantially longer times for the temperature to fall below

510 K - in this respect our results are analogous to the 
numerical calculations of Hiloner (1974) who found a similar 
rapid fall in temperature,

A possible steady-state is shown in Figure 5.6b, The 
material is continually sucked up by a siphon mechanism and 
becomes supersonic at the appropriate point along the loop 
as in Chapter 4. The flow is shocked by a slow oblique 
il.H.D, shock and then enters the prominence. Hence one 

can keen a large quiescent prominence continually supcliod 
with plasma,

Foukal (1975) observed cool, low-pressure cores in 
some sunsnot loops and thermal non-equilibrium is a possible
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A possible steady-state prominence model. A 
driven by a pressure gracient flow up the field
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(solie lines) before entering the prominence.

shock O
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mechanism for their formation. One can visualise a loop 
being slowly twisted up until the critical pressure (or 
length) is reached and then, once this value is exceeded,

5the loop cooling down to 10 K or below. Our calculations 
can easily explain the teniperature-pressure behaviour but 
the density is somewhat harder to understand, since we 
predict large-scale upflow's. However, it is likely that 
gravity will cause the material to fal1 eventually and a 
continually dynamic state may persist, A full numerical 
code able to deal with shocks would be needed to simulate 
this. In fact, the behaviour of a loop after non-equilibrium 
will depend on the magnitude of the gas pressure and magnetic 
field at the summit and also on the magnetic field structure. 
The important parameter is the surmr.it value of the plasma 
beta ( ^ % p ) . If non-equilibrium occurs in a loop
then either a cool core or a dense filament (or prominence) 
will form. For small values of (1 , the transverse force 
balance across the loop will still be force-free and any 
evolution will occur along the field line. However, if (I 
is of order unity due to a large pressure increase, then it 
is possible that the field lines may become deformed and a 
dense condensation result around the loop summit; supported 
by the magnetic field. He interpret this as being a cool 
filament. On the other hand, if the field line in our model 
is part of a coronal arcade (as in Figure 5.6a, b) we expect 
the scenario discussed earlier* to arise. This serves to em- 
Dliasise the inherent multi-dimensiona 1 n a I : u r e of coronal 
loops and cautions against constructing too simple a nfodel.

The event observed by Levine and hithbroe (1977) has
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been connected with thermal non-equilibrium by Hood and 
Priest (1979a) and Roberts and Frankcnthal (19o0). These 
authors considered that the dov/nilov/s observed could be 
explained by loop plasma falling under gravity after non­
equilibrium had occurred, Lownflows are observed at 
temperatures of 10^ - 5 x 10' K and v:e point out that at 
no stage did our calculations produce downflows at these 
temperatures. Gravity coes not become a dominating 
mechanism until below 10 K and so v.e must regard the link 
between the Levine-b’i thbroe event and non-equilibrium as 
uriproVed at t liis stage .

In conclusion, thermal non-equilibrium in coronal 
loops seems to be of considerable importance in the formation 
of cool structures in the solar corona. It has the attract- 
ion that no violent event is needed no trigger the cool inc. 
One just needs a smooth variation in one of the parameters 
such that it exceeds a certain critical value and a thermal 
catastrophe results. It produces large-scale flows and 
could be partly responsible for the largely dynamic state 
of the solar corona, (e .g . ?riest, 1981b).
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CHAPTER 6: NCM-ivlUILIBRIUl'l;- TT - A kBCHAHlSm FOR

THw SIKPIS-LCOP FLARG

6.1 Introduction

As noted in Chapter 1 , solar flares t.ay be generally
split into two types:- the sirnnle-loop (compact) flare and
the largo 2-ribbon flare. The simple loop flare occurs in ;
c magnetic loop which remains essentially unchanged in struc­
ture tnroughout the flare. The terroerature is seen to rise 

7to over 10 K within a few minutes and the emission measure, :
which is defined by Crai^ (19c 1 , p . ) in its simplest form

as r ^  .\ 'V V ,
rises to typically 10^^ attaining its maximum a few minutes
after the temperature maximum (i.il!pey et al., 1971 ; Tatlowe et 
al., 1974; iloore and ^^tlowe, 1975; Figure 6.1). The electron
number density lies typically in the range 5 x 1 0 ^ ^  n < 5 x 1 0 ^ ^  m"' .

It is generally considered that such flares occur due to a
rapid release of magnetic energy (e.g. reviews by Brown and b.,.ith
1980; Van Hoven, 1981), and that such an energy release results 
in the thermal evolution discussed above. models for this evolu­
tion have been reviewed by Craig (1981) and have usually proceeded 
along the foliowing lines. The equations of one-dimensional 
gas-dynamics are first derived and an initial equilibrium is set 
UP, The heating is then rapidly increased, due to magnetic 
energy release or particle acceleration, and the subsequent 
evolution followed. This procedure has been used by Kostyuk 
and Pikel’ner (1975), hagai (1980) and Craig and i-acClymont 
(1981), An alternative a c r o a c h  is to look at the nature of

J
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the static energy balance equation (Hood and Priest, 19#1) and 
so in this chapter, we discuss this alternative trigger for the 

sirnn 1 e-loop flare.
Hood and Priest (19Ô1) have suggested that thermal non- 

eouilibriu.ra in cool loops may be responsible for some flares. 
The magnetic field is assumed to play a purely passive role 
by channeling heat. It is interesting to note that Cheng and 
./iding (1975) in their study of simple-loop flares found that 
sevei'al of these flares had ” no obvious evidence of particle 
acceleration," suggesting a passive role for the electric (and 
magnetic) field. The cool loops (such as those observed by 
Foukal û975)and ciscussea in the previous chapter) have temper­
atures of 2 - 5 X 10^ K and their energy balance is between 
heating and radiation, as shown by the lowest curve of Figure 
6.2. If the heating is increased, then the summit temperature 
rises until it reaches 8 x 10̂ "" K, Beyond this point, the 
radiative loss does not increase with temperature (Figure 1.1), 
and any acditional energy deposited cannot be radiated away. 
Thermal conduction is negligible so no equilibrium exists and 
flaring occurs. Hood and P'riest found that the loop heated

nUp to over 10 K, but their analysis looks at only uniform 
pressure solutions of the static energy equation. The high- 
temperature solution is the top curve in Figure 6.2, and the 
path the flare follows is shown by a dashed line.

In this Chapter, we follow the non-linear evolution of 
this _flaring in order to see if the heating can occur quickly 
enough. The idea is analogous to that discussed in Chapter 
5 for the cooling of a loop, but the physics of the non-linear 
evolution is substantially different in that trie flare occurs
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over a considerably shorter tinio-scale.

6 ,2 '^3 i_c n usti.ons, tirne-scales and stability of critical

points

6 . 2 , 1  Bas j .c  e n u a t j on.s

Our equations are the same as in Chapter 5, namely the 
order-of-rnaenitude equations (5.11) - (5.13),

-■i -r 10.1/

(6 .2)

d' - I ' I:

1

(6.3 )
restated here for convenience.
Quantities with subscript 1 denote sunviit values and those with
subscriot zero denote base ones. X. is the ratio of sound-travel

-2
to radiation tirne-scales, L is the ratio of conduction to radi­
ation tirne-scales, R is a dimensionless mechanical heating, and 
g is the ratio of loop length to scale height.

6 .2.2 Tima-s cales
5 7During a flare, temperatures range from 10 - 10 K and

c e n s i t i o s  from 10^^ - 10^^ and it is expected that different

tirne-scales will dominate at different phases of the flare.
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The large variation between the tirne-scales was absent in the 
case of loop cooling discussed in Chapter 5, when, for the 
greater part of the calculation all the tirne-scales were of 
roughly the same order. The three tirne-scales, radiative 
(T. , conductive ) and sound-travel ( ^ , are given by
equation (5.12). In Figures o.3a-c the importance of each 
time-scale is shown as a function of temperature and density 
The loop half-length, b, is taken as 20, 50 and 100 inn respec­

tively .
3y far the most interesting region is the bottom one 

where radiation dominates. The temperature and density here 
are comparable with those in a cool loop before flaring, and 
we analyse this region in Section 6.3. Elsewhere, it can be 
seen that sound waves are easily propagated, and clearly as 
the temoerature increases conduction becomes more important 
until, for hot, rarefied plasmas, it dominates.

6.2.3 Thermal stability of critical points
In Chapter 5, it was shown that the growth-rate, <r* , of 

perturbations to an equilibrium is given by

C7- . ^ I r f  r - p i  c S - l i p  _ P'- X f  f - "  e x  - w
\'' L l ’' (6.4)

discontinuous when Â  changes sign. (6.4) indicates that 
is negative when T^ <  8 x 10^ K ( i.\ = 2) and positive when 
T,. > S X 10̂ " K ( v\ = 0), and so we write (6.4) as

2 , 
However, for the flare case, L »  1 and so tr' and FF/ ̂  f| are

(6.5)
I ^  .
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where H represents the Heaviside function. At the critical 
point; h o w e v e r , = Ü ana quadratic stability may be 
investigated by writing

C  . L f , I

PL ^  ̂ )
where
f T-rc ci  t f r l T \ - T ç r ^  % f _  i-L

;

} I^Llv<-4lA n- ^ i T, ' % ̂  I- '
' c t: (6.6)

is the delta function, and so (6.6) is positive, and the
critical point is quadratically unstable,

6 3 Analytical solution I'or initial heating
As was mentioned in Section (6.2,2), a cool dense loop 

v;i.ll evolve on the radiative timo-scale. Since our model 
proposes that such a loop flares to higher temperatures, we 
analyse this initial phase. The scaling of the parameters

\ / V  < 0  L . ~

and equations (6.1) - (6.3) reduce to

ulc
c; I -r I , (6.7)

/\

I t  _ r, I —  '\ (6.8)

it X.
\ TA  \ \ I. V'—  \ / ' o ( ,  t . 16.9)

•yt ^

J
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To zeroth order,

-■ ' (6.10)
Oi = Fi (-Æ = o )

(6.11 )\
• -■ "11''' 1 1  —  X  f'.r ' 1 ■ j ^

' (6 .12)
provided the velocity vanishes at the summit. These are also 
the form of the full, undifferenced equations under the same 
approximation.

Equation (6.12) can be integrated if A. is an integer, and 
the general solution is riven by Gradshteyn and Ryzhik (19Ô0), 
p.63. However, to model a flare up to temperatures of 2 x 10^ K 
we only need to consider cl = 0 and D  = -2 (Table 1.1). The 
solutions . are

P L  Uc't) _ X <  T  <. 1 . a  '0
(. A  - o )

C  (T. X  iPx k )  - V  _ F t _  \  C1I, / f X ' \ \ U \ - A )

s

(6.14)
r\ CT, - Tc )-t = t  1  1 ( .t S  . L'l 76 I p  ) <r

(' - G, ( ‘u _

I T  <  1-x yf; (6.15)

where represents'the temperature at which changes sign.
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Now, suppose that, after reaching the point of non-equilibrium, 
the heating is increased by a factor ‘i , such that

where h^^^^ satisfies

since conduction is small at such low temperatures (Figure 6.2). 
The initial flaring behaviour is given by (6.13) in the form

f ' = n.-rc ! I -T ‘X-t-1 1 -a.-. \
'  ̂«ml: (6.16)

where n is the base density. Thus, the temperature increases 
linearly in time, and the rate of increase is proportional to 
both the base density and heating perturbation. This can be 
identified as the "preflare phase".

Equation (6.14) may be written as

I t  -T c !CT\--- 1 \ I Ti - —'J_   jnt -y _________

c i i O U  V  1 -V L i v ' l y p f c  / 1 (6.17)
J

Equation (6.17) shows that once the initial (preilare) phase is 
over, the next stage of temperature rise is approximately inde­
pendent of 4 for 2 «  1 . Beyond this stage, our approximation
will not be valid.

In theory, one would extend this analysis by the derivative- 
expansion method but this yields little further information (Hood 
and i-riest, 1962) since the equations are too complicated to be 
solved analytically.
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6,4 N u rn e r ica 1 solution for initial phases o f fl.are

In the previous section, an analytical solution for the 

initial or preflare stage of the flare was derived, and it is 
now necessary to solve equations (6.1) - (6.3) numerically in 
order to find the summit temperature of the flare up to its 
ma X i mum value.

The point of non-equilibrium is given by

  =

and if b f /1Tt chances sign from negative to positive, we move 
from a stable to an unstable branch of the equilibrium curve 
(Section 5.2,3). For the radiation law adopted here, this 
occurs at 6 x 10^ K and the critical heating (h^^^^) follows 
from the steady-state energy equation. Thus, all heat deposited 
in the loop is being radiated away. If the heating is then 
increased beyond h^^^^ by

V\ = 6 y -V t 1

then the extra energy cannot be radiated away and the loop heats

up. Equations (6.1) - (6.3) were integrated numerically by
a Runge-Kutta scheme (neglecting gravity and area divergence)
subject to initial conditions at t = o of 

T, = T cdt, > 1
C\ \ - Djû  ̂ j

f  ( 6 . 1 3 )
V. - O  , I

and using an initial time-scale of t = 0.01 .
Figure 6,4 shows the variation of the summit temperature

with time for several values of the heating perturbation, .
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The loop has a half-length of base density 2.5 x 10^ ̂  ^-3^
base temperature 2 x 10^ K anc critical heating 3.2 x h
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VJe have chosen a loop of half-length 50 him and base density
2.5 X 10 rn”^. For lar*ge increases in heating (ta. 1 ) , the 
temperature exceeds 2 x 1 0  K after approximately 30s, but,
as c  is decreased, so the time taken to reach this temperature 
increases. For small &  , the temperature increases in two 
chases which we identify as the ereflare phase and the flash 
chase (or flare-rise phase). First, there is a slow increase

tr
U p  to 2,5 X 10 K (Equation 6.16), and then there is a very 
rapid flaring which is initiated when np becomes negative.
The duration of the second phase (when the plasma heats up from
2.5 X 10^ K to its maximum temperature) is approximately inde­
pendent of L  . The temperature increase is eventually stopped 
when conduction becomes effective. The phase between the 
flash-phase and the temperature maximum is referred to as the 
intermediate phase and is characterised by a slower increase
in the temperature. The initial parts of those solutions 
were checked against the analytic solutions of Section 6,3 and 
gave good agreement. It should also be pointed out that any 
value of E l>c) will give rise to a flare eventually.

The flare rise-time, T q  , may be defined as the time for 
the summit plasma to heat from 8 x 10̂ '̂ K to its maximum value 
(where dlh/dt = 0 ) ,  It depends on the physical quantities 
L, Hq and € , In Figure 6.5, is plotted against L for
several values of ^ . Increasing the loop half-length increases 
both the conduction time-scale and the sound travel-time, so 
that variations cue to both conduction and sound waves take 
place more slowly. Thus, both the flaring time and flare 
temperature increase with L . For the vaj.ucs of S. and L 
considered, % L Ties within the range 5 - 1 5  minutes, which is
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Fleura 6.5 The flare rise time-scale ( %  «) as a function of 
the loop half-length (L) in rmi (=10° m) for several values of
the Dcrturbition f is neiined as the time for the
summit temperature to rise from its critical values to its
maximum. The base density is 2,5 x 10 
température 2 x 10̂  ̂ K,

17 m and the base
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in reasonable agreement with observations (dee Section 6.6),
Firure 6.6 shows the variation of 7 ÿ with the base

density (ng). Oq may possibly increase as the magnetic
field is twisted up duo to the conservation of total pressure.
However, unlike the case when the length, is varied, a change
in iiQ does alter the critical (mechanical) heating. If
T . .  =  8 X  10^ K, then■^crit *

■ y v  )  • ( 6 , 1 9 )
In Figure 6.6 it can be seen t h a t X ^  decreases as i1q increases. 
Thus flares occurring in active regions with high gas pressures 
will tend to attain their maximum temperatures more rapidly than 

those taking place elsewhere.
Fi.mure 6.7 shows the variation of the flare maximum temp­

erature (T^) with base density for several loop lengths, with 2 
held fixed as 0.1. If Uq or L are increased, then so does T̂-.. 
A simple scaling relationship may be rerived from the numerical 
results, namely

T  ŝ r . b A t 0 (_ " T ! \ <  .o

This may be explained if the plasma reaches a quasi-static equi- j
librium at its maximum temperature T^. Such a balance between j 
c o n d u c t i o n  a n d  heating (See Hood and Priest, 1961) together with |
equation (6 .19) gives the scaling lav; |

T;.. %  I . S x  \Q~ ' \< , I
1

where 4/7 X. 0.57. The agreement is therefore reasonable despite !
I

the fact that larp:e flows are present during the flare rise. he |

discuss the role of flows in the next section. j
So far we liave not discussed the role of gravity and of i
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Finjre 6.7 The flare temperature (T^J as a function of 
the base density (hq) for several loop half-lengths (L), 

is the lûaximuia temperature of the summit plasma. The 
critical heating varies with Uq ,
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flux tube divergence in fJ.are modelling, but one can make a 
few simple statements. Gravity is a stabilising effect 
( ..ragg and Priest, 19o2a), so one expects to increase due to 
a decrease in the initial growth-rate. The main effect of 
gravity is one of stratification, as seen from the static form 
of (6.1),

n, -- - -----
(XT, (6.20)

where f M s  = 1 )'C 0.
(6. 10) shows clearly that introduction of stratification reduces 
the summit density, the magnitude of the reduction depending on 
the parameter g. g is a measure of the loop-lengch, L, to the 
scale-height, and for cool loops, g can be large. Thus, grav­
ity is clearly an effect to be included in future calculations. 
Its inclusion in our numerical code led to an increase in l'y 
and a reduction in T^., both by small amounts.

Flux tube divergence is unimportant at low temperatures 
but becomes important when large mass fluxes and temperatures 
occur. hragg and Priest (IÇol) show that, if dA/ds and d'f/ds 
are both positive, flux tube divergence acts like an additional 
heat source. Thus, we expect loops with strong divergence to 
possess higher flaring temperatures.

Up until now we have examined the case when the heating 
becomes critical, so now let us consider the behaviour when 
the base density becomes critical instead. It may be shown 
that the critical values are

( c \ t " Tb N. \ O J

- - 1. S } ! ™  — a. \

Non-equilibrium occurs when the base density, n,^, is decreased
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below its critical value 
" o  % ""CcvV- 

and the temperature grows initially like

 ̂ t  i X  ^r \ 'V X. >
" û - a ' )  (6.21)

which is simply equation (6.16) with d. replaced by

b \ -  ^
Thus, for ̂ -V- 1, theprcflare phase proceeds at twice the rate 
if the density is critical rather than the heating.

Finally, other forms of the heating perturbation may be 
considered; such as a linear increase to a constant value

( Mcrvt L \ T SL t: / 11 ) , t  t   ̂  ̂ I
y  \ , -■ C v  A  t )  , t  >  t  , , I

(6 .22)
or a sinusoidal pulse,

7  r ^cor. i - ' T  , 1  <

"  '  ! f c . , c  ' . T  > b j  ( 6 . 2 3 )
Little difference was found in the resulting flare parameters 
for either of those forms, and so we conclude that non-equili­
brium will proceed at approximately the same rate no matter 
how the heating is increased beyond its critical value provided 
T : «  1. This is seen in Figure 6.4 where the dashed curve 
represents a heating pulse of the form (6.23).

6.5 The behaviour of flare density and velocities
In Sections 6.3 and 6.4 we have obtained solutions of the 

order-of-magnitude equations for the flare rise, and have shown 
that the onset of thermal non-equilibrium can give reasonable
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values .';i' the flare temperature and rise-time. The subsequent 
I)eh':"/ ̂ ;:jr of the loop density v/as not discussed, since the as­
sumption of fixed foctpoint density and temperature is unlikely 
to be true. Under our assumed boundary conditions, the be­
haviour is as follows. After non-eouilibrium, the loop summit 
temperature rises and so does the pressure. A pressure gradient 
exists between summit and base, driving a downflow and decreasing 
the density. This co’-nflov; possibly is the same as that observed 
by Lites et al., (1931) which was seen to be of order 70 km 
Due to our order-of-magnitude approximation, we cannot follow 
whether this steepens into a shock. .3y keeping the base con­
ditions fixed, we always have a pressure gradient between summit 
and base driving a downflow. however, since an increase in 
density is observed, this description is clearly inadequate, and 
we suggest the following alternative.

The downflow steepens and forms a shock which propagates 
Govn the looo, im pinging upon the chromosphere. The temperature 
at the loop base is enhanced sufficiently to drive an upflow 
(v.'hic’i may well be supersonic), he are unable to model this 
evaporation exactly but can make analytical progress as follows.

Su poose that conduction has not yet become important 
(L 1 ) and that mechanical heating and enthalpy flux provide
the main energy deposition or loss. (kadiation falls off as

—  1 LT above 8 x lO*" K and is assumed unimportant). It is also
assumed (for analytical simplicity) that the flows are subsonic 
and so the pressure is spatially constant. One can then develop 
separable solutions similar to those of Antiochos (1900) in 
which heating drives an upflow: by comparison he used radiation
to drive a downflow. The equations of momentum, (3.5) state,
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(5.7), continuity (5.6) and energy (5.Ü) are

 ̂ , (6.24)

p - r. T   ̂ (6.25)

A ? A_I -V A  if - vj AT  ̂fig - O  ,
Y b [: 7>t r '6 S 7) S (6.26)

1  t b  J- z: ^
?)? % > '< /\

Antiochos (ifcO) has a radiative loss term on the right-hand 

side of (6 .2 7 ) instead of heating.
Eliminating v from (6.24) - (6.27) gives

n î g  -i feS) - A I m A  "

%T \ Ur A'A T AlJ = o  ..

(6.27)

•r'iT  > S. - / S   ̂ (6.28)

Following Antiochos directly, we seek separable solutions

of the form
? = ?o y  h t )  ,

T  - T 6  i t  ) T  L ^ ) ,

SO that

Al t#0 % \ V iX <s ;
A i  ©  h A i

A 4 ID \ - Af5 = o  , (6.29)
-  p  A p - y  s  ouf-

where
1  ^ tj-' .

F'o
Seoarable solutions exist if the time-dependent coefficients are

constants, so that
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T) =

o (6.30)

Vv’hei’e k and 1 are constants whose range of values are to be 
determined.
Next \  may be expressed as r\

■if X À p o )  f
&  b (6 .31)

where
k - t

(6 .32)

so that there is a two-parameter family of solutions in terms of 
k and 1,

The allowable values of k and 1 may be determined as 
follows. The velocity is given by

0''A -t- \

)S  ( i t  n- I )
and for evaporation we need v > 0 which implies that

> O

( 6 . 3 3 )

o r
Vt

( 6 . 3 4 )
It is also required fi'om observations that p and T increase in 
time and so 1 and k are positive. Finally, it is required 
that the differential emission measure (b.K.M.) increase with 
time (Craig; 1961). The D.S.li. is defined by Craig as

1  r  L
" A T U g i  '

( 6 . 35 )
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where kg is Boltzmann’s constant.
Thus we require

k<C 1 . (6.36)
Equations (6.34) and (6,36) give a restriction on k and 1.
Figure 6.6 shows the time-depenoence of the temperature and 
velocity (0 (t) and v (t)), where

T-S I It, -r
Clearly the temperature is increasing and the velocity is posi­
tive for all time -and one has a solution of the form required.
The general effect of increasing k is to raise the value of 9 
and decrease v . This shows that the time-dependent equations 
permit solutions in which both the temperature rises in time 
and the velocity is positive (i.e. an upflow), as is required 
in the intermediate stages of the flare. However, further 
calculations are required to back up this simple, semi-kinematic 
aporoach.

Further upflows are present in the decay phase. The decay 
phase can be defined here as the time when the flare temperature 
is falling and the density is still rising (Figure 6.1).
Antiochos and Sturrbck (1976) have analytically demonstrated the 
existence of an upflow in this phase. Again, subsonic flows 
and constant pressure are assumed and they find that

n / “ 1 ) -T' ^ A T
S P

Since heat is being conducted away from the summit, a velocity 
is driven upwards.

It thus seems that continual mass evaporation is occurring 
throughout the flare: i.e. from the flash phase until well on
into the decay phase.

J
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Figure 6 .8 (a) The time dependent eart, G (5), of the
separable solution for the temperature during the intermediate 
^evaporation) phase as a function of the dimensionleso time 
t (=tH/PQ). pQ/ M is typically $ seconds. The parameter k
is_2, and 1 is allowed to vary. (b) Che time deoendcut part, 
v(t) of the velocity.
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6.6. Discussion and conclusions

In this chapter, we have considered thermal non-equilibrium 
as a mechanism for the simple-loop flare. If the mechanical 
heatiny in a cool loop becomes too big or the density too small,
thermal non-equilibrium occurs and the loop flares to tempera-

7tures of order 2 x 10 K in a time ot‘ between 5 and 10 minutes.
itoore and Datlowe ( 1 975), for instance, have examined data from
17 flares occurring between 10th October 1971 and 25th ihay 1972.
They find the loop length lies between 6 x 10^ and lO^m, and the

7 7maximum temperature lies between 10 and 2 x 1 0  K. The dur­
ation of the flares in X-rays is between 150 s anc 200 s, while 
the rise-time is typically a few minutes. Our theoretical
values give reasonable agreement with such observations.

'.Vith the order-of-magnitude approach, we have identified 
two distinct phases of a simple-loop flare. First of all, the 
temperature of a cool loop generally rises linearly with time 
to 2.5 X 10. K, at a slow rate that depends on how the equili­
brium was perturbed: this was called the oreflare ohase,

7Subsequently, it rises explosively to over 10 K in a matter 
of 60 s: the flash phase. It did not prove possible to
examine the behaviour of the flare density in any detail without 
an ad-hoc adjustment of the base boundary conditions, but a 
useful analytic solution for an intermediate phase was derived.
In this case, an upflow occurred at the same time as a temper­
ature rise.

Clearly, the analysis in this clrapter is of a crude nature 
but it has demonstratea the viability of thermal non-equilibrium 
as a flare trigger. One must now solve the full set of equations 
numerically to obtain exact solutions, but this is a procedure
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fraught with difficulties. attempts have been made along 
these lines by Kostyuk and Pikel'ner (1975), hagai (1960),
Craig and r-'acClymonb (1961) and et al., (1961). nearly 
all of these authors have run into computational problems. 
Kostyuk and Pikel'ner, in an attempt to model the chromosphere 
realistically, attached a model atmosphere onto the base of the 
transition zone. They then 'fired* a beam of electrons at 
the chromosphere and watched the subsequent evolution. The 
loon flared to 10^ K in approximately 100 s, but as pointed 
out by Somov and Syrovatsxii (1976), their results are dubious

due to the value of their time-step, chosen as Is. dince the 
dominant time-scale in a flare is initially the radiative one 
(fection 6.3) one must choose a time-stop much less than this 
time-scale. The radiative time-scale is of order 1-5 s , and 
so a time-step of 1 s may miss out information. In fact, a 
time-step as small as 1/100 "3 may be needed (macXiece, 1961).

hagai followed Kostyuk and Pikel'ner in attaching a mocel 
atmosphere and succeeded in avoiding the problem of time-step 
size. However, Craig (1961) has cast doubt on Magai’s grid 
spacing in the transition zone. Hagai assumes a release of 
energy, either at the loop summit or at one of the footpoints, 
and follows the evolution. A conduction front propagates from 
summit to base and heats a portion of the chromosphere, which 
then rushes up the loop with a velocity of up to 400 km s"^.
The satisfactory lower atmosphere and tinie-steps make this 

the 'best' mooel produced so far.
Craig and KcClymont (1961) consider the evolution of 

a cool loop after some heat is deposited in it. Their loop 
is isolated in that no mass is allowed to cross the base, but



-  1 3 2  -

the ootpoint temperature is allowed to respond to coronal 

evolution. They find that the loop settles down to a new, 
hot eouilibrium after about 20 minutes. Subsequently, more 
energy is deposited in the loop ana a second new equilibrium 
arises. They suggest that an infinite number of equilibria 
can exist for a given loop mass, but attribute this result 
to lack of numerical resolution in the transition zone, 
ï.ragg and Priest (1962b) also point out that all but their 
first equilibrium are spurious solutions.

viu et al. (1961) ignore the transition zone by fixing
their base temperature at 10^ K. They then vary this base
temperature, and study the loop evolution.

It is clear from the above discussion that the choice 
of time-step and the ability of a numerical code to model 
steep gradients is vital in flare simulations. Recent use 
has been made of the SHASTA code (Boris and Book, 1972) 
by Hood ana"Priest (1962) to model flaring due to non-equili- 
brium. They find the flaring times to be similar to those 
in this chapter a n d , like us, are unable to get realistic 
densities' due to the chosen boundary conditions. However, 
the SHASTA code can cope with shocks well and is of great 
potential in flare modelling.

The second important problem is one of boundary con­
ditions. In this chapter we have fixed the base conditions
for all time and have pointed out the drawbacks.of this in 
Section 6.5. However, Kostyuk and Pikel'ner (1975) and 
Hagai (I960) have made some progress in this field by attach­
ing a model atmosnhere to the base of the transition zone. 
This enables shocks propagating down the loop to interact
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r-e-t ■ ically with the upper chromosphere rather than simply 
bei- reflected as would occur \.'ith a fixed boundary. It is 
also v;orth noting that the summit temperature will be in- 

f.iepencent to a large degree of the base conditions. This 
is because the time information takes to propagate frŒ% 
summit to base and back will be of roughly the same time as 
T-̂ r . Thus we expect that the temperatures and time-scales 
in this chapter are essentially of the ri ght order since our 
base conditions are not relevant to the flare-rise phase.

Finally, it is worth comparing briefly the differences 
between the calculations of Chapters $ and 6. Despite solving 
the same equations using the same approximations the physics 
of the two problems is significantly different. This can be 
attributed to the different relevant time-scales. In the 
cooling, all of the time-scales were of order 10^ s , and so 
any evolution proceeds slowly. Also, the initial evolution 
was a G constant pressure. In this chapter, the radiative 
time-scale was initially three orders of magnitude less than 
the others, typically being a few seconds and cmay evolution 
occurred rapidly. It was also of interest to find that the 
initial evolution was at constant density. This serves to 
point out that two apparently similar problems in fact exhibit 
distinct physical behaviour.
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Chapter 7: THF O'- "FajT'-FLAID. r.QCv.; IH 2 _ RIBBON
FLARD3

7.1 Introduction

As outlined in Chapter 1, 2-ribbon flares are the most
energetic events in the solar photosphere and corona releasing 

12up to 3 X 10" J in a large flare, First of all, a magnetic 
fislo eruotion takes plrce, and then, in the place of the pre­
flare magnetic field configuration, a system of loops is seen 
to rise in the atmosphère. These are generally referred to 
as post-I lare loops. In fact, the word 'post' is misleading,
because, as pointed out by fneuman (19o 1a), the loops are a 
major oart of the flare and their formation accounts for a 
large energy release.

Our knowledge of post"-flare loops has increased greatly 
vnthi the observations from Sky lab, and the Kopp-Fneuman (1976) 
model has been remarkably successful in explaining their basic 
oroperties. be return to the Kopp-Pneuniari model subsequently 
but first discuss the observations of "post"-flare loops.

lb is instructive to consider first how a preflare magnetic 
field configuration can erupt. One possible trigger for a 
2-ribbon flare is new flux emerging from the solar interior, 
as oescribed in the emerging flux model of Heyvaerts et al.
(1977) and Tur and Priest (1976), The new fl.ux encounters 
old flux as it rises, and a cm'rent sheet forms between old 
and new flux, „hen this sheet reaches a certain height in 
the atmosphere, thermal equilibrium ceases to exist: the
sheet heats up and beco'nes turbulent, triggering a fast



-  1 3 5

reconnection in the large-scale overlying field. An alter­
native mechanism involves the î-1/H.D. instability of coronal 
loops and arcades: Hood and Priest (1979b, 1900b) included
the dominant stabilising feature of diotospheric line-tying, 
and found that, if a plage filament situated in a coronal 
arcade is twisted too much or lifted too high, then it becomes 
unstable and erupts outwards. Pneuman (1900) has also exam­
ined the eruption of arcades and showed on the basis of an 
order-of-magnitude analysis that a prominence with its over- 
lying field v.'ouId eruot outwards,

In this chapter we shall assume that, after a filament 
eruption, the :i;agnetic field is draggea open to form a large- 
scale current sheet configuration as shown in Figure 7.1.
This subsequently relaxes by reconnection through a series 
of c o n f i g u r a t i o n s  shown in Figure 7.2 as the field closes 

back down.
The recent Skylab workshop on solar flares (.,turrock,

1900) has provided a wealth of data on "post"-flare loops.
For example, those of the 29th July, 1973 flare have been 
described in a series of papers by Nolte et al, (1979),
Petrasso et al. (1979) and bvestka (1970). In the initial

7stages of the flare, the temperature was at least 10 K.
After 3 hours it had fallen to 5 x 10^ K at the summit and
3.5 X 10^ K at the footpoints, while the corresponding elec­
tron densities were 7 x 10*^ and 7.5 x 10^^ rn”^ . As
the po3t”-flare loop system increased in size, the temper­
ature continued to decrease slowly: 12 hours after the flare 
start, the sununit and footpoint values were still A.5 x 10^ K 
and 3.1 x 10^ K, respectively, while the corresponding densities
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Firuro 7.1 The open-field configuration that is produced 
by a filament eruption. The thick-headed arrows represent 
a solar wind outflow.
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Figure 7.2 The rising system of ”post”-flare loops some 
time later curing the reconnection process as the field closes 
back down. The neutral point i is rising vertically with 
a speed Vp, trailing two slow m.Iî.U. shock-v;aves behind it
(thick solid curves). A solar-wind upflow is present 
a l e . ' the outer lielo lines. Below the shocks there lies 
a h ' compressed loop. Below the hot loop, there is a
loc of plasma that has cooled and is falling, as seen in
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were 5 x 10^" and 6 x 10^^ . hi thin the errors
quoted by Petrasso et al, (1979), the density therefore
rciuains roughly constant ana uhe temperature decreases
slightly as the flare progresses. The height of the soft
X-ray loops was observed to be approxiiuately 30,000 km after
three-and-a-half hours and 106,000 km after 12 hours, (Nolte
et al, 1979). For the first 3 hours, the average speed of
rise was approximately 10 km s~^ and for the next 9 hours it

-1was only of order 0.5 km s . Early on in the flare, however, 
the loops could have been rising as fast as 40 km s””* or more, 
Moore et al. (1900) give the best fit to their observations of 
the rise speed as

V:: e X L - - t

where t is in units of 20 minutes ano v is in km s  ̂.
The values of the physical parameters in the ambient

medium outside the loop system are a little uncertain. The
magnetic field strength probably lies between 10 and 100 gauss,
while typical values for the density and temperature in the
active-region corona are 2 x 10*^ and 2 x 10^ K. This
corresponds to a plasma beta ( A % çû  O  ̂0^ ) of 0.1 - 0.01

(but see Section 7.3).
The mass of a typical system of « post”-flare loops was

estimated by Kleczck ( 1964) to be of order 10*^' - 10^^ Kg and
1 5by Pneuraan to be even greater (7.5 x 10 Kg). This is of 

the order of the total coronal mass and therefore it is unlikely 
to be of coronal origin.

The model of lopo and Prieuman was developed to explain 
this observation. They considered a system of rising loops
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and solved the equations of motion in the following kinematic 
man no I". The equations of continuity and nomen turn were first 
reduced to those holding along an isolated field line, and the 
magnetic field configuration was prescribed as a function of 
space and time. It comprised a region of closed field lines 
(trie loops) whose height rose with time and a region of open 
(racial) field lines. Hence the rate of rise of the neutral 
point, P, at the top of the loops, was prescribed.

These equations were solved, and it was found that as a 
flux tube (defined as the region between two field lines) moved 
towards the neutral point, its width increased greatly, hence 
generating a large upflow. Just before reconnection, the 
mass flux entering this flux tube was 12 times greater than 
at t ~ 0, when the field lines reconnected, this enhanced 
solar wind outflow was trapped in the loops.

By this simple idea, Kopp and Pneurnan found that they
1 2could trap over 10 Kg in the loops - short of that required 

but a groat deal better than obtained by any previous theoret­
ical calculation. Once the field line closed, a gas dynamic 
shock rropagated down the loop bringing to rest the upflowing 
plasma and heating it. However, if one does not think in 
te rms of flux tubes but rather considers the global M.H.D. 
picture, these gas shocks will become an oblique m.H.D. shock, 
as shown in Figure 7.2. The temperature obtained by Kopp and 
Pneumai for the loops is far too low ana gas dynamic shocks 
can never explain the loops temperature but the use of fi.H.D. 
shocks gives a clear source of additional energy namely the 
magnetic f:i.eld.

In this chapter, we construct firstly a local model of
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these shocks to shew that the correct temperatures may be 
obtained, and then we apoly the general theory to the 2-ribbon 
flare of 29th July 1973. Finally, a globa], model of the 
reconnection is constructed.

Recent order-of-magnitude calculations by dncuman (1901a) 
have shown that ohmic dissipation can account for the energy 
release in the loops. The analysis presented hero shows in 
detail how the energy is actually released in the slow shocks.

7.2 The slow sho ck modeI

As pointed out in Section 7.1, the original Kopp-Pneuman 
model was defective in that the plasma was heated by gas shocks 
propagating down individual flux tubes rather than r..H.lv. shocks 
propagating outward and upward across the incoming field. In
a magnetic medium there are no purely gasdynamic shocks since
they became magnetoacoustic ones.

ILocally-straight sections of these shocks are shown in j
I

Figure 7.3. In a frame of reference fixed to the 3un (Figure j 
7.3a ) , the Y-type (or cuso-tyne) neutral point ? (and the shocks) |
are seen to rise with speed v , while the loops below the shocks \

are stationary. The fluid ahead of the shocks moves with I
t

velocity components v^ j along the field and v̂  ̂ normal to it.
In a frame of reference moving with ? and the shocks (Figure
7.3b), the plasma ahead of the shocks has an extra downflow
comoonent v and the plasma below the shocks is moving down 

with speed Vp.
U s in g the notation o 1' C ha pt e r 2 ( F i ,cu re 2.1), 11 ■ e n o rma 1

and tangential components of the incident velocity in the shock
frame (Figure 7.3b) may be written
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Ficure 7.3 The notation for locally straight parts of the 
shocks in Figure 7.2: (a) in a rest frame, where the flow
velocity ahead of the shocks has components Vjj and v along
and perpendicular to the magnetic field; (b) in a frame of 
reference moving upwards at speed v with the shocks ana the
neutral point • The thick lines represent shocks, the
thin continuous lines the magnetic field anc the solid- 
headec arrows the various flow components.
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n - ^  \ Vp. X' V o  ^

V  \-^- %  V  S (  ( À  , -.. V \ -- V 'O i  I 'n V> g .

(7.1)
Mote that Vĵ  may be negative provided Vjj and v^ are so large 
that v-|,̂  is still positive. It is then possible to solve the 
shock relations derived in Chapter 2 and so deduce v^ g and Vj 
from (7.1). for given values of V||, a n d ^ ^
the aim is to solve the jump relations for v̂ , , T g , ̂  2 » ^ 2
and 32» Since the shock is of the slow type, the field is 
refracted towards the normal by the shock passage (section 2.3.2) 
anc releases magnetic energy to heat the plasma.

The input parameters may vary over wide ranges ano it is
important to note the range of interest. The neutral point
speed (v̂ )̂ is expected to lie between 1 km s“*̂  or less and, say,

— 1)0 km s’* or even more. The parallel flow speed must not be 
too much larger than the sound speed, in general line with the 
Kopp-Pneuman concept. For the ambient temperature (T^), den­
sity (n^), and beta (t^), values of 2 - 2.5 ix: 10^ K, 2 - 4 x 10^^ 
in"^ and 0.01 - 0.1 are expected for the active region corona, 
where this process is taking place. Solutions with v small 
enough were found only ford.  ̂ close to iff- and v^ relatively 
Sifiall, so that the shock is propagating at a small angle of 
inclination to a slowly collapsing field. This parameter 
range unfortunately does not allow a simple analytical solution 
of the shock jump relations. The problem is due to being
close to TT!' 1. . As was pointed out, the low-bota calculations 
break down in this limit.

We thus solved equations (2.36), (2.37) and (2.39)
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numerically and the effect of varying the parameters (vj|,
»'\,'l ) f> 1 ) have been plotted in Figures 7.4, 7.5 and 7.6.

In fact, v^^ and v^ ̂  were specified with Vjj and Vj following 

from (7.1) as
-

\ j "2_ V \rx d. y — C\v sO'  ̂ • j
p S>,YA V .1 I -f j

First of a l l , Figures 7.4 and 7.5 show the variation of j
the looD temperature (14) and the neutral-point speed (v ) with ]P
v.j and v^ for 4   ̂ = 0.1 and 0,01. v^ is a measure of the j
speed of collapse of the field lines. Increasing v^ raises j
the reconnection rate and the magnetic energy release, which j
results in a higher temperature (14). It also increases j
V and S s o  that the shocks move closer together. The rele- j
p ^ ivant value of g. close to the shocks is rather uncertain, both j

because the" magnetic field strength is not very well known and |
also because the values ahead of the shocks nay differ substan- |
tially the ambient coronal value, since the flux tubes |
diverge just before reconnecting (Kopp and Pneurnan, 1976), j
The effect of lowering .j from 0.1 to 0.01 is to change j
only slightly and to decrease v substantially for a given j
inflow; also, the switch-off speed increases. Increasing 1
V|j tends to increase both v^ and T g , although at = 0.01, I
V is anproximately constant. jp - ‘

Figure 7.6 gives the results of varying 4, for a fixed |
value of Vj (= v^) . (v j' is the value of v^ that makes ^2 zero) ̂ J

and = 0.01. As4.j increases from 67^ towards 90^, 14 j
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Figure 7.4 The effect of the parallel upflow (V||) and the 
field line speed (v^) on the loop temperature (T^). holid 
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to the shock is #7° and the sound speed for a temperature
of 2 % 10^ K is about 200 km s~^. is the smallest allow-
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increases only slightly and so is not shown, but v decreases 

markedly to values as low as the 0.5 - 1 km s  ̂ that one 
finds in the late stages of "post"-flare loop evolution.

It is now desirable to apply these results to a specific
flare.

7.3 The evolution of the "^nst^-flare loops of 29th July,

In lection 7.1, the basic details of this large flare were
outlined and it is now the intention to see how well our slow-
shock model can simulate the loop temperature and upward rise
speed. The rise speed, V is given by Moore et al. (IÇoO)P
and is shown as a function of time in Figure 7.7. The temper­
ature after the first 3 hours is given by retrasso et al. (1979) 
is shown as large dots on Figure 7.8. Both the rise speed 
and temperature may be accounted for by slow shock heating as 
follows. For the first hour, it is necessary to have field 
line speeds (V|) larger than the minimum value (v^), so we have 
prescribed to be 87° and Vj , to be 1 ,3C .̂  and have deduced 
from Figure 7.5 the variation Vj(t) which produces v (t) shown 
in Figure 7.7. Then Figure 7.4 has been used to deduce the 
resulting loop temperatures (I^) shown in Figure 7.8. For the
first 30 minutes, we have taken v̂  ̂ to be between 20 and 10 km s”

' n
This gives temperatures of over 10 K for the first 15 minutes

7 6(not shown) and between 10 and 8 x 10 K for the next 15-
The values of v are rather high ( 60 krn ) for this period.

-1After 30 minutes, is below 10 km s“ and is chosen to give 

the observed v .
It is interesting to note that very early in the flare,
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Figure 7  ̂
hea
v/e have out Â --0 and idI I I V /c^<) ^ 1.3. •Thereafter
Vj = V*‘|' and the results for several values of I-Ij | are shown. 
(The sound speed (c^.) for a temperature of 2 x 10 K is 
about 200 km s~^).
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reconnection could be proceeding even faster than mentioned 
above, and, if the shock approaches switch-off conditions,

g
temperatures of order 10'' K are possible if p^ - 0.01. Such
temperatures are tentatively claimed in new results from the
Solar maximum mission (machado, 19#0).

For the remaining time v/e have assumed that Vj = Vĵ
and used Figure 7.6 to deduce the angle of inclination j ( t )
that produces the rise-speed v^^t) shown in Fi.tÂure 7.7. Then,
the resulting temperature '^^(t) has been deduced for several
values of I-'j j ( = V||/c^^), as shovn in Figure 7.Ô. It can
be seen that after 3 hours, values of , M| | - 1.3 and
Mj I = 0 . 9  will reproduce the observed and at the suimnit
and footpoint, respectively; whereas after 10 hours = 89.5°,
M, I = 1.0 is needed at the sui.nv.it and 11 ̂ j = 0 . 5  at the footpoints.
In fact, V will decrease steadily to v' giving a smooth decrease
in To rather than tive jump to v after 1 hour portrayed here,

13 —3Also, for an ambient coronal density of 3 x 10 , our model
15 -3produces loop densities of typically 9 x 10 m at the summit

1 ̂  -3after one hour, decreasing to 6 x 10  ̂ m ^ at the summit and 
to 5 X 10  ̂ m “ at the base after 10 hours. The base density 
is somewhat low, but could easily be enhanced by evaporation 
of chromospheric material (bee Section 7.5).

It should be pointed out that other values of the para­
meters can also reproduce the observations, but the above 
estimates do demonstrate the viability of slow-shock heating.

7.4- The global reconnection process

In this section we. shall construct a simp.lo global, model 
for the reconnection that is believed.to be taking place above
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a " ost"-flare loop system as the field closes back down and
the neutral point rises. Steady reconnection at an X-type
neutral point is thought to occur by the mechanism of Petschek
(1964) ( see, e.g., Vasyliun^s, 1975), and this has been put 
on a firmer mathematical foundation for bo til incompressible 
and compressible plasmas by Soward and Priest (1977, 19^2),
In these models, on?generally quotes the maximum reconnection 
rate as the principal result, and for the Petschek model, it 
is typically a small fraction of the Alfven speed at large j
distances away from the reconnection region. This parameter j

is a measure of how fast magnetic flux can be convected inward |
to the diffusion region where the field lines actually break j
and reconnect. However, the analytical mooel of Soward and |
Priest is rather complicated, and so we turn here to the sim- |
oler mod31 proposed by Sonnerup (1970), Not only are the slow j
shocks of the Petschek model present but expansion waves have ;
also been introduced. These originate outside the diffusion !
region and are physically unrealistic. However, Sonnerup j

(1973) has justified their use by stating that they may be 
regarded as a .lumping together of all interactions ahead of 
the shocks. The invoking of this second discontinuity ,
meant that Sonnerup could construct solutions where the mag­
netic field and velocity are uniform in each region between ;
the discontinuities and are related tcthe external conditions |
by a simple matching across the discontinuities (which, in '
the incompressible case are just Alfven waves). The compres- 1
sible version of this model (Yang and oonnerup, 1976) is |
complicated and requires the simultaneous solution of four j

ordinary differential equations for the expansion fan.
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Sonnerup found a maximum reconnection rate of order the Alfven 
speed, much larger than that discovered by Petschek. However 
Forbes (1981) has pointed out to the author that this discre- 
psncy may be due to the different locations at which the re­
connection rate is measured. The Sonnerup rate may only be 
valid in the external region close to the diffusion region 
whereas the ^etschek rate is valid far from the origin.
Hence an Alfvenic inflow near dhe diffusion region nay be a 
manifestation of the Petschek inflow far away.

One effect which makes ’'post” - flare reconnection differ­
ent from conventional reconnection models is the presence of 
a strong solar-winc flow along the ambient field. Such a 
flow has already been partially included in the Sonnerup 
model by hitchell and Kan (1970). Figure 7.9 shows the 
geometry in a frame moving with the shocks and with an upflow 
in the inflowing region (1). This model is a simplified 
case of the general ulitchell and Kan formulation. They 
allowed two regions with different densities and vertical 
inflow velocities to reconnect, with the aim of simulating 
magnetopause reconnection. The general problem is thus 
asymmetric about both x and y axes. For the- case of equal 
inflow densities and velocities, the problem is greatly 
simplified. After matching across the two waves PA and PB
and for a downflow in region 3 we find:

- V A  \ ^  1 1 ' w

% - k/ ,cv-\ ^  \ -v- d / . i  )

^7 (V \ / w  ,

A/ A . ,

=  I
-*

V<v V ^ >
N . n 9  g  - I

% 1 /K ' ' ;

( 7 . 2 )
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F irruro 7 *9 An incompressible reconnection .geometry in a frame 
mo vine upwards at v (like Fi/'ure 7,3b). The .lines P.T and
P3 represent Alfven waves and (artificial) Alfven waves, which 
v/oulc; become slow shocks and (artificial) expansion waves in 
the c.mnressible case. Note also thot may be directed
in either the oositive or negative y-direction.
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In these equations, v ^^ is the inflow Alfven velocity. In a 
fixed frame of reference (Figure 7.3a), the y-components of 
velocity are

V,
~  ' ’’ m  ' n  > (7.5)

where ^ represents the y-component of the solar-wi.nd flow. 
After eliminating v^, v.̂ ' and ^  between (7.2) - (7.5) we obtain 
an equation relating K and v^y/v^^, namely

r  -z ^\.-r I 7.-V if V'"-
\/c\ \

which may be solved to give

(7.6)

V/y\ (7.7)

for the transformed frame.
Furthermore, the constancy of total pressure (gas plus 

magnetic) across both FA and P3 gives
-\- ' - ̂  ~ p?> ^

After using (7.2) for 3^ and , we find
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Now (Z|,.2), (4.6) and (4.7) may be solved to give 0. ,
Cr.. Go and Oo in terms of the reconnection rate A. and the 2 * j "j I
inflow v^^. As A.| increases, so the angles G-j , 02 * ^3 
decrease and the waves spread out, a behaviour which is 
tyoical of reconnection models. As the solar-wind flow 
(v^ ) increase, so the angles increase (Figure 7.10) and
and system of Alfven waves closes up, which was expected 
from the results of Section 7.2. At the same time the 
neutral point speed (v ̂ ) was found to increase so that the 
system of loops rises more quickly. Also, the pressure 
p^ increases with v.̂  ̂  and is strongly dependent on .

7.5 hiscussion and conclusions

On the basis of a simple model we have shov/n in this 
Chapter that the heating and rise-speed of "post"-flare loops 
can, in all stages of their evolution, be attributed to slow 
1'..H.D. shock waves, hence removing a major problem in the Kopp 
and 'Pneurnan (1976) model. By varying the inflow parameters, 
a wide range of loop temperatures can be obtained. These 
cararneters include the upflow (v | j ) along the field, the rate 
of collapse (Vĵ ) of the field and the inclination of the 
shock normal to the field.

The analysis of the present chapter ignores many poten­
tially important effects, however, and it is instructive to
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Figure 7.10 The variation of the angles of inclination 0^,
Cj G of the Alfven waves PA, ?B and the seperatrix to tne 
horizontal as a function of trie solar wind upflow speed 
V, is the ambient Alfven speed anc the reconnection rate 
is taken as 1.0 (solid) and 0.1 (dashed).
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discuss them. It is desirable to solve the full two-dimensional, 
resistive, time-dependent, comoressible problem numerically to 
see what effects have been missed by the above kinematic ana­
lysis and also by the calculations of Kopp and Pneurnan.
(indeed, this is in the process of being undertaken by Korbes, 
1962). One of the most interesting problems concerns the 
effect that line-tying of the magnetic field to the photosphere 
has on the reconnection rate. This seems to be one of the 
reasons for the non-uniform rate of reconnection (and hence 
the rate of rise of the loops). A second problem concerns 
the role of fast magnetoacoustic waves generated at the re­
connection site. Slow waves generated here steepened into 
shocks but an interesting question concerns whether fast waves 
can oropagate outward to warn the incoming flow that a shock 
lies ahead of it. It is possible that such waves could 
alter the configuration. Another problem concerns the source
of the mass of the loops. ..hi le the Kopp-fn euman mechanism
is able to trap a considerable amount of material, it is now 
generally considered that this is not enough. Preuman (1961b) 
has suggested that chromospheric evaporation is the principle 
mass source but the relative contributions of both sources 
have not been studied in detail. However, it would be 
desirable for observations to detect upflows either inside or 
outside the reconnected region.

Finally, it will be most interesting when more flare 
observations become available to test the model proposed in 

this Chaster.
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Chapter 6 : i/AC?:bTTC TJOrf-l.UTUBRJUK AKD bXPT.OoITL':
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6,1 Introduction

well before the launch of the okylab satell.ite, a 
large number of eruptive and explosive phenomena were known 
to exist on the 3u n , including surges, sprays (or eruptive 
active prominences), eruptive quiescent prominences and 
coronal transients. Surges are streams of plasma rising 
vertically from the chromosphere at velocities between 50 
and 200 km s*’"* . They reach a height of between 20,000 

and 200,000 km and are then seen to fall back along the same 
trajectory. A surge has a temperature of typically c x lO'̂  K,
a magnetic field of 30 G ano a number censity of typically 
10^^ (Rust et al., I960), Sprays are similar to surges

iexcept that they are ejected at higher speeds (600 km s ~ ‘) and
do not return to the sun. They have temperatures in the
range 10̂ '̂  - 10^ K and magnetic fields as big as 100 G,

Aruptive prominences are larger-scale events. They
have a fairly weak magnetic field (Pa 10 G) and rise into the

—  1corona at 200 km s . Their temperature and density are 
similar to a surge but they do not return to the Sun after 
eruption,

A coronal manifestation of an eruptive process is a 
coronal transient (Pneurnan, 1976). These typically have 
temneratures of 10^ K and a weak field (only%2G). They

are much larger than any of the other eruptive events and 
1 3eject up to 10 ' Kg into interplanetary space.

In this chapter, we shall discuss how a static magnetic
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field can erupt due to excess gas pressure and possibly give 
rise to such explosive phenomena. The structure of a pre- 
eruptive magnetic field may be given by the rnagnetOvStatic 
equation

07 ^ T  H )

(6.1

where
A - )

and
(6.2)

9. ^ () .

(6.3)
Taking the scalar product of 3 with (6.1) gives

i l  “ "  ■ (3.0
where £ is the coordinate measured along a field-line and _£
is the unit-vector in the vertical direction.(8.1) shows that
hydrostatic.balance holds along any given field line, and, if
the plasma is isothermal, it can be integrated to give

-
-

where A _  is the scale-height, defined as

A _  V  ^  •
Consider now a structure that is much longer than it is 

high or wide, so that variations along the horizontal (x-axis) 
can be ignored. Then, quantities depend only on y and z, 
and so the magnetic field, B, may be written as

(6.6)
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where A is the z'-.component of the vector potential 
components of (8.1) reduce to

The

^JA l-.A x  ~

- I P  
-  ’’P

p S  X  A  ft ^
?)'2_

_1A. P  i?..x -  A A  V ~ f \  
z a% a z

(8.7)

(8.8)

(8.9;

Now p ^ p (A, Z j )  frora (8.4) and 3^ = B:,; (A) from (8.7) so 
(8.5) is

and (8.8) or (8.9) reduce to

/ZV

\7 ^ P  -i-I ii. ( R x  1 ~ -  11 1. ) ,
(8 .1 0)

If we assume also that the scale-hei^ht is much preater 
than any vortical variations then both the gas pressure and 
field in the x-direction are constant aIona any flux surface 
and (8.10) reduces to

\7- A _ __ &  ( i * \x ^ CA^ )\
\ H, _ I n; ' '

(8 .1 1)
and if p(A) and Bx^(A) are prescribed, then in theory it should 
be possible to solve this equation. Aquation (fh.11) is in 
general non-linear and need not have a unique solution. It 
may be written in dimensiunless form

6̂. tl
6 t  L A  ')

a
p.-

0.
(8 .1 2)
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whore
t  , A  := , 9 - JP )R h  'XVx f

"■)> " A  , z  - r. , t  -V. = .
Vi. n. R

c
and p , 13̂  and h are scaling factors.

he discuss this equation briefly in Section 8.3.
However analytic solutions of (8.12) are complicated and do 
not rive much physical insight to the problem. Instead, 
we first discuss some simpler solutions to (8 .1 ), which, 
although restrictive, do give us a clear view of the problem,

8.2 Cyfli.ndrica 1 ly symmetric eouilibrium models

8.2.1 General Theory

he first discuss some simple models for cylindrically 
symmetric magnetic fields in which the gas pressure is pi'e- 
scribed ana the magnetic field deduced. If the magnetic 
C i 01 d is a s s u m e d to be pu rely a z i m u t h a 1 ( H ± g'u r e 8 ,1a) , t h en 
the momentum equation reduces to

1) 3. 2̂
8—  L. ^  ^  d’ \ ~ ^  6
Aa' ^ ' A  ‘ - g  (3,13)

This is non-dimensionalised as follows:

p -  ̂/ per - m / \1 c r = O  ;
so that (8.13) is

whe re
(c) -z. c r = \ )

A p r - .  \)



(a) BJD

--^

(b) cu r ren t  
sheet

Figure 8.1T.ÎT
field.

(b) -.Cl aziiiiLithal riiapaietostatic field confined at a distance 
r oy a pressure p .

.y-symmctric arcade with a purely azimuthal
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ana r is non-dimensiLnalised against some length-scale 1,
If the cas pressure is imposed everywhere, then (8.14) 

integrates to give

"  —  -  P  P  " T  \  %  , r  A r
r:- ) ' (S.15)

where C is a constant of integration.
One. can thus pick p^r), and use (8.15) to evaluate the 

properties of Uic magnetic field. practice, the Zkrn vnAl
rrescribe both the pressure and normal component of magnetic 
i0 Ic at une piiotosu>here but our a ssumption of cylindrical 

symmetry means that we cannot prescribe both of these.

6.2.2 Special Cases
(a; consider first the case of p being imposed as

rz. ^ ___
'■ W f r W -  (8.16)

so that the nressure falls from the origin to infinity»
Integrating (8.15) gives

~ f  r -ZL:---- -6JV' (8.17)
 ̂ r h  \ -t r ̂ ^

•SO onat, a 3 ps 0, we recover a potential field as expected. 
Considering the behaviour of "ü^ near the origin, it can be
seen that

4  -  ) -V O C r ^ )  ^
so that we require 1 for equilibrium.

A more general case of (8.16) is

■ p  --

which gives
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C
r r ^ C  . n  - \)

n  yr I

l 7 f
C n

r^'Cwr'^)
6____ \ r ~ — (- \ hpxi. \-v ) 1  ̂a ~ \
i. v-a A I

Evaluating C from the condition that B i= 1 at r = 1 gives
_ \ ■r ___& A

- 1
f A'

LA'h)r-C\nrr-y '

II

Cn t \ )C\ \ \ —  l'LY\ - t ")L \ -rlr^ )

{ ^  - ^  I

o -r, I ,
Close to the origin, the restriction on A  becomes

__  L  - \ 1h
which becomes more severe as n increases.

'1 i- I 

1 ,.1' or n
there is no restriction on (1 .

These solutions may also de derived from equation (8.12) 
by a method first discussed by Low (1977), however the above 
derivation is somewhat simpler.
(b) One interesting case of the previous Section is to con­
sider a magnetic field given by (8.17) surrounded at some 
distance r by a field-free gas. We wish to ascertain 
whether a body of plasma can be contained if its internal 
pressure is pumped up. Assuming that the field is given 
by (8.17) and the pressure by (8.16) then a current sheet 
exists at r - r as shown in Figure 8.1b. Pressure balance 
mutt hold across this sheet and if the external oresure is
given by p , pressure balance implies
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where = p / p ^ .  Hence, G in (8.15) is determined b/ the 
pressure-balance at r rather than by normalisation at r = 1.
(8.15) become;

    —  A' L \
r'U\vec) e_ \ 1— 9-

where, if r is fixed an equilibrium exists srovided' y 1
<

canSo, for a chosen r , increasing g means that the plasm;> ti ' y

no longer be contained. Also, increasing p allows higher
values of pressure to be contained.
(c) A further possible form of the imposed pressure is to 
consider the pressure at the dimensionless distance r = 1 to 
be fixed and to V a r y  the pressure toward the origin trig­
onometrically. Such a pressure is

fl'"''- a. — Cv -c\)'- O'<TTr) ^
P \ (8.18)

where p.̂ is the pressure at r = 1 . a is a constant such
that the pressure c h a n g e s  smoothly from unity at r -- 1 to 
2a - 1 at the origin. Equation (8.15) may be integrated
immediately to give 
-.1 1 n
^  i t zz —' ~r \ a  ~t C a, - 1)0^ sC n r ) ]  'A

X L

-t {a - ' V  ^  J_ (^c^rXnr)
r- I TT TT ̂ vl

( 8 . 1 9 )

where B.and p are defined in Section (8.2.1). he now
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examine (8.19) to determine whether any values of a or j3 
preclude the existence of fields. Near the origin, (8.19)
behaves as 

—  '1 1 C (X. ~ \ ) a
TV

.nd so if IT X
t (-V — 1 \ ) -V 1 1\ C TT 9. )

no physically relevant solutions exist,
Rewriting in terms of a, this becomes

c \  >  I T  (  is ^ ) - A-
•Z t TT ̂  -  X'j (8.20)

for the non-existence of solutions. So if either a or ^  
are held fixed and the other is increased, non-equilibrium 
will eventually result cue to excessive pressure buildup.
Figure 8.2 shows the variation of pressure and magnetic field 
with radius for such a configuration. The gas pressure is
fixed at r 1 and is allowed to v a r y  at the origin. 
then the condition (8.20) on a is violated, no field can be
constructed. It is also worth noting that such fields have
been cl.scussed in the context of coronal loops by Ghiuderi 

et al.; (1977).
(d) he have exolicitly shown that magnetic non-equilibrium 
occurs in three specific cases of an imposed pressure distri­
bution. However, one can pi ch. many other possible values of 
p(r) and some of these will give rise to non-equilibrium too. 
For example, if

no solutions exist if

\ —  r

1 \



(a) P

 ̂r

(b)

a=

1,05

r

Figure 5.2 (a) The pressure and (b) the magnetic field
pi van by equations (d.îS) and (8,19), respectively, as functior 
of the diiaensionless radius, r . Several values of a are shov;r 
and C: is taken as 1.0.
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and one could continue peneratinp; such solutions in many other 
cases.

The next development must be the inclusion of gravity 
into such an analysis, but a stratified atmosphere introduces 
complications into these simple calculations. In particular 
gravity does not act in a cylindrically-synimetric manner and 
so the simple calculations there will have to be modified.
Also, it is of importance to follow the evolution in time of 
these structures after the onset of non-equilibrium.

o .3 General two-dimensional solutions

As noted in Section 8.1, the equilibrium of a magneto- 
static field can be written in terms of a single elliptic 
partial differential equation (8,12). (See Tsinganos (1981) 
for a more general outline of this approach), Equation (8.12) 
is, in general, non-linear and need not possess a unique 
solution and oroyress towards solving it has proceeded furthest 
for the case of force-free fields ( " 0) . This has been
considered by Low and Nakagawa (1975), Low (1977) and Heyvaerts 
et al., (1979). ‘These authors have simplified (8.12) by 
writing

where increasing \  represents an increase in B . They find 
that, i f X  is too big, no solutions exist to (8.12), and they 
interpret the maximum as the onset for a flare due to excess 
footDoint shearing. This conclusion has been criticised by 
dockers (1978) and Priest and Hi Ire (I960), who note that 
B (A) attaining a maximum coes not correspond to a maximum shear.
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?(A) has been prescribed by dim et ai,, (19?o) and Low
(1980), and, unlike the force-free case, the physical meaning
of increasing P(A) is clear. II o(A) is too nig, the 
field cannot contain the excess gas pressure ana v;ill blow 

o ut.
The two cases of breakdown of rnagnetostatic and force- 

free equilibria are related by the following simple relation­

ship

provided ^ ̂
^  ^  ̂  j - p L 1 ,

A particular case is given by 3ifn et al., who assume

( ■
\

and obtain

o , .
Ù.. co n vv ‘o

r  iT  coO o, (
rr

-  I
TT

b
v/here b a solution of

\o C.C-'iV\\o
If a- c =1, solutions exist i f ^  <L 1 . In terms of the physical 
parameters, this gives

i o /
V T  / )

for eruption where 3 is measured in Gauss. For B = 10 G,
T T= 10^, n 6 X 10^^ , a density which is achieved in the
corona during flares. If T is lower, say lÔ'*' K, (as in the
photosphere) then n ^  6 x 10^^, a typical photospheric density.

8.3.1 Senarab1e solutions
Approximation (8,21) is, in fact, a rather severe
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restriction and attempts have been made to overcome it by 
looking for separable solutions to the force-free equations 
(driest and Hilne, 1980). This is easily extended to 
cylindrical rnagnetostatic fields in two dimensions.
The non-dimensional form of equation (8.1) is

t  V  ?  - c v  ^ i X  h
where

R n  ̂C r  - \ j c{o ~ o )

C r -  ̂ = o  )
"  p
Cs -  V ---

[i i- r  = \  ̂ ~ o )
The r and (jf components are just

)

JO -\ 2

r

t . l r  -V
b r r

ano flux conservation gives

?) p (5.22)

(5.23)

1. L t~ ft ̂  ) -r jP n  O
3 V- % r

Assuming separable solutions 
p = pCrA TT I ^

1  f i  ;
gives (8.22) - (8,24) as

t ^ cip -  i_ - 
ITT R(-JL r- CLyb r"

2 Ĉ IT 
a*/>rr

(S.24)

(S.25)

p
r l "  H r  ^  a  TZ 
P.0 Ÿ  i r

\rA

t'r K

(8.26)
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\ i fJL i V" ^ tTV — • __zr ' )

^  JL r  ^
where 1, n and ra are constants of separation, 
is separable if

( 8 . 2 7 )

This system

P C o w  A.L ̂
\"\ (8.28)

or
_L 1 ^  C\- \L(^^ - Co
5L r &  r

_  T  _(a ) f? / m = const.
Consider solutions with

- tt, ,

Lhe^ - equations give

cf/.' - ,
T= -ivVAC'f,

IT  -

and the r-equations
ftr - A  : p p l H . p c - ) ^

t: .

(8.29)

(8.30)

)

(8 .3 1)

where J^ is the 1-th. order Bessel function (Abramowitz and

Stegun p. 362).
These are just the rnagnetostatic analogy of the linear 

(constant - of ) force-free field and always give equilibrium. 

(h ) Solutions subject to (8.29)
Consider t h 3 case when

A
cV r

r (8.32)
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whore k is a constant. The radial equations give
I - Vt

— r
r ~p,„ . -  I (3-32)

p — \ J

V
T> r S

and the 'j -equations

A Vrf,(,
cV I

U — \  U  p I

r p  \  t  \ I O

À \ VA'z)
(•3.34)

(3.35)

$ r =  - t  '
where X is a constant of integration. Aquation (8.34) is 
the same as the force-free equation with \  replaced by p \ ^ . 
Aquation (8.34) can be solved analytically if k = -} and it 
can be shown that lies in the range

c < p X-' < \ ,
for solutions to exist. Hence if the pressure is too big, 
rnagnetostatic equil.ibrium breaks down,

8 .4 A simple tim-e-denendent model
Consider a magnetic arcade w i t h  a u n i f o r m  

magnetic field B and cross-sectional width d. The arcade 
is so long that any variations along it may bo ignored. If 
this arcade is situated in a field-free region with pressure 
PQ below it anu above it, then equilibrium exists if the 
pressure gradient across the arcade is balanced by the tension 

exerted by the field (as shown in Figure 8.3a ). If the arcade 
has a radius of curvature r and fixed footprints separated 
bv a distance 2a, then = (sf+h ). There therefore exists



(b)

F i dure 8 «3
fsT ii.agrietic arcade of width d and field strength B set in 
a field-free medium with pressure below the loop and p
above it. The footpoints are separated by a distance 2a

2 2 2and the loop has radius r^ = a + h . The rotted lines denote 
a ssconc equilibrium, the centre of the loop being a distance 
h aboVe the footpoints.
(b) The arcade as a time t >  0. The footpoints are separ­
ated by a fixed distance a but the arcade has become elliptical 
with major radius s and minor radius a. The dashed lines 
denote the arcade at time t = 0. i’hs pressure, p , has
been increased byond its critical value by a factor £ .
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for an/ value of Ihl, two possible equilibrium configurations, 
one with h <  0 ana the other with h > 0  as in Figure 8.3a. 

Equilibrium is given by

( S . 3 7 )
and h is determined by

V\ - CL p e l  ' - \
ct ̂  / 1 y’o - -c. ) (8.38)

If a, B and d are kept fixed, when - p becomes too big,
h no longer has a real value. Thus, for either configuration 
shown in Figure 8.3a as - p increases, h tends to 0 and 
the loop becomes semi-circular. ,.hen the critical value 

Po" Pe* ^^ven by

) (8.39)
is exceeded no equilibrium is possible. ibis can be under­
stood physically since the magnetic tension exerted by the 
arcade field can no longer confine the plasma in the field- 
free region below the arcade.

The magnetic .energy is given by

Vj',Y, ' iv
V (3.40)

where V represents the volume permeated by the field.
For the arcade case, IV is just

■pgL. c .n  ̂ wo y ' ( "/ K ) ft < 0 ,

ft'ii'' («-"‘-'I i  n  
r

(3.41 )

where L is the length of the arcade, so h - 0 is not a maximum 
of the magnetic energy.
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The thermal energy density is given by

» (8.42)
so the onset-of non-equilibrium docs correspond to a maximum 
in A. The respective energies are shown in Figure 8.4.

Consider now what happens if ( p -• p ) is increased 
beyoncj its critical value by a factor ü ouch that

T o  V Y. \  -  -o. ') ,
■ ' >-> ' (8.43)

A very simple time-nepencent model may be constructed 
as follows. Assume that, for all time, d (and hence D) 
remain fixed, (This is a preat simplification and may or 
may not be justifiable: future calculations are needed to
check this). Assume also that as the arcade evolves, it 
behaves as an ellipse, centre the photosphere (Figure 8.3b) 
so that

r  - ■T v h  , (8.45)
where s = a at t - Ü and r is the coordinate of the summit.
The radius of curvature of an ellipse of form x^/a^ + y^/b^ - i

VT. 1
a.- -= )

(, i'-'A /.It ’-') (3.46)

and so, at the summit, = a^/s(t). Hence, as the ellipse 
rises, R decreases and the effect of.magnetic tension increases.

V.'e assume that the mass below the arcade is constant in 
time and for an isothermal plasma, this gives

Pv At. - o)
H r t r t ' )  ' (^47)

Finally, the mass in the arcane is also held constant in time.
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Figure 3.4
Ta) The form of the magnetic energy in the loop as a 
function of h.
(b) The form of the energy density, b, due to the pressure 
■Q as a func.tion of h .
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so

e
cX \W2, (8.43)

o o 1.v.’here I (a' + s )" is length of the ellipse.
Considering force-balance around the summit gives

à t
cl, L s"

a-a s
c a ( S . 4 9 )

and, writin.ç: (8.49) in terras of the sound speeds inside and 
the arcade, respectively and the
Alfven speed, v. = gives

f t ' "  - c b  I t  . o f '  __  ̂(t ~ -r- ̂
&  C'- c( L)x S ft

—  L -r C"  ̂ -̂ S
O'" Tz

(3.50)

Integrating once gives

-  ^ ) rnt. L

c te
hi ' I SCL

(3.51)
-  (LAX'- T S"-)
> r%dL "

where the constant is determined by the condition,
^  - 1)  ̂ ±  - O  ^
lit, /

This gives, on application of the equilibrium condition ( 3. /|4 ) ,
and after extensive algebra,

I s V
X  V ùvt j

( ^ C p  T \ - V ̂ qt-USVvA.q '

U J
Z

&  I s - m \3'2.

i î i i
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;j 'h



■V

-  164

S I —

y  61. I 3

(3.52)
(3.52) is an equation for the velocity of the summit of 

the arcade and the velocity can be shown to be zero at some 
point 8^^^. Hence, the arcade travels upward initially 
until the external pressure and i.iagiietic tension increase and 
prevent the arcade from rising further and the arcade will
then fall back. This is w'nat is seen to happen in a surge.

2 2 -1hor Cg^ = v^ = 50 km s“ , d = 10hm and a = $Oimi, one finds
that is 30 Mm for Z = 0,2.

3.5 Conclusions

In this Chapter the rnagnetostatic equation (3.1) has 
been solved analytically for several cases and the feature 
of rnagnetostatic non-equilibrium shown to exist. This non­
equilibrium may be interpreted as saying that the plasma can 
no longer be contained by the magnetic field and must evolve,
on the fast magnetoacoustic timescale. We have been mainly
concerned with demonstrating the existence of non-equilibrium 
than in calculating specific values of parameters but it does 
appear that if 1 then the possibility of non-equilibrium 
is always present. Values of ^ as large as this are not
generally expected in the high corona, i-iiere magnetic non-
equilibrium is likely to be oue more often to excessively 
sheared footpoints (Priest and milne, 1930). However in the 
photosphere and chromosphere values of (o as high as one are
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to be expected.
The next question is to consider how this non-equilibrium 

manifests itself observationally. As mentioned in the intro­
duction, sprays and surges are eruptions from the chromosphere 
and tiieir temperatures are characteristic of the chromospheric 
values. v.'e suggest that one possible explanation of these 
eruptive phenomena is that rnagnetostatic non-equilibrium occurs 
and material is ejected at high speed from the photosphere as 
shown in Section 3.4. The speed of ejection depends on the 
local conditions in the region of non-equilibrium. It is 
indeed possible that surges and sprays could both be mani­
festations of rnagne tic non-equilibrium with a different para­
meter range in each case. However, usinv the typical values 
of physical quantities quoted by Rust et al., (1930), it may 
be seen that surges have a plasma beta some two orders of 
magnitude higher than sprays and are hence the more likely 
candidate. Zirin (1974) has also studied surges and 
notes that the erupting material is well confined and flows 
outward in a collimated way. This suggests that the magnetic 
field surrounding the surge remains roughly vertical, inhibiting 

lateral motions.
This is the situation modelled in Section (3.4) where 

it was found that after non-ecuilibrium, the plasma could only 
rise to a certain height. However, this calculation is very 
idealised and a much more rigorous analysis is needed before 
any conclusions are drawn.

It is also important to consider whether all our rnagneto­
static fields are stable. The most important feature of any 
such analysis is photospheric line-tying and the results of
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Hood and Priest (1979b, 19oOa) suggest that this is the 
dominant effect. V/e thus expect the fields discussed to 
possess great stability.

In this Chapter, we have just scraped the surface of 
what is a large subject and have contented ourselves with 
showing that the well-known phenomenon) of force-free non- 
equilibrium carries over to magnetic fields containing 
oressure graoients .
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Chapter 9r -.PL CJNCLUblONS

In this thesis, several dynamic phenomena have been 
discussed, and it is the aim of the present chapter to summa­
rise briefly the various results and suggest how the work 
described can be improved upon and extended.

Chapter 2 provides an extensive review of the behaviour 
of shock waves. The well-known results of gas shocks were 
stated, and then an analysis of slow rnagnetohydrodynarnic 
shocks was undertaken. he relaxed the usual assumption 
of aligned incident field and flow (or vanishing electric 
field) and undertook analytical and numerical solutions of 
the full jump relations. It was found that considerable 
plasma heating can be obtained under these circumstances.
In particular, when the tangential component of the magnetic 
field is switched off, a temperature ratio of 2/^5^ \ across 
the shock becomes possible for 1. It was thus suggested
that slow shocks are a very effective heating mechanism and 
could be responsible (in part) for coronal heating.

Chapters 3 and 4 discussed steady flows in coronal loops: 
the so-called siphon flows. Chapter 3 considered adiabatic 
and isothermal flows. The energy equation was here re-
placed by the simple polytropic law p - Kn whereY = 1 and 
"f = 5/3 were considered. The equations of momentum, con­
tinuity and state were solved along a single field line 
subject to prescribed foot-point pressures. It was found 
that, for a loop of uniform cross-sectional area there 
exists no wholly subsonic flows with a pressure ratio less 
than unity. Therefore, for a given sub-unity pressure
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ratio, the f1ow undergoes a subsonic-supersonic transition 
at the loop summit and is decelerated on the oov.nflowj.ng leg 
by a standing shock to give the required boundary condition.

Several different loop cross-sectional areas were also 
considered. In particular, a loop whose area converges 
from one footpoint to another was found to allow pressure 
ratios with wholly subsonic solutions. However, a diverging 
loop permits only shocked ones. The effect of the flow is 
to lower both density and temperature below their static 
levels, suggesting that such siphon flows should be observ­
able, due to the drop in emission measure (Moci, 1931).

Chapter 4 extended this theory to include a realistic 
energy equation. Such an equation incorporates terms re­
presenting thermal conduction, optically thin radiation and 
a mechanical heating term which is constant per unit mass.
The full set of steady-state equations was solved numerically 
subject to fixed temperatures and densities at the footpoints.
A large range of footpoint boundary conditions were found to 
be satisfied by loops having; siphon flows, suggesting that the 
static loop models previously considered (Hood, 1930 and 
references therein) are only one of a large range of possible 
coronal loop solutions. Also, the need for shocked solutions 
was removed, although they still c"n occur for large pressure 
ratios. A flow was also found to reduce the maximum loop 
temperature and move it to some position on the aownflowing 
leg, thus creating asymmetric temperature profiles. The 
onset for thermal non-equilibrium in a loop (see below) was 
found to be enhanced by the presence of a steady flow.

The work on siphon flows can be extended in the
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rollov;in," ways:

(l) It is nuceccary to" find out how siphon flows 
actually arise, ana this can bo cone by a time-dependent 
calculation in which one starts i. ith a static loop and then 
urnGually reduces one of the footpoint pressures. A flow 
y ill start, and it is of interest to see how long it takes 
before a steady flow is set up if at all,

(15.) Improvements in coronal loop observations are 
necessary before one can expect to detect such a flow, but 
recent eclipse photographs (Livingston and Harvey, 19B1) 
have provided the first evidence o.f coronal siphon flows,
It is important to calculate the deviation from the predicted 
emission which a flow would cause and the work of Loci is a 
first step in this direction.

(iii) it is desirable to model steady-state siphon flows 
down to the base of the transition zone instead of starting 
at T " 10'" K . This wi 11 enable us to see whether the large 
nu.:..ber of observed transition zone flows are, in fact, part 
of a 'wicer circulation. It seems unlikely that steady or 
q u a s i - steady flows are not occurring in coronal loops due to 
the continually changing nature of the loop base. It is 
thus hard to believe that loops are always static, and there 
seems little doubt that flows from one end of the loop to the 
other do exist provided the base conditions remain steady for 
a few sound-travel times (typically a sound-bravel time is 

between 5 and 20 minutes).
In Chapter 5, the cooling of a coronal loop due to ther­

mal non-equilibrium was examined. Hood and Priest (1979a) 
sho\;ed that, if the pressure in a coronal loop became too
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lai''-e, then it in unable to maintain a temperature of over 
A■ JO'̂  K and cools to below 10" h . bsing an orcier-of-magnitude

schen'O, we followed the non-linear evolution of the cooling,
'■ 6 Io was Lounn that the loop cools slowly from typically 10 K

Uto ?.f X 10'' K and then cools non-linearly to below 10 K in 
a laatter of a few minutes. It was suggested that, depending 
on the loop gaometry, the ?"esu.lt coulé either be a cool loop 
core as observed by Foukal (1975) or a prominence supported 
• by a, corona 1 arcade ,

This simple analysis should be developed along the 
following lines:

(1 ) A full numerical solution should be attempted of 
the one-dimensional equations. This is well v.lthin the 
resources, of current computers, and it should be able to follov; 
the evolution for a considerable time. Such a code should
enable one to model the transition zone down to the temperature 
minimum and recent 'vork of Peres et al., (1931) has made this 
a oractical proposition. They have developed a piecewise 
radiative loss function for temperatures down to the temper­
ature minimum based on the calculations of Vernazza et al. 
(1931), and such a loss function can be easily included into 
current codes.

(2) Fuller n.H.b. simulations of arcades and loops 
won .In.: enable us to see exactly how .(and whether) it is necess­
ary to couple in the magnetostatics to the energetics. The 
single-fiel.ci line model is only of use if a field is approxi­
mate .ly force-free, and it is not always clear that this is 
the case.

Chapter 6 discussed another aspect of thermal non-equili­
brium, na.nely the suggestion that it is responsible for the
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cc act flare. In a cool loop, heating approximately
balances radiation, and, if the heat in; % becomes too big,
the input cannot be radiated away and the loop heats up.

nThe loop flares to over 10 K in typically 5 minutes, in 
good agreement with flare rise-time observations. The 
evolution was followed by using the same order-of-magnitude 

approximation as in Chapter 5, and it was suggested that 
this gives a reasonable approximation to thp temperature 
behaviour but a. poor approximation for the density. The 
following improvements are likely to be of use:

(1) As in Chapter f , a full numerical code is needed 
and preliminary results (Hood and Priest, 1982) are encour- 
aging.

(2) The question of base boundary conditions is of 
vital importance. It is clear that any disturbance gener­
ated in the corona must be allowed to i nteract as Idr down as 
the temperature minimum if necessary. Thus one must con­
struct a lower atmosphere, such as suggested by l-'eres et al. 
(see above). This is somewhat simpler than the approach 
undertaken by Hagai (19^0), but the end result should be 
similar,

(3) Gravity should be included fully since the scale- 
height is small in cool regions.

(ii.) Area divergence should be considered. However, 
it is important to remember that the flaring loop must remain 
force-free for all time, and a rapid area divergence could 
give rise to very weak fields, and a situation of magneto- 
static rather than force-free equilibrium couId arise, casting 
doubt on single field line models.
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(5) It should be remembersd that thermal non-equili- 
brium is just one possible trigger for the compact flare.
Other models of energy release such as the kink instability 
(Hood and Priest, 1979b) and tearing modes (Opicer, 1977) are 
also inipoï'tant , Therefore one snouId also try to develop
further models of the response of hot loops to an energy 
input. (dee Craig, 1931, for a review of current work 

on this subject).
Chapter 7 re-examined the Kopp-Pneuman model for "post"- 

flare loops. K^pp and Pneumnn (197&) suggested that "post"- 
flare loops are heated by gas-dynamic shocks but the tempera­
tures obtained this way are nowhere near high enough. In­
stead, it is suggested that the loops are heated by two slow 
k.H.b. shocks extending from the Y-type neutral point. Using 
the theory of Chapter 2, temperatures of up to 10 K and 
neutral point speeds of 1 km s  ̂ were found and the model 
was then applied to the 29th July 1973 flare.

Clearly, a full 2-dimensional, compressible M.H.D. 
c a l c u l a t i o n  is desirable, but this gives rise to considerable 
numerical problems. Also, it will be of interest to compare 
this model witli other observations of " post"-flare loops to

test its more general applicability.
Finally, Chapter 8 examined magnetostatic non-equilibrium. 

It was shown analytically that magnetostatic equilibrium could 
break down if the gas pressure becomes too large in certain 
magnetic structures. Both one-and two-dimensional moaels 
v/ere examined, and it v&as suggested that non-equilibrium io 
a cessible explanation of surges and sprays. This work can 
be regarded as a preliminary analysis and iuture work snould 

includo:
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(1) A further examination of existence theorems 
that can be applied to the equation

- x q  iV;
13iri\ e G a 1. (19?o ) !ave ;.iaoe oi;ie progress, and further 
results by Hdenstrasser (1930) should be considered to see 
if they can be applied to solar magnetic fields.

(2) Further simple time-dependent analyses following 
the ideas of Pneuman (1930) may give a rough guide to the 
evolution of a magnetic field after non-equilibrium has 
occurred,

(3) A numerical solution of the time-dependent 
erc'tions seems feasible if the initial field can be expressed 
in simple analytical form.

J
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