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PYNMERTIC L PROCEEEES T Thy 30153 aTIOBPHERS

It has become clear that the closed-field recions of
the solar atmospher«e are not static (as was once thourht)
but that many tyres of steady and unsteady flows and other
dynamical processes such as flares are continually occurring
in them, This thesis investizates some theoretical aspects
of these dynamical phenocmena,

Steady, one-dimensional flow along a coronal loop is
investigated firdgt of all, Such a flow may be driven by
a pressure difference bestwesen the footpoints, and a wids
rarge oi shockazd and unsnocked flows are found. Ths
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most statiec loop models, and these models are shown to form

~ -
|

1285 of a much wider range of dynamic soluticons

Therinal non-equilibrium in hot coronal loops oceurs if

the Trecsure in a loop becomzs toe big, ne non-lins=ay
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evolution of this non-equilibrium state is followed, ant
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Therasizl non-equilibrium is 2lse ciscussed as a —osgibdle

mechanisn for the simple-loop flare. It is suggested that

a ¢ool equilibrium at & temperature of & few times 107 Kk can
”y 3

flare to over.10’ K if the mechanical heatins in the cool

loop becom=es teo large. The evolution is followed and the




loop is found to flare to over 10
P

Marnetohydrodynanic snock waves have long been regarded

v

as a potentially efficient hesting mechanism.

is re-examined here,

and it is found that certain types

shock can release very large amounts 0f energy.

are then applied to
temperatures of 1O7

Finally, some

are ciscussed, 2nd it is pointed out that if the gzas pressure
is too big then Megn

Tt is sugsested that the subszaquent evolution

to a surgze or otner

the heating of "post"-flare

K at the loop summit may be
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Chapter 1:

ne recent Skylab aand 3olar laximam Hission (S5 .didie)sat-

ellites have stressed that the solar atmoschere is not a quiet

homopeneous structure but an active dynamic region containing

-

many steady and unsteady flows, Obssrvations have concentrated

3 1

on coronal loops and solar flares, and it is the object of this

-hesis to examine the dynamic behaviour of such reg

}
)

p r\{

ions,

1e begin by describings the basic eguations in Section 1.1,
Sections 1.2 - 1.4 then provide a review of coronal loop obser-
vations, flows in the transition zone and corona, and solar

ection 1.5 provides a very brief review of the aims
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in this chapnter are repeated in subsequent chapters and, wnere

necessaryv, exnanded,




1.1 The basic eguations

The basic equations for the behaviour of an ionised gas
(or plasma) are the kinetic equations (Boyd and Sanderson,
1969) . They describe the particle distribution but, for
most purposes, may be aonproximated by the {luid equations,
This approximation holds vrovided the length-scales are much
greater than the mean free path and the time-scales are rmuch
longer than the collision time, In this section, we state
the equations of electromagnetism, fluid dynamics, and energy,

and finally combine them to obtain the equations of magneto-

hydrodynamics (referred to as i.H.D.).

1.1.,1 Electromaenetic eouations

In an inertial frame the equations of electromagnetism

S
M

jaxwell's equations:

@®

n

(1.1)
AV N, = 1A k\h O O B '3 . (1 .2)

T ?_.: — \"C !/ (: . (1.3)

V.s = O, (1.4)

where = is the electric field, B is the magnetic induction
(cenerally referred to as the magnetic field), J is the electric
current density and ¢. is the electric charge density, W

and ¢ are the magnetic permeability ( &0 ANY Hm ')

and dielectric constant (2 4% x\0 Fa in & wvacuum,

These eaquations are supplemented by Ohm's law in the formn
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where

velocity. It

Ohm's law (Boyd

1.1.2
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momentum
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g¢lectrical conductivity and v is the plasma

is a greatly simplified version of the general

and SBanderson, equation 3461 ¥

tions

egauations are the conti

nuity equation

.,’ \ ‘/‘ \.{’ \ - (._’n (1 .6)

equation

= { B A vy ) B N7 ~
7 ‘\‘ = - ‘../_ ik | \/ o N 7 D % & @ . = ( (i 7)
o \ et ! - \ . 5 — )
where o 1is the gas pressure, - 1is the mass density and =
is any general force acting on the plasma (e.g. viscosity or
the Lorentz force), The force acting due to an electromagnetic
field is
-~ *ree (&)
R (> t= NN (1.8)
o = N 1S i i, v \ 1 st
The oressuré and density are related to the temperature, F,by

equation

where . is the

the rean molecul

en nDlasma)

hydrog

terms of the num

g &
a8

-1

i a5 SE =1 ~ .
gas constant (8.26 x 1@3 J kg~ 'K”') and v is
ar weirht (taken as 0.5 for a fully ionised

It is often more convenient to work in

ber density, n , rather than the mass density
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where my 1s the mass of a hydro2en atom. The eguation of

state is then

I
W
cy
~
i
S
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where k, (= H/mF) is Boltzmann's constant (1.38 x 1(
i

aln r

hall generally drop the subscript 'e! in the density so

e

that M will be assumed to mean the electron number density.

N St A el ANy M9 S8 3
1.1.3 Magnetohydrodynamic ezuations

in Section (1.1.1)
and (1.1.2) to give the equationsof H.H.D, The IM.,H.D, approxi-

mation kolds if the characteristic speeds are non-relat:vistic.

the terms on the right-hand side of (1.2) gives

A e
\ S A | L
\\'k = ! t V\ A WG ]
e S & i D '
. 3 = vy 1 A o X J \ '
W D= \.-J x4 B [eAF | 7
{ = - > I~ L=

nrovided V < , In this.expression, v is a typical velocity,
1 4 tynmical length andy a tyvical time, Bquation (1.2) then

reduces to

B 2 pd (1.10)

AN
/ Decoines

!" e ‘T‘ "\ 14 \_; {0 % ("
1 - - \ .
4 - J L = LYV X . ) A N
= SRR (1.11)
VAL
and the momentum equation is thus
N x N \ . —
\'.,"‘ i y ) ~ : ..\‘\x & J O
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Taking the curl of Ohm's law (1.5) and using (1.10) and

(1.1) gives

<

DR . .
:d P s €N o BN ’ - &

A LR Y N (R RS (1.12)

which is called the induction equation.
YW is the magnetic diffusivity and is defined as

{
Y=

VAT

\

If » is taken uniform, thea equation (1.12) reduces to

Y 54 5

o s ) S
e 3 NG ox L SR > : - |‘ N D . ( Ta 3)
Tl I s

The ratio of the two terms on the right-hand side of (1.13) is

known as the magnetic Reynolds number, RH, defined as
i

o~ [

~en & \/ \_
e .
A3

IfQ.> 1 , then (1.13) simplifies to

U ox LN o) (1.14)

(D]

In this case, the magnetic {lux in a closed contour moving with

the plasma is constant, which implies that the lines of magnetic

force move with the plasma and are said to be frozen into the

{

plasma, If R,<«<\| , then (1.,13) becoines
= = N | (1.15)

the well-known diffusion equation, In this cass, the field

diffuses away on a timescale

1.1.4 The enerpy eguation

o < 4-

The system of eguations discussed in the previous three




sectisns is not closed unless the temperabure is prescribed,
In general, a furtner eguation is then requirec which is the

|

enersy equation, In its simplest form it is

where ¥ = Calc,,, the ratio of the spscific heats and L(n, T)

represents the energy losses or gains, If L & O then (1.16)

el-a ~y 3 Ay 4= ~ e vy o 3 N1 3 e o oyl
¢ shall consicer three terms in L, namely thermal con-
: T IR < it B ey - e o e Rins
cuction (which may be 2 pgain or a loss), energy loss due to

o S I 24 44 T 12 51 R P R S g8
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where K is the conouctivity tensor.
For vrresent purposes, K can be considered as having two com-

ponents, one alone the magnetic field (kli) and one perpendi-

cular to it (ki), defined for sufficiently strong magnetic

\ i » & = ;:I) ' =%
S B ~ = i
-(u Le A D ANO s RN W K
\ ) (1.1!3)
L. Loal
A
e M g I | -} ==
\ c B —_— \ \ i 3 )
¢ = 3.SKALD Ry 700 AW wn (1.19)
= Al M A

avigeR
G

ele charge, Ai the posgitive ion mass and

wiky 1s the coulomb logarithm which depends weakly onm™ and T

¢ and »r are both dependent on Z (Spitzer, 1962). For a
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hydrogen plasma and typical coronal values of M and T,

AL 4 - | (1.20)

Priest (1978) has shown that, if 1 is a typical length across

the field and L a lenzth along the field, then

' ) ) Ay A .
s 7 - LRy S W A 7 \
g, \ ~" { S
| 2 5 >
et - \
s ' > 2 -~ o s
I L XAC , X K 5 - Loand D X IG. Thus, con-

duction across a magnetic field is,for thesz parameters,

nezlicsible in the solar corona.

(b) Keciati

v - et

b4
o}

n

l

3 -

The optically thin raaiative lons from a plasma is

renresented by (Summers and !

‘cihirter, 1979)

\
where f

R NN } i B
U X =N 4 e ) S ! RaE y A U % T )
NN PN W\ N -\ J \ /l._ gmein x .
i 0 s
l Lo § >

J(H) is the radiated loss from hydrosen and ui is that from

large number of authors have calculated the
loss function, their results being shown in Figure 1.1,
{owever, the loss is generally arroximated by iecewis

Ho er, ¢ loss is generally arroximated by a piecewilse

continuous function; that of Rosner et al, (1978) is given in

Table 1.1,

siall
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The values of X and in the optically thin radiative loss

|
o o e A > . S : - " e
function »7 X as a function of temperature as calculated|
by Rosner et al, (1978). i

)
19 -
1§ W=

. ;
2 x 10%< T< L x 10% 1.12 x 10737 | 0
v T m - A’.l . - ip I
Lo JOKE<L TS 8 x 107K 1@ =" 2
. = . e - ,
& x 10° P2 5% 107K 6.3 x 10 35 0 I
- ~5", R ) 57 o0 —2[4. -
25 x 107K« T<5.6x 107K 3:98 ¥ 10 -
) : .
5.6% 10°K< T« 2 x 10% 1.15 x 1072? 0
2 x 10°%kK< T< 107K 1.86 x 10731 =3
The function is defined as
po-— »I.- \J\' =
RLT ) = X \ (1.22)

where A\ and X are given
only 10% of this radiati

accuracy of Q(T) depends
known . In faect, (1.22)

2] heating

in Table 1., It should be noted that

on comes from hydrogen, thus the
on how well solar abundances are

accurate to only a factor of 2 or 3.

This term (denoted

in the energy equation.

by EH) represents all the heat sources

In the corona,

the heating is thought

to be due

to hoth waves propagatine upward fron

the photosphere

and ohmic dissipation at

of the heating

S0 Bq is written as
i
3 2 ()
where H, d and e are con

a rateJ /s » However, the dependence

the local varameters is not clear and

on




or S =

thus

o+
[
Q
]
LJ
U

Jur energy equéad

N 5 - \
\ A '
0 v\ \ / WA
] 1 s e - g BT >
and the clo ,3('{ et of x:[; i 18 1S
~
~ | A \ P . / . ¢
~\ \ 4 ! 1 o
~
N 7 -
2 r- N Codl (
\ )
N, \
3 . L n o ;\
I. 2 )
K i) -
\ e {
\ R \
~ ~
3\ <7 / \ el
< , \ ~
X\ )
[y
N 2 N 2
0 | 7 }- o~ i \
| \ J | N Ao A
- 5\ ]
1 \
- SO N

where B and J are given by

er Un_'l

volume

t

(1.24a)

(1.24b)

(1.29)

(1.30)
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1.2 Observations of coronal loops

Since the launch of the Skylab satellite it has beccme
avparent that, instead of being a static, plane-stratified
a tmosphere, the solar corona is a highly structured medium,
Tt consists of oven structures (coronal holes), which are the
source of the solar wind, and closed structures, which are seen
in 2.U.V. and X-rays as loops. These looprs typically have

6

temperatures in excess of 107K, imply ing some form of energy
dernsition or heating to balance losses due to radiation and
thermal conduction., iie now outline their properties briefly
and discuss in Section (1.3) the nature of steady and transient
flows observed in loops and in the transition zone.

The most concise recent review of the properties of loops
is riven by Priest (1978) which we follow closely. He splits

loops up into roushly five classifications, the properties of

sumtmarised in Table 1,2,

)

which ar

Table 1,2
Typical length (kim), Temperature (K) and electron

number density (m"B) for different types of loops.

| b e § e 5 [ wa
; Inter- <uiet active "Post"- :imple
| connecting Region fegion flare flare

L 20-700 20-700 | 10-100 ~ 10-100 5-50

K\ 2-3%x10° 1.8x10% | 10M-25x10®  10%-ix10® | £ ux10

i

f 7%x10 1k 2-10x10 BBl

"pPost"-flare and simple flare loops are discussed in Section

1 ‘[}-o

Interconnecting loops link differeant active regions, are

seen in £.U.V. (Sheeley et al.,1975) and X-Rays (Chase et al.,




1975, Svestka et al., 1977). They are rooted in regions of

-
8]
(4]
]
o~
\s
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@)

strong mapgy at the edge of active repgions and typi-

cally bave a lifetime of a day, but a system of such loops
may last for several solar rotations.

fuiet-recion loovs are similar to interconnecting loops

except that they are somewhat cooler and do not connect active

regions

wetive-recion loops are somewhat more interesting than

1

the previous ones: they hzve

—

een studied extensively by
Foukal (1975) using Skylab £.U0.V. data. He finds cocol loon

cores ( T2 12"« ) nasted inside ragions at coronal temperatures,

The density of such a cool core is avproximately equal to that

o

of the corona, and so the pressure in the core must be a tenth
of the coronal pressure, Similar properties have been found

by Jordan (1975) and discussed further by Foukal (1976).

13 Ob servations of steady and transient flows in the t

-

ransition

,qpn_pnd corona

e 2 e e R e i

Since the advent of space telescopes, a large range of

nave heen observed in the solar transition zone and coron

L'

—3

=
® Q
65} =
@ 0}

and the older ground~based observations are now surmarissz

1.3.1 Ground -based

(a) Cne of the carliest flows observed on the sun was the
mvershed flow in sunspots. This is a two~way flow, being

directed cut of the sunspot at photosrhere levels and into it

at the chromosphere (e.g. Schroter (1967)). Qutward svershed
flow starts at the edge of the rhotosphere umbra and moves
radially through the penumbra at a few?cns'1. Haltby (1975)

has described 1nu‘ru (chromospheric) Zvershed flow along

e




superpenumbral fibrils that reach an altitude of 5Sinm, The
(-‘L s .,.ys,-\.'\(‘ decraases a ok ol ,*“,"l_ - 4 1 L' - 2O vn'r\',n'- t ¢ an uUn ':(‘ntf_\. A
flow speed cecreases aorupPely xn e mora Lo an unaevecy

able valvee at a brightening. Speeds along superpenumbral

aie s . ~1 3 = e 5 ;
fibrils can be as much as 25-50kn s  and the flow lifetime is
between ! hour and 2 hours, (3ee Haugen, 1967, Loughhead,

(b) Coronal rain is szen 28 cool downflowing material along

r""

stronwly curved trajectorizs into active regions, velo
&0 r‘\]..-.""l 4 TS o O S S oo :

r 50-100.kas , A good illustration is provided

ruzek and Durrant (1377) on »age 101, foukal (19783)

discusses coronal rain movinz down oboth legs of a loop at

from a condensation near the loop

(c) Somewhat more transient effects are duve to surees,

Thzse are streams of plasma ejected upwards from the leading
edee of an active rezion with sceeds of typically 20-30km s
but somatimes as fast as 200kns , They follow curved praths

and often return to the surfacsz along the sarie path,

(d) Spicules are jets of gas ejected from the low chromosphere

——

at the boundary of supergranular cells, Their speeds are typi-

-1

cally 20-30kms and they attain a height of approximately 10im

before returnings to the surface,

1+3+2 Spacecraft observations

l \ﬁ

Persistent chromospheric and transition region flows
lasting several hours have bsen observed on 030-8, by Lites
et al.(1976). They describe an upflow of €-10 km s at
500 to the vertical around a filament, downflows of 2—5!«n3'1

- s : -1
ovar the network and downflows over a sunspobt of L4-6 km s




o A2 =
5 ard . 3L Y iy i v =T [ 1 Y34 V< xzszm o 3 T
at 35 to the normal., pruner et dL.(IJ/U) observed tnese
transient downflows at five minute intervals; they may well

be coronal rain falling through the field of wview with a

g - ; -1 i . < :
yvelocity of 30kms ., More transient phenomenon include small-

: - . -1 ;
scale dovnward flows over sunspots of up to 150 km s ', micro-
. N 4 -1 . i )
surrses over & nlage of 30 km s (both upward and dovmward)
o SR R V% AT 5 3 - S S it A 4 2 N Lo ,,"'1
and explosions with upward or downward motions of 100 km s .
(See Priest (1981b) for more details),
Flows in Lhe upner transition zone and corona are some-
what harder to detect and X-Ray observations of coronal loops
have not yot identified flows but recent eclipse results

(Livingston and 1921) have svugzested that steady flows

occur in coronal loops, the

v
o
Q
(9]

cities lying between 3 and 15
lin 8 . However, Levine and Withtros (1977) witnessed the

rapid evacuation of a coronal loop in which large dovnflows

were observed: the (possibly) "post"-flare nature ¢f this
event makes interpretation difficult. lare-related flows

are cdiscussed in Section 1.4.
We are only starting to become aware of the highly
dynamic nature of the upper solar atmosphere, and future

1

observations, in particular from the 3S.¢.M., should provide

a vast new rance of data,

In this section, we aim to give a general review of
solar flare observations: more detailed analyses are given
in the relevant chapters. Good review:0of observations are
civen by Svestka (1976) and Brown et al, (1981), and recent

summarised in Priest (1961a) and 3picer and Brown




A solar flare is often crudely defined as a brightening
on the Sun but this is a simplistic viewpoint. More explicitly

flares can be classified into two main types:

(a) simple-loop (or compact) flares,
(b) two-ribbon flares.

and we discuss these separately,

141 Two-ribhon f{lares

The large, two-ribbon flare occurs when an active-region
filamant, often lying along tre polarity inversion line, erupts

and two bright bands of W, emission move out from the filament

site. The i, ribbons are joined by loops - called "post®-
flare loops - whose properties were stated in Table 1.2, In

fact, tie words "post"-flare are a misnomer, since energ

release probably continues throughout the main phase.

@

Svestka (1976) lists many observations of flares and
states 37 properties that flaresgzenerally appear to possess.
Clearly, any &ingle flare theory cannot explain all of these
and in this thesis we sh3ll not be concerned with a considerable
number of them - such as those concerned with particle behaviour,
Priest (1976) has ziven a representation of the flare
intensity in various wavelengths and we reproduce this in
Figure 1.2, The flare is typically split into 4 regions:-
preflare, impulsive, flash and main phases. During the

preflare phase (typically 1-10 minutes) an increase in intensity

in {-ray and E.U.V. emission is seen, The flare itself begins
in two stages: the flash phase and the impulsive phase.

The flash phase lasts approximately five minutes: during this
time, the intensity and flare area increase rapidly. buring

this phase, some flares also exhibit an impulsive phase,

A
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characterised by hard X-ray bursts and microwave emission.
The main nhase follows the flash phase; during it the inten-
sity decreases, typically in about 1 hour.

Je now sumnarise the basic observations of magnetic
field, temperature and densibty as listed by Svestka (1976).

(a) A bipolar field is a necessary condition for flare

'y

occurrence,

T N O s
tne resyuonse

184

~—
o
B
;
)
)

the corona to

is heating above the emerging flux., This =zives rise to an
L-Ray bright point.

(c) Flares tend to occur when an active region approaches
maximum developmnent.,

{(d) The bigrest flares occur in regions where the original
bipolar structure has tecome magnetically complex,

(e) The initial flare brightenings in the chromosphere occur
near the zero line of longitudinal masnetic field.

(£) In big flares, the bright patches merge and form regular
chromospheric ribbons, (So~called two-ribbon flares).

(2) ihe aquiescent filament often disacpears and the chromo-

spneric ribbons form along both sides of its site,

(h) These ribbons travel outwards at velocities between 1 and

(i) The ribbons mark the footrcoints of coronal loops
("post"-flare loovs).

(j) Changing maenetic fields are characteristic of active

(k) Flares tend to occur when new flux emerges inside active

1 After the flare, the marnetic structure is somewhat
)

simplifizd.




(m) In the preflare phase, the guiescent filament is acti-
vated minutes or tens cf minutes befors the flare occurs.

This can be interpreted as a change in the field vefore the
flare onset, and this chrange is of a non-eruptive nature,
(n) Pre-~{lare heating (seen in soft L-rays) is evident

\ o)

ten minutes before the flare,

(o) The earliest manifestation of the flare is an increase

transition zone or corona.
(p) The sequence of maxima during a flare is :
(1) maximum in coronal temperature;
(2) maximum in W. licht;
(3) maximum in emission measure,
(ql The maximum temperature deduced from soft A-rays is

4 £ ] o o~ ] on,
1 - L4x10'K with 2 mean electron density of 3x10 6 m 3.

m Z, but it can be as high as 4x10 19 m'B.

(s} The density of hydrogen in a chromospheric flare is
(t) The density decreases with height: it is 1 m'3
bove the chromosphere, and 10 m - at a height of
20,000 km above the chromospheric bhase.

() The density is two orders of magnitude higher than in
the quiet sun,

o ; & . 5 22
The total energy released in a flare is of order 10

- & 25
for a small flare and up to 3x10 2 J for a larass event.,
Priest (1976) has estimated the various contributions for a

laree flare as

in soft X-ray and B.U.V. emission reflecting a heating in the

J
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plectromasnetic radiation un to X-rays 10°
n1: R T N A ~ LD T
lrn erp anetary nlas ¢ wWave 10 d
-- s e S AR ST 3 LAy
Hard X-rays (fast wparticles) 5x10

. . . . ~ b}
Subrelativistic nuclei 2x10

Total energy output 3x10 .

Brown (1975) has estimated that hard X-rays may contribute
25 o : . -
uwp to 2105 J., 'his energy release is eguivalent to anniha-

lating a maegnetic field of 500 Gauss in a cube of side 3x107 m,

1.4.2 Simnle-loon (compact) flares

One outstanding result of the 3kylab observations was the
realisation that the compact flare occurred in a magnetic loop

or arch (Cheng and Widing, 1975) The structure of this loop

change much durine the flare and it has a
tynical heisght of a few bMm,

During the flare, the temperature in the loop rises to
Qver 2x107 K and the density (deduced fron the emission measure)

~17 =3

of over 10 T, There ia a time-lag of about

tween the temperature and density maxima. An
extensive analysis of such flares by loore and Datlowe (1975)
showed that the l-ray emitting region had a temperature of

between 1.1x107 K and 1.SX1O7 K, it was visible for between

(V%)
2

nd 40 minutes and was approximately 10 - 80 Iim long. A

similar analysis by lMilkey et al,6 (1971) gave maximum temperatures

7
.

in the range 2.5 - 3.5 x 10’ K, and oscillations in the temper-

o

ature apneared in the cooling of the X-ray plasua (preuuyably

dus to radiative and conductive effects).

TR ™ -

Cheng and “iding (197

g
22

also observed some cvidence of
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so-called 'Thermal Flares', Ihese are flares which, in
the words of Cheng and VWiding "no obvious evidence of violent
dynamical processes or particle acceleration" was found,
They comment that such a flare must possess an instability
which results in heating only.
More recent observations by Lites et al. (1981) have
detected downflows of order &80 km 3-1 in the transition zone
and Chenr et al.(1981) have supgested that such flows are driven

I,

by a oressure gradient between loop summit and base,

In this chapter, a brief review of the l.H.D. ecuations
and observatcions of coronal loops and solar flares has been
cresented. Observations of steady and transient flows in
the transition zone and corona have also been discussed, and

the dynamic nature of the solar corona is stressed throughout

D

this thesis,

Chanter 2 presents a review of the behaviour of shock-
waves, which are of importance later in the thesis, The
nroperties of 1.H.D. shocks whose incident flow and field
are non-aligned is reinvestigated, and it is found that
substantial extra energy release is allowed if the input
paramneters take on certain values,

Chapters 3, 4 and 5 are concerned with the behaviour
of steady and unsteadyv flows in coronal loops. A peneral
theory of steady-state siphon flows is developed in Chapters
3 and L. In Chapter 3, an adiabatic energy equation is
empnloyed, and the ceneral characteristics of the flow are

investisated, whereas Chapter 4 extends the analysis to

RTCIpRR] e | |



include a full enersy ecuation., ffects or differ
boundary conditions aand P geometries are investigated,
amd the nop-evisten \ § in o i ¢ ig hrie

1 i et s NS \ A S-SV e I | A A [ o 1 - ] O 2
c¢iscussed,

Chanter 5 investigates the non-linesar evolution of
thermal n 1 in onal loop, which may occur
if the 1] prassure is too large. Tt is sy rmested
this could account for the f the observed cool

lculation to

t, and carry out a si

i te this

-
47}

reconnechion model 18 also discussed,
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wesis, shock waves

will occur in several

problemns,

and so 1% is convenient to summarise their behaviour heres and
also to present some results in a new light, In an ordinary
gas, a3 sturkance will propacate at the sound speed, ¢

(where ¢ et /gy these sound waves may be described

by linear theory, but when a wave possesses a finite amplitude,

it stecpens due to the effect of the non-linear terms,

sventually, the crest catches up with the trough and there then

exists a region of large velocity, density and pressure gradients |
!

in which dissipative terms in the momentum and energy eguations ’

bacome important, This is known as a shock wave., It travels

in excess of the local sound spesed, so information cannot pro-

)

to indi

_ o
snd also compressed

: - Y Y - ~1
passes througn a sho
.

If the ras is
of a magnetic field

-~ -~

aod to the

terms
A = 2 ¥ . " A B
a Lorentz force and !

O B
aclions

dependent equ
o0

Te

55 b

cat:

(1%

arrival., is decelerated

and ed (by viscous as it

1
CK o

electrically conducting, the prasence

may be important, It is then necessary

momentum and energy equations representing

oynting vector flux, The ideal time-

are then,

(2.1)

-~ f)
Lo &

(
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these souatblicn for t a
unai marnetic Leld, ¢ may be
1 -4 ~ 1 «re
Fourier aZnalysed as
y 4 X N o= )
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and > result {(e,r., Parker, 1979, Priest, 1982)

re dimensionless phase velocities
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waves become

Hence, the slow magnetoacoustic ware can nropasate 3

an0 4 i 3 4 ;
at almost 90" to the field, but never exactly pervendicule

If (£ 2} then the fast and slow modes are

The simplest type of shock-wave is the plane gas shock,

the theory of which has been understood for over a century,

If we assumne that variables change in the direction normal

to the shock only, equation (2.2) is

Ny O A WM N\ ‘\ E 3 (‘:“'} ’)



N

where 38 is the coordinate normal to the shock,

Integrating from $=2-¢ to S=«¢ and letting *-5c< gives
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where the integral of any quantity without a spatial derivative
is identically zero.

Similarly eguations (2.1) and (2.5) become
= O (2.73)
and

v {4 vt < XS v 2 (2.14)

where

and '1' denotes an unshocked cuantity, '2' a shocked one,

Equations (2.12) - (2.14) are known as the Rankine -

jump relations, and they represent the conservation of momentum,

mass and energy across the shock. Inside the shock, the dis-

sipative terms neglected in (2.1) - (2.

\J

) such as viscosity and
thermal conduction are dominant: a complicated analysis is

then needad to determine the shock structure (See Curle, 1971,

Equations (2,12) - (2.14) may be combined with the equation

of state tomive the following exvpressions for the density
i StAte COmrive LTne io0llowing exXpresslions 10X cne aensivy,

-1 i . o CPI T S - “ ~ (T Lo e ~
pressure and temperature ratios across the shock:
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inally, it is worth noting that for obligue shccks

results (2.15) - (2.17) are modified by reprlacing A{ by
.2 B . g B e s 5 s :

Iy cos”zy where >, is the angle of incidence of the f{low
to the shock normal, The flow iz deflected away from the f

normal on nassagce throughn t

2.3 L.H.D. Shocks

N0
e IR

In Section 2.1, it was shown that the characteristic
velocity of vropasation in a gas, ¢., is modified by the
s
sresence of a magnetic field and so the behaviour of shocks

ikewise change. llarnetohydrodynamic (i..H.D.) shocks

are of great relevence in astrophysics, particularly in certain

asuechts of solar flare theory. Shock waves in =eneral heat 1
a olasma and certain classes of i.H.D. shocks are cxtremely |
{
1
efficient at doing this., They are of importance to the ;

problem of steady reconnaction by the Fetschek (1964) mechan-
m and are resnonsible for most of the plasma heating in that
theory., The compressible Petschek mechanism has only recently
becomne well understood (Soward and Priest, 1982), and the re-
sults of this section are of some relevance to their calculations.|
We do not intend to develop the theory of UL.l.LU, shocks
alonz the well=-trodden path of assuming that the incident flow
and field are alipned (Bazer and Lricson, 1959, Jeffrey and
Taniuti, 1964), but instead we set up and solve the full, non-
alirmed, jump relations, To the author's knowledge, this has
only been attempted by Lynn (1966) who solved the equations
in terms of the {low deflection angle, On the other hand,

we intend to solve the equations as a function of the input

parameters, giving a clearer understanding of how external
conditions affect the properties of the shock and the energy




unshocked shocked
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cure 2,1 The notation across a slow iL.H.D. shock.

4. hoo
[ncident and shocked quantities are denoted by subscripts
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In theory, one can just solve esquation (2.3%) for X numerically

and then deduce the other results, but it is instructive to

irst consider the

method of shock classification and

~n Sna ~\\“’-|.“. A= e r_,-..'pt-l-, c
.0 ana < 101T1oNsS 1crexisience

be recalled that of these modes, {the fast and slow mag-
> 7 N SFLS A 7 o A, AP s} P ) o OB &
nesoaccustic waves) could steenen and form shocks, 1. HoDs

shocks can be classified in an analogeus way in terms of fast

.37) show tha
o 2 2 { o )
3 " N \ e ] /
o e \ e, 2. ? (?,.j,‘:‘)
A 1\ 2 CN A ) )
\2
and the total change in magnetic field across the shock is
siven by
3
3 \ g
a § -\ 1L ¥y A ) /J . (?_ Fe l"‘] )
-:~‘\, = ! - 7 N ¥

From equation (2.40), it can be seen that different types of
shocks will arise, depending upon the signs of the numerator

and denominator; BRazer and oricson (1958) based their method

of shock classification upon such an analysis.
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(b) 510w

Also, if the equality in (2.42) or (2.43) holds

: S5 vt s T T BT S A
the switch-off or switch-on shocks, he switch-off shock
\ s -, 7 .

occurs when the slow shock rropagates at the Aliven speed

. . N - T R S
and hence the tancential magnetic field vanishes (equation
s Jo | O ) T™h switoe A m r\}» '®) AL~ occurs i ;'-r‘,\] +ha fast I'-\‘\.C’[/
[ A B e sWitcn-o0 OO CK O - y VI 2112 Laolb ollUCK

3 ~ { @l \ 4= ~ ~

proparates at a velocity 0 SO SRAS L LI In this case,
there is no incident tancential magnetic field, and the effect

$ 3 v esrave = Y A INTYY T B
of the chock is to "switcel a tangential conponent.

«e¢ have not discussed other types of discontinuity such
as contact discontinuities (a situation in wnich the velocity
is zero on either side of the discontinuity but the magnetic

3 ! = i o S = 10
field may chenee across it (such as a current sheet) or the

intermediate wave (which just corresponds to the Alfven wave

Equations (2.34), (2.36), (2.37) and (2.38) may be solved
analytically for some special cases, Due to the large number

of parameters (M.a, A.,S,. 0, ), one can discuss many such cases

H

denending uzon the problem that one is trying to solve. lie

now outline some of the more interesting ones - bearing in mind
our interest in the properties of slow shocks.

(a) B, w

In this limit, equation (2.38) reduces to the standard

. O R oot ol . - B, By o) s i e
cas shocks outlined in Section 2.2, this is the case of a

erence

2 fisld and outlines the fundamental differen
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for the formation of a shock. it this point, the propagation

speea equal to 3loy Loacoustic wave speed and S0

it % A , v, and % iy ‘he asterisks dznote a Yswiten-

SEEN seky, When d,=0 . ie was sthown analytically, the E
\

effect of increasing . 18 to increase the maximeui temperature

jump, occurring when the tangential magnetic field is switched

offs For &  close tofila , the expression (2,47) was derived

and for ] = Oty To/T T This is in rood agreement with

numerical resvlts, One interesting point is that the switch-

off temperature jump appears to be avproximately independent

of . .

Firure 2.3 shows that S, is alwavs negative for a slow
shock, &8s ). Thus, the flow is
turned in h the shock, Also,
as the tangential magnetic field is increased, the flow is
turned througch a larger angle,

In Ficure 2.5, we have relaxed the constraint that
\ and held big = 1 % As the inflow anzle incireases then
the temperature jump falls, he effect of decreasing (4 may

moves the shock further
(2.36 and (2.37) imply t

so the

[

for a fixed 1

from being 'switch-off', mouations
hat as B, decreases, then both 4, and

flow

PR} )

and field are rotated through

smaller angles. The temperature jump for a given 1y remains
rouchly fixed for {3, <« (enuation 2.592) but as i, is increased,
smaller values of §31 pernit much higher temperature jumps,
lhis is simply because the switch-off sweed has increased and
the shock can thken propagate nore quickly. If ¢4 = 0.0%;
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2.3.4 The role of slow k.H.D. shock

cs_in_the solar corona

-

In Chapter 7 of this thesis, we consider one particular
role of shocks in soume detail, namely the heating of post-flare
loops, but it is convenient to discuss the role of slow shocks
as 2 reneral heating mechanism, In the last few sections, it
has been shown that slow shocks can release a large amount of
magnetic energy as heat in a plasma. The maximum temperature
rise across sucn a shock depends on the local plasma beta, and

in the corona, where the beta is small, this temperature jump

o

is especially large, Thus, slow-shock heating may well be one

P

of the mechanisms responsible for maintaining the high coronal
temperature,

It is generally considered (e.z. Priest, 1581b) that the
corona is an active, dynamic structure with small-scale motions
of magnetic field and plasma continually occurring. In such
a medium, small current sheets may well be frequently set up,
and, if reconnection occurs, it may proceed by the Petschek
mechanism in its compressible form (Soward and Priest, 1982).
Since slow shocks are an integral part of this mechanism,
the results of the last few sections are relevant. These
shocks are almost "switch-off" and have values of # close
tonlx and S,x0 . If the plasma beta is 0.01, say, then
such reconnection is an effective heating mechanism, This
is seen by a simple shock analysis without the need for the
complex solution undertaken by Soward and Priest.

It is thus important to consider the general analysis
of M.H.U. shocks which has been considered here rather than
the severely restrictive analysis generally attempted in which

¢

the flow and f{ield are considered parallel.




2ol cks in non-unif rmedia

[he general theory of shocks involves an 2nalysis of

: . S e B 2 A 2. R e vare sy o aah o ate'2

the jump relations (as earlier in this Chapter) and an investi-
abion of the internal structure of the shock. however, a

- b~

chird important oroblem is to consider how a shock behaves in

um in which dissipation (such as thermal or electrical

L outside the sirock front. Lince
these shocks are only used briefly in this thesis, we shall
=ive only a

TS 3= 1a A - 3.4 3 Ay 3 e Yy <
If thermal conduction is important outside the shock

s ey de
o

front, then, for a field-free gas, the steady-state one-

Ggincnsional enercy ecustion is

& Tmavl Ty e b e (Al X PN R
== ) AR - ~ 7 : = (7 (2.52)
s L Ny, Y Y t o !
and the energy Jjump relation hecomes
. | . [ ]
\ N < 3 " » s T =t ¢ | >
VAL L SN Xy Vol =

J
e
N
-
Sa |
W
~

So, as well as the velocity, pressure, density and temperature
jumpine, it appears that the temperature gradient jumps as well,
Similarly, if a maegnetic field is present and the plasma

LUC

is not infinitely conducting outside the

-
)

shock, then a term

O ol (R 5 .
M*Llas must be added to O

s law, rarshall (1955) and

1

Ludford (1958) analysed such an H.H.U. shock and concluded

call

.

that while the mapnetic field gradient could be discontinuous
across the shock, the field itself had to be continuous.
This can be referred to as an Isomarnetic shock

An analorgous reésult {for a gas shock with finite conduction
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is derived by Landau and Lifschitz (195€), so that the temper-
ature gradient can be discontinuous but the bemperature itself

,

is continuous (Roseneau and Frankenthal, 1976, 1978):

The expression (2.15) for the density jump now becomes

.\‘1 ‘.'\\‘\ 5 (2.55)

\

since the energy Jjump relation decouples from the other two,

Finally, the shocked conductive flux is given by

This is known as an 21 shock. It is clear that if

one ¢id allow a jump in temsperature, then the temperature

eracdient across such a shock would behave as a delta function

which is not realistic, The Isothermal shock may be regarded

~

N

as spreadine out the temperature variation around the shock

>

rather than simply allowine it to Jjump.

25 Discussion and conclusions

\ .

In this chapter the basic theory of shock waves has been

discussed with the needs of subsequent chapters of this thesis
in mind. However, some cases of slow i..H.D., shocks have been

looked at in more detail,. In the view of the author, the

cr

literature on shocks whose inciden

~

o ) ” . ' . r - A Y . Y 5
inadecuate (with the excertion of the work of Lynn, 1966)

e
n

! ] 3 - o= £ o oy 4 A TN S 3 > 2
nd these shocks have been explored from the viewpoint of the

o

temperature jump across them, The aligned case in fact

flow and field are non-aligned
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[n Cnay 5 3% noted that the closed-field rezions
of the solar corona are now known to be structured as loops.

In the following tvio c¢hapters, we examine the theoretical nature

L e Ve e ‘- G | A el oo S P | % i @ ~ s e -~ - | .y
0l Steacy-stave $1pnon I lows in such loops. une may pose tne
PPN - v ~ £ ~~ 1 -~ . n . - £ 3 o : T 1 ~ o ~
problem as follows:- given a loop of length 2L, what steady-
oy 5 T e Y . (S DO . S, 1 e Tl ) e
state flows can be driven along the loop by prescribed foot-

point temperatures and pressures?

thermal conduction perpendicular to a magnetic field

[ S
14)]
*)
(]
H
pde
’_J
'_.l
o

(Chapter 1), and so each field line is thermally

ijsolated from its neighbours and may bhe examined separately

’
provicded the field is force-free, and any flows are sub-ilfvenicy

lation necessary. This problem does not generally arise

2lling of coronal loops, bubt it may be relevant

durinz simple=loon flares when extremely high temperatures and

= ~ 2 gy ~N ent e g
agensities arise,

3 with the steady-state

am > ! ¢

Vg W e -

where 8 is the coordinate along a magnetic field line., (he

importance of gravity is measured by both the ratio of the loop

length to the scale-height and by the angle the loop makes




with the vertical, In a low-lying loop ( 225 > ), one

can effectively neglect gravity. The other equations for

flow along a field line are continuity (1.26), flux conservation

(1.28), state (1.27) in the form

(Ra) = 0O,
" (33
D = R 1 :
’ (3.4)
and energy, (1.30)
fi/ e — (e adr) -
N S\ B &S
{ Y

where A(s) is the loop cross-sectional area and the mac hanical
heating has been taken proportional to density,. This set of
equations just approximates a loop by a rigid tube if the loop

area and geometry are prescribed, wWwe wish to solve these

equations subject to the following boundary conditions:

7

Several authors have solved equations (3.1) - (3.6) using

)

various approximations as follows.

~

lieyer and Schmidt (1968) modelled steady Bvershed flow

out of sunspots (See Chapter 1) in a low-lying loov structure

1S E
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under the assumption that it is driven by a pressure difference
between the two footpoints. They solved the equations of
continuity, momentum and state but do not make clear what
energy equation is taken. It is found that the flow becomes
sonic at an appropriate point along the loop and is slowed

down by a shockwave in the downflowing leg. The calculated

outflow speed is typically 6-7 km s

at a distance of 15 Mm
from the sunspot centre, lieyer and Schmidt only cobtained
flows involving sonic points and shocks,

Yeh (1977), on the other hand, considered only subsonic
flows. He modelled a symmetric interplanetary loop, rising a
solar radius above the surface and having a length of approxi-
mately 1500 Mm,

The equations of continuity, state, momentum and energy,
were Solved numerically, the energy equation containing terms
involving convection and conduction (but no heatingz and radiation) d
Yeh finds a large range of subsonic flows exist correspending to
different values of the boundary conditions, but he claims that
supersonic flows cannot occur, He states that, if a subsonic-
supersonic transition occurs, the plasma is rarefied to a vac-
cuum at the transition point. This is true everywhere except
at the sonic point, which is the only physically relevant
transition point. It allows one to satisfy the boundary
conditions by using a discontinuity. Yeh claims that this
solution will never arise and states that the flux tube. .
geometry will adjust to give rise to a subsonic flow due to
lateral force balance. However, this balance will, to
zeroth order, be force-free, and so the flux tube is unable

to adjust. The work of Yeh is, however, important in that he




-

was first to point out that, although a loop is in static equi-
librium if n, = n, and TO = T,, such boundary conditions are
extremely unlikely to arise and so a flow will in general be
present along the loop. whether such a flow is steady or

da

transient in practice is still a very open question.

More recent attempts at the siphon flow problem have been
made by Glencross (1980) and Noci (1981). (Glencross has modelled
upflows in small coronal loops (of height 5 Mm): he solves the
equitions of continuity anc motion for a prescribed temperature
crofile. However, Glencross only considers half a loop (i.e.

up to the summit), and so he does not need to invoke shock waves,

Noei (1981) has studied (independently of the present author)
the problem of siphon flows in coronal loops. He approximates

the energy equation by the polytropic law, in the form

g TERRs 3 | (3.7)
and solves this together with the equations of continuity,
state and momentum, He considers loops of uniform cross-
sectional area and goes on to predict the E,U0.V. emission
measure .,

In this Chapter, we solve equations (3.1) - (3.4) together

with equation (3.5) in the form

1

g S ' (3.8)

and so we neglect any energy sources and sinks, Approximation
(3.8) enables us to outline the main features of the flow and
rives a good background to the solution of the full steady-

state problem in Chapter 4.,
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3.2 General solution

The equationsof adiabatic and isotherwual siphon flow

along a coronal loop are (3.1) - (3.5) in the form

m " \\/ 04 i ‘ S ’
- - ._ K (3.9)

EVeE s (3.10)
2l 7\

- = (3.11)
) - V\.,_!"l\ \
\ : (3.12)
"\\. - ‘.\ N 3 : (3-13)

vhere M is the mass flux, ¥ 1is the magnetic flux, Y is the

; 5/ ‘
ratio of specific heats (/3 for adiabatic flow, 1 for iso-
thermal flow) and the term cos {7%/..! in the momentum equation
represents the flux tube geometry (in this case a semi-circular

loop as shown in Figure 3.1). It is worth pointing out that

(o5

the st

o

2
1

y-state assumption is true provided the footpoint
pressures remain fixed for a few sound travel-times, The

sound travel-time, (V. ) is defined as

and Table 3.1 shows how T. varies with L and c_,

>
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The boundary conditions must also be altered since, by neglec-
ting thermal conduction, the order of the equations has been

rgduced by one, Jouation (3.6) is thus replaced by

., 5% Sk, (3.14)

v 3.1

and so T, is free, (ch (1977) claims that one should still
apply the full boundary conditions (3.6) and that ¥ (or, in the
polytropic case, ¢L ) should be deduced from them, so that one

finds

T ] o ~ AP P TSN A ¢ nd Inn A | SRS T Av A 1ae ~ » £3 TR
[n effect, he has overprescribed the problem, and we note that

( or ) should not be determined in this way, but should be
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free to be prescribed. It will be found that, for some values
of these boundary conditions, a continuous solution is impossible

The

and a flow discontinuity must arise at some location.

conservation relations across such a shock are given by equations
(2.12) < {2.14).
Defining the local sound speed (¢_) by
b}
g - ‘g
> - — ey 3. )
\"‘,,'\

equations (3.9), (3.10), (3.12) and (3.13) can be combined, to

give a differential equation for v(s):

» D A 3
-~ ~
\/ e A\ : &k amed TVEN 4 ¢ s
] - L - \ s 1 s *
\ / £ & \ 2| 3 o .
D e Cyes -3 T
S (3.15

In (3.15), one can replace v by -v and still get the same equation,

Thus, subsonic flows may occur along the

to richt or right to left.

o
Lror

shocked

loop either from left

Flows, such a reversal

ss

is not possible because the entropy must increase acro the

shock., If we impose p,> Py rather than p,« the supersonic

.

Do

flow will be reversed with the shock still in the downflowing

It is convenient to non-dimensionalise the equations as

follows,

where zero subscripts refer to values at s = O and /\ _ is the

scale~height at the base of the loop defined as




T s

)
(3.16) integrates to give
M \ " :
‘ (3.7
T | Se st Rer 1¥iYs eqis t:ﬁ
which 18 Jush ermealitl " § eduatlon .

quation (3.17) gives the velocity ¥(s) along the loop for a

civen base velocity Vo and cross-sectional area A(s). The
density, pressure and temperature are then determined by
- 3 f o~ o
) \) 11"/)
.
\ | B Y
Further examination of (3.16) shows that a critical (or
- . 4 1 Tam A I mpd 2 - - o2 33 ] -y ~
30:110) point (when adv,/4as 138 undefined) occurs at a veloplty

Va and location - given by

= | ’ (3.19)
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and

-.‘ \ p ¥ ) e e (3'20)

The corresponding footpoint velocity Vs that gives a solution

passing through the critical point satisfies

) . o S T g v )
L AR e & ) { ' '\ v 3
,\ - ] ! — 3
|.‘ B I /,
< s
A ) “ A 2L /
: L )
(3.21)
and one can then solve (3.19) -(3.21) for s_, v, and v,

There is only one free paramster in the problem, namely

g, the ratio of the loop half-length to the base scale-height.

Oy \

For a base temperature of TO = 10K, the scale height, is

~C)

1

about 50k (=5x1ohkm), waereas coronal loop lengths lie typically

between about 5Mm and 7C0Mm. Taus E varies between about .05

and 7, but we shall concentrate in particular on the value g = 1.
It is worth noting that (3.16), (3.17) and (3.19) - (3.21)

are very similar to the solar wind equations (Parker, 1963).

One has the same feature of a sonic point and a range of tran-

sonic and wholly subsonic solutions and one must also match

the wind onto the interstellar medium,

3.3 Isothermal flow

3.3.1 Uniform area

A loop whose temperature and arca are both uniform outside

(o]




the shock is the simplest possible case to consider and so

illustrates the basic physical ideas behind the siphon flow
~ A 4 ~pr e el \ o - e S e ol R ~ T

model, After LR/ lL»L-]Ll,'_-’, .'.(b) 1 and takin : the limit of

tending to 1, equations (3 .16) and (3.17) reduce to

respectively, Equation 3.22)has a critical point at the loop
summit (s=1) where the flow becomes sonic (v=1), as indicated
. N ’ CralY . . ‘t ~ v

in Figure 3.2. ine starting velocity (vo) for flow to pass

1

through the critical point depends on £ and is given by the

solution of

1 b ~ \ e

S R | \ Vs v Z

2. ¥ > )
after putting v = 1, 8 = 1 in(3.23).

A
o N

For initial speeds (VO) slower than v, the flow is sub-

sonic and symmetric about the top of the loop and the pressure

n

ratio 52/50 is unity. For v 50, the flow becomes supersonic

0
after the loop summit and, for VO‘»VS, the results have no

physical meaning. We shall not be concerned with flows that
start out supersonically. Clearly the infinite range of sub-
sonic solutions is a result of the model If one included
a full energy equation, the symmetry of equation (3.15) would

be lost and the infinite range of solutions would vanish,




!- \ ~—
... \
.. \
. \
£ X
N |
; X
.v ammhnmmamm-/ LA
: \ =

"eeae o @

ISOTHERMA L | UNIFORM AREA
0.5

O
<z

T ~ £ € S YNES Sy A ety R o -~ o e~ preae P o ~ P , -~ -
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shock the flow has enhanced temperature 7T nd slows to V.
the footnoint. Lotted lines indicate unphysical or
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Indeed this is what is found in Chapter 4,

“hen there is no pressure difference between the ends of
the loop (ﬁ2/50:1), any of the subsonic flows may occur,
However, an imposed pressure difference forces the flow to
become supersonic beyond the loop summit and then to be decel-
erated at a shock wave that is located at some position on the
downflowing leg (Figure 3.1). The effect of imposing differ-
ent pressure differences is to change the location and strength
of the shock wave and the values of the downstream speed 02
(Figure 3.,2). T'hese solutions may be constructed in an inverse
manner by imposing the position of the shock and deducing the
necessary pressure difference, as follows, Ffor a given shock
position, as indicated in Figure 3.2, we have prescribed the
value of ?1, the speed ahead of the shock., This in turn deter=-
mines the Mach number (M) and so from(2.19 the value of the sp=sed
(v2) just behind the shock. Furthermore, the temperature(Tz)
behind the shock is given by (2.17), and so the isothermal down-
stream flow follows one of the trajectories of (3.23), with
temperature T, inserted in (3.22)., In particular, (3.23)
gives the flow spced Wz)and the pressure (52) at the footpoint
follows.

Figure 3.3 is plotted for a loop of half-length 50Lm so

that g = 1. It can be seen that supersonic flows are possible

e
-

0
allowable pressure ratio 52/50 18 Q75 For smaller values,

when the upflow base speed ¥ 18 0.3, Also the smallest
the shock moves below the footpoint and our model fails (except
in the case of unshocked transonic flow when 5q/bo = 0.18).
~
(The model fails because it is not possible to construct steady

solutions with the required pressure ratio: if such a prescribed
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pressure ratio is switched on, a shock wave will propagate down
the loop; when it propagates out of the end of the loop the
pressure 52 is changed to the value 0.1850 by the passage of
the shock and the previous value is not maintained,) Longer
loops give a wider range of possible pressure ratios and a
lower base speed, as indicated in Table 3.2.

Table 3.2

The variation of critical starting velocity and minimum
pressure ratio with loop half-length (L), for isothermal flow
in a loop of unifeorm area. (The coronal scale~height is

taken as 50¥m,)

L(¥m) | 5 10 25 50 100 200

v6 0,760 0.667 0.500 0.340 0.175 0.0438

Do\ |
—£ 1.000 1.000 0.927 0,752 0.479 0.166
PO min 1 ;

3.3.2 The effect of a varving area

nen the temaperature is isothermal but the cross-sectional

1)
wilel

area varies, (3.16)and (3.17) become

i ! BT ) e B 1T (3.24)

y 2 S (Y = O (3.25)
T S

respectively. dquation (3.24) has a critical (sonic) point at
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For a given form A(g) of the area, (3.26) determines
the location 8 of the critical point along the loop, and then
w

the corresponding speed v, follows from

\ ;. : ' \ \ / - h \ \ ! < \I
- \ ] (S ¢ - S f
N\ ( \ -
In particular, if dX/ds is positive, the sonic point lies

before the loop summit, whereas if diA ds is negative it lies

beyond the summit, when the variation of the loop area is
symmetric about the loop summit and is not too great, the

but with slight changes of scale on the axes. Converging

and diverging loops, however, croduce new features.,

Consider a converging loop whose c¢ross-sectional area
ging F

decreases with distance such that

o |
J
A
i
—
e
i
(
-
~
J
-
J

The solutions to (3.25) for v(s) are shown in Figure 3.4 for
the case a = 0.5, The way that the footpoint speeds v,, ¥,
vary with the pressure difference is given in Figure 3.5a.

The presence of asymmetry in Figure 3.4 means that the subsonic
flows are now driven by a small non-zero pressure dif

If the pressure dlf“crcn«o is large enough, GO becomes equal

<ty
-

to vy and shocked solutions result. It is clear from the

nature of the asymmetry in Figure 3.4 that V? always excec

GO’ which implies that n, exceeds nj and p, exceeds p,, so
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that the flow is accelerated into th

be shown from (3.25) and equatio

can

> o \/
12 2 \/

for an isothermal loop.

and

Thus, if A converges, and v, »

nvergine loc

. 4 o~ de
n of sta

clearly p, < Simi-

PA
0

“ (V) -
larly, if A diverges, and Vo Vgs then p, 5 Py e The effect
of increasing the convergence by decreasing a is to make the

sonic point move further away from the

flows.

loop sunmit and increase

subsonic flows,

subsonic and shocked

Table 3.

haids
vae

The variation with a of

the range of pressure ratios and the

for isothermal flow in a lcop of length

of the loop areas at the two feootpoints,

F

1 and

A
Al

or diverging loops a T.e

@33

0.199 0.238 0.301 0.340

0.703
min

ko)
O

=
N

I

1 000
0 max

o)

1.000

(]

critic

sonic

al starting velocity (05),

) |

point location (8,

504m, a is the ratio |
For converging loops |
1

1 =9 1.5

e s

2.0
0.534

0025-35

0.696 0,667




give a phase-plane that may be obtained from Figure 3.4 by 1

rotating the solutions about the loop summit 5 = 1. The

v

corresponding footpoint flow speeds are shown in Figure 3.5b.
All the subsonic flows now have VZ snaller than GO so that 52

exceeds 50. The plasma is moving in the direction of increasing

pressure, and so the flow is decelerated out of the diverging
loop. For 52)> 50, there is also a shocked solution, so it

is unclear which of the two possibilities will occur in practice.
shen 52 4 50, the flow is accelerated and only shocked solutions

are possible. In Figure 3.5b,it should be noted that for som

0]

values of P~/ D~ there are two possible shocked flows, similarl
pé Po J )

xist

O
0]

in Figure 3.5a, there are values of 52/50 where there
hoth subsonic and shocked flows. On the basis of the present
model, both flows are feasible. However, it may transpire that
one of the flows is unstable, and, ia any case, which one occurs
may depend on how they are set up.

It is worth pointing out that our loop area profiles are
highly idealised, but one can visualise such fields being set
up as follows, Given a uniform-area loop, continual photo-
spheric motions will tend to twist up and compress the loop
footpoints giving different magnetic fields and hence different

areas at either end of a loop.

3.4 Adiabatic flow

In this section we extend our model from the simple

{

isothermal case to.one where the energy equation is approximated
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by the adiabatic law. The equation of motion is now (3,17 and

the critical point is determined by 3.19)- (3.21). By compar-

ison with the isothermal case, the tenperature is lower at the

' 3.
i

loop summit, which reduces the pressure gradient and hence also

3.4.1 Uniforin Area

Consider first the simplest case, namely a loop whose

cross-sectional area is constant with A = 1, The equation

(3.17) becomes, on assuming ¥=4%,

>
\VS)
.
N
~J
g

foot

quation (3.27) possesses a critical point at the loop summit

(5=1) with a flow speed

(3.28)

bstitution of (3.28) into (3.21) determines the corresponding

‘./ : S-143 - A =N s v (3 '2))

For the particular case g = 1, one finds 50 = Q347

Figure 3.6 shows the resulting velocity, temperature and pres-

ct

sure variations along the loop for a range of subsonic and
shocked solutions. It can be seen that the effect of the
flow is to reduce the loop temperature by typically a factor
of 2 and to reduce the pressure by up to a factor of 10.

The effect of increasing the length of the loop throﬁgh

is to decrease the value of VO and thus increase the range

g
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of pressure ratios as shown in Table 3.l

The variation with loop half-length L(}Mm) of the critical

starting velocity (GO) and the minimum pressure ratio for adi-

abatic flow in a loop of uniform area,
L(1m) 5 25 50 100 150

Vo 0,780 0,522 0.349 0.150 0.031

If, however, the loop is so long that g exceedssi/i, the incre-

asing solution through the critical point starts from the s-axis

rather than the v-axis and so only the wholly supersonic solu-

tions are possible.

3.4.2 Symmetric loops with varyine area

Now suppose the loop possesses a cross-sectional area
that varies along the loop but is symmetric about its top. The
sonic point remains at the loop summit (5031), but according to
3.19), the flow speed there is

"y

- ) e
Ye = _° n
\'\ ReAY (3.30)

'8

Equation (3.21) for the limiting initial speed becomes

i )

V5
¥ Y \ * = ) Ji ==
Y [ 3 ‘ ) \ S G & O
ALY = . i

(3.31]




If the loop is so long that g 7 ®' this possesses only one
solution, which, for moderate area increases is supersonic
so that, as before, only surersonic solutions exist.

<Nq

If the loop is so small that g and the area does

1

not increase too rapidly towards the summit, (3.31) possesses

two solutions for ¥V, and subsonic flows do exist. However,
A

whaen

- ) (3.32)

one solution is less than 1 and the other greater than one.

rurthermore, when

A : (3.33)

there are no solutions to (3.31). These features are similar
to those discussed by Kopp and Holzer (1976) for rapidly div-
erging coronal holes, For loops expranding up to the summit
so much that A(1) > (1-0.68/w)™°, L additional critical points
occur as snown in Figure 3,7b. However, if (3.33)1is satisfied

I

as well, the form of the phase-plane changes as in Kopp and
Holzer (Figure 2). The critical solution no longer passes
throuch the sonic point at the loop swmmit but through one
near the base of the loop. The following example illustrates
these features.

Consider for example an area which varies as

BRIz 4 U=ty smE( 'S -

R 3 I ERSIL (3.34)
and in particular set k = 20, so that the loop is twenty times
as wide at the top as it is at the base, Then the critical

flow speed at the loop summit is




(3.3%5)

- 4= 4

the particular case g = 3.5 (i.e, L = 175Mm) v follows

w
Lor

from

and both solutions for VO are subsonic. The first solution
of (3.3%) is JS = 0.15 and gives the phase plane shown in
Fisure 3.7a. This value for §S is larger than the corres-
concding one for a loop of uniform area, One effect of the
larze increase in area from the footpoint is to make the
velceity first decrease to a minimum value of 0.059 before
increasing, Initial speeds (GO) lower than 0.15 give purely
subsonic flows as expected, while those somewhat hizher than

Q.15 give unphysical solutions. The variation of some of

the flow properties with the area factor k is shown in Table

The variation of vy, (pq/po)
~ -

.. and v.. with k for
min min

adiabatic flow in a symmetric loop of half-length 175Mm

A =1+ (k-1)sin®3sT,

u

(g=3.5), whose area varies a

.
—
b)
1%
(@]
1>
(@]

Vo L 0.007 0.013 0.038 0.068 0.150

Fq
@)
o

0.016  0.038  0.090 0.139 0.286

ko)
O

min

e e s'e
- - X 32

¥ s o Vg Vo 0,050 0.059
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The second solution to (3.36) is V; = 0,61 and also leads to
shocked solutions of the subsonic-supersonic-shock-subsonic
form, The phase plane is shown in Figure 3.7b and is symmet-
ric about 3 = 1 although the topology in the region S » 1 has
been omitted for clarity. In contrast to the isothermal
solutions, the adiabatic flows give a phase-plane that depends
on ;O and we have indicated the neighbouring topology by dotted
curves., It is noticeable that additional X- and O-type criti-
cal points are present in Figure 3.7b the X-type point being

at approximately s = 0,026, Such a complicated topology was
also found by Kopp and Holzer (1976) when modelling coronal
hole expansion. ne effect of the closed trajectories on the
solutions for Vg = 0,01 is to allow shocked solutions only for

a small range of pressure ratios, Shocks that are located at

wi

< 1.91 give rise to unacceptable solutions that end up on
closed trajectories, The acceptable solutions possess a

pressure ratio in the range

For initial speeds GO between 0.61 and 0,91, the flows are

nurely subsonic, and then, above GO = 0,91, the solutions

become unphysical again, It should be noted that the

e
az

VO=
which will occur may depend on how the flow is set up.

o« 4 sy .
pressure ratios for %G, = 0.61 are also possible if G153

3.4.3 Asymmetric loops

A loop whose cross-sectional area increases or decreases
continuously with ocistance gives results that are similar to
those in Section 3.3.2, except that now the temperature varies.

The location (§C) of the critical point, is the solution of
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the following equation

<

between (3.19 - 3.21):

W >3 i ( —\ ) ~
=t N
PR 3 & 1 €
equation (3.35) becomes
“ :‘ o 1 -~
=
M. = ) ~ ( f | ( N —
= —\ S \ J | E ‘
- | ~ » 2 )
7 ' 6 /7 A 1
-~ \ X >c | | \ G =
N | \
- “ \ N ‘}
| S p—
= ‘S (RN |0 T e i (1. @ e \ :
= 2 v .
| 3 2 / — ) o
- . ~ B ( 3 )
This determines s_ in terms of the parameters a and g, and
o

then GC, VS follow from (3.19) and (3.21),

shown in Table 3.6

i ] : ol s -‘:: - = - . ) ]
he variation of s v~ and (p~/ D, .. with a and g for
| * Se? 0 (‘a/'o)mln ne. &

adiabatic flow,

E=;:

a 0.8 el [ e §
(¢ ] . S 1 .O ()0‘”5 (>¢5|?

VO Q.44 052 0.61 0.78

2 0.7  0.77  0.81  0.91

e e e




el = ]
: 05 0.8 1.0 1.2 1.5 2.0
:’(* 1.23 1.07 1.0 0.94 0.86 0.73
;o 0.24 0.3 0.35 0.39 0.46 0,61
Py .
=5 0.66 0.61 0.58 0.56 0.55 0.55
YO min

a 0.5 0.8 1.0 T 15

N
O

SC 1.07 1.02 1.0 0.98 0.96 0.93

0.10 0.1 0.18 0.21

N
o
N
(&
=
(@)

Ps
;; 0.37 0,29 0,28 0.25 0,23 0.20 :
*LO ”ifl i

interest, corresponding
to a flow speed that increases rather than decreases through
the critical point. It is noticeable that the range of

cossible pressure ratios is far greater than for the isothermal

Qur results for steady siphon flow in symmetric loops
indicate that subsonic flows can be maintained when there is
no pressure difference between the footpoints, (This is a

v

result of the simplified energy equation; a more realisti

equation shows that a departure from the static pressure ratio




sy
p'

(here unity) is necessary to

As soon as a pressure difference

steady flow becomes supersonic at

The flow is acceler

shock wave.,

footpoint to the low-pressure one

is too large, the shock moves

As the

loop.

speed (55) falls

1s in value

5

increase If the

the flow speed posse

on the upflowing leg.

It is instructive

sented here with

loop of uniform area, the densi

provided velocities are neglected,

form

(3.23) in the

YL

” GO all

-
=

along the

0
]
<1

loop,

1

and the

a cimilar result for adiabati

attempt has been made

sivhon flow results with obs

produce a

ated

right

hydrostatic solutions.

density is lowered all along the loop.

by A

ervactions,

See Chapter 4 .}

flow: -

is maintained, the sulting

S

the mmit and contains a

from the high-pressure

If the pressure difference

down to the base of the

so the base

range of allowable pressure

cross-sectional area is large

minimum value at some point

the dynamic solutions pre-

For an isothermal

One

may write

.40)

then

static?

One may show

¢ flow.

o (1981) to his

comnare

He calculates the




since the emission measure
depends on n~, one would expect a large flow to produce

1

an observable difference. Noci finds that, wherecas sub-

sonic flows give rise to small differences from the static
case, supersonic flows show large variations and can be
regarded as a signature for such flows, However, ionisation
equilibrium has been assumed in these calculations and with

some ions (e.g. S« ), substantial errors could be incurred.

AN

This has been considered by Raymond and LDupree (1978) and
Joselyn et al. (1979) and should be incorporated in future
calculations,

We have discussed adiabatic siphon flow in a purely
coronal context so far, but such flows could occur elsewhere
in the solar atmosphere wherever pressure differences exist.
In narticular, siphon flows have been proposed as an explan-
ation for Evershed flow in sunspots (ileyer and Schmidt, 1968;
altby, 1975). On expects such a flow to be along a rapidly
diverging flux tube (such as discussed in Section 3.3.2) due
to the large decrease in magnetic field as one leaves a sun-
spot. The converse applies to the inward {low. In fact,
siphon flow would only appear to explain the inward flow,
the outward case having D,y 1L

In the next Chapter we improve the present simplified

model by incorporating the energetics:-of the system,




Chapter MA:

b o1 Introduction

In Chapter 3, the theory of isothermal and adiabatic

siphon flows was developed, and the next step is to examine

how these results are altered by the adoption of a full

m
-
@
&)
2
<
()
o]
=
)
o
)
C
3
.

However, it is necessary to discuss briefly

the enerpctics of static coronal loops first: an extensiv

-

(7

recent review has been given by lonsignori-Fossi (1981), so
we shall just outline the basic properties,

For a static loop of length 2L and negligible gravity
(i.e, uniform pressure) the equations of state (3.4), momen-
tum (3.1) and energy (3.5) reduce to a single differential

eguation in temperature,

Vi oS R LT hag T (4.1)

which is to be solved subject to the boundary conditions

$ T o | (4.2)
the summit temperature gradient vanishing due to the impose
ymmetry around the loop summit (See Vesecky et al., 1979 for
a discussion of non-symmetric solutions), 3if TO is taken as
10’ K, the solutions of this equation depends on three para-
meters; the pressure, p, the loop length, 2L and the mech-
anical heating, h, (Hood and Priest, 1979a). (4n acditional

7/

parameter is the form of the heating function: we have chosen

VS

the heating as constant per unit mass.)




, . 6.,
However, by choosing T, as 10° K
s Y

0 , the problem of

treating the narrow transition zone has been avoided and
several authors (Rosner et al.,, 1978, Vesecky et al., 1979,
Landini and Monsignori-Fossi, 1981 and Serio et al., 1981)
have modelled loops down to temperatures of 2 x 10"P K. The
reason for this choice of TO is that a temperature plateau
is thought to exist at this point (Basri et al., 1979;
Vernazza et al,.,, 1981) and so the conductive flux is small

there. This has led these authors to propose that at

T =2x 10* K

s | (4.3)

Loops satisfying this condition are said to be thermally iso-

lated. However, eguation (4L.1) is now ova>prescribed and so

some relationship must exist between the parameters p, L and

h. This gives rise to scaling laws between the various para-

meters (3ee Rosner et al,, 1978; Hood and Priest, 1979a;

Roberts and Frankenthal, 1980: Levine and Pye, 1380; Chiuderi
) H ) ’

et al., 1981), and they may be of use when the error in

observations is reduced to make a comparison with such scaling

laws worthwhile.

There are, however, serious objections to the use of
boundary condition (4.3). All of the calculations involving
(4.3) use an optically-thin radiative loss function.
Unfortunately, the solar atmosphere below about 5 x 10h K is
optically thick, as were the calculations performed that
sroduced the temperature plateau at 2 x 10h K, and it is
doubtful whether one can aprly an optically thin model to

11s plateau. For this reason, i seems desirable to either
§ ?
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start modelling above Cthe transition zone or model down to

the temperature minimum (Nagai, 1980, Peres et al., 1981).
Other transition-zone problems are the presence of non-tnesrimal
velocities (Jordan, 1980) and the validity of the fluid
equations (Spicer, 1979). In this chapter, we adopt a

value for TO of 106 Ke

Equations (4.1) and (4.2) have been solved numerically
by Craig et al., (1978), who show that the form of the emis-
sion measure does not depend significantly on the form of
the heating function, as well as Chiudsrieval,, (1981),

Hood and Priest (1979a), Roberts and Frankenthal (1980)

and %ragg and Priest (1981), who all vary the parameters p,
L and h (in the case of Wragg and Priest, gravity is also
included).

I'he thermal stability of coronal loops has been studied
by Antiochos (1979), Habbal and Rosner (1979), Hood and Priest
(19€0a) and Chiuderi et al., (1981). Antiochos and Hood and
Priest find that thermally isolated loops are unstable although
Antiochos has used an over-simplified radiative loss function
(Chiuderi et al.,, 1981), On the other hand, Habbal and
Rosner and Chiuderi et al. found that thermally isolated loops
are stable. The analysis of Habbal and Rosner is incorrect
due to a restrictive form of the temperature perturbation
(Priest, 1981b), but the discrepency between the other analyses
is nossibly due to a subtle difference in boundary conditions.

Probably the most interesting feature to come out of
static loop calculations is the possibility of thermal non-
eaquilibrium., The energy equation (L4.1) is non-linear and

1

does 1ot always possess a unique soluticn, As the loop




pressure is varied, the summit temperature may take on one

or three solutions (Figure L.1). If the loop pressure- is
7

) )
too big, t

he summit temverature (T1) cannot remain over 10
~5 . . . ;
and ¢rops to below 107 K (the evolution of this cooling is

o0

studied in Chapter 5). 'his feature was first discussed in

-~

this context by Hood and Priest (1979a), who examined in some

detail the existence of multiple solutions to the energy cqu-

~

They also found that non-egquilibrium arises if the length

is increased or heating decreased, Hood and Priest (1979a)
and Roberts and Frankenthal (1980) demonstrated the existence
of non-equilibrium analytically, and Wragg and Priest (1981)
showed that hydrostatic loops possessed the same feature,

~

The difference between instability and non-equilibrium is as

Y

follows. Jith instability, an equilibrium (whose existen

¢]

e
may be unlikely) becomes unstable amdmay evolve to a new
equilibrium, possibly at a slow rate, With non~egquilibrium,
no ecuilibrium actually exists and the evolution may be much
more violent than with instability.

In this chapter, we exanine how the solutions of the
static energy balance equation are affected by a steady flow,

) .

how the adiabatic and isothermal results change and how the

presence of steady flows alters the onset of non-esuilibrium,

4.2  Basic equations

————— . A Sl e A S

The loop geometry is the same as in Chapter 3, namely

s@i-circular (althoush we also examine a loop in which gravity

is neglected in Section L4.5), and the cross-scctional area

may vary along the loop length, Tne basic equations are
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me reference

radiative

of the conduction to enthalpy.

the importance of gravity (as in Chapter 3),

= v . avitie
nd speed, and zero subs

n, is a coronal reference n as

-

density (take

which should not be confu 1 with the base

Sed

may

vary.

Combining equat ions ( holy ) - ( I o8 )
NN N ' \
. WSy - — s ' ’
= -~ A/ \ \ ™~ 3
AL { ) { ol : |
& \oe=t b ) -
- )
s - "< S e |
[Ny N 7 R .
\._ A \ — ‘: l.. < N
- T3 - \
a R (A S
and
— 33y / L\ A & P
B \/ \- { ---\ 7 : : =5 : LA IR
" > Gt " B = \ z
8 \ NS J SN
—— { - - ~ ‘, \
= RLT D n nooA L
Fo and g can be written in terms of L as fol
) \/h.
—_— 3 2 1 [ > WY My =K | —
= = L VW Ve A o ' ! | \
> 2 — - - . \ hent .
(S S Y BN \ 0= !
\ A \ ) o C |
5 B 7 _l'(.‘_
N \ - = | — \
= ) \ - |
X P 810 S A \ i P | 3
\ p— S— = -
\ \ ——a \ -
e} 4o 6 \(3 L = 4 - N

2ter N

four

4y

pars: s

o?

cripts represent footpoint v

density (n_) whi

loss anc

]

5. % 10”'r m - )

9]

gives two equations,

}
([POL))
¥ £
, \_ /
(4.10)
lows
e
Y
(Lk.11)
in terms of

nderstand




the meaning of these parameters physically as follows, n

O

will be determined possibly by photospheric processes twisting
uo and relaxing the magnetic field and hence altering the gas
pressure and densiby. L is determined by the magnetic
structure of the loop, K by the (unknown) heating mechanism
and v_ by the footpoint pressure ratio. Thus all four para-

meters may perhapns be vhysically independent.

e

tric role of conduction

we first discuss how the position of the sonic point is
affected hy the inclusion of an éenergy equation, The flow

becounes sonic when dv¥/ds (or déni/ds) is undefined, and, for a

loop of uniform area, equation 4.9 )implies that

and _ 4 (L.,12)

at this point. Clearly, the sonic point no longer occurs
at the summit and its position depends on the temperature
profile, If dT/ds > 0, then Scwp » | and if dT/ds < 0, Seav< |
If we consider a loop with T, > T, then d?/d; will be
positive for most of the loop and the sonic point lies on the
downflowing leg. This will produce a smaller range of super-
sonic flows; the analagous effect was found in Section 3.3. 25
for a converging loop.
In general one cannot {ind the sonic point analytically
but the numerical calculation is relatively simple. The

effect of coupling in the cenergy equation to the siphon flow




problem is to remove the symmetric features outlined in

Chapter 3, but in doing so, it allows us to find wholly
: ) ]

subsonic flows for a loop of uniform area, It is also

worth pointing out that the critical point and the temper-

ature maximum will not generally coincide,

L.3.,2 Order—-of-mapgnitude

In the following two sections, we analyse equations
(L.9) and (L.10) by different approaches., In Section 4.3.3,

the rarazmeter & is assumed small but first a simple order-of-

It is assumed that the vslocities in the loop are small

erms of order v_. in the momentum equation can be

t those of order Go in the en2rgy equation retained.

nerlected bu

Also, if pravity and area variations are neglected, (4.9)

P = P, = constant {4 .13)

B i E \ — = -\_(
\ { 1 : L 3 4
A \'G \ A \- ) O _\'_, > " -
g L\ t 2 \ LN
o 5 S h
— ) - { Y \ g |
s b — o= / y
\ \ 2
W (Lolk)
. - -
wnere n = B
0 o)

The temperature maximum, T, will not be located at the
summit, but at some distance d beyond it, as shown in Figure

by ol The temperature gradient is approximated by

i & e = & R
\ NS !
up to and ) (4.15)
(I l = T |
4= T

beyond the temperature maximum,
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Equation (4.14) is then written as two equations

[ o % -
\ \ \ | e 1\. { \ -
-\V— S8l s » \\\ \ vry S \/ .L
Lo A N e 0, l o
v N o \ \ J ) o
i \ e \ .
= W L - R jLu s \ )
(l{,,](:))
subtracting gives an expression for d:
| o AT A ( ‘ﬂr\ — '\ )
ik T ., - )
o 2 (X — Nl N —0 %
- o) B e (4.17)
0 i

and so (L4L.16) determines T_.

maximum temperature bYeyond the summit is directly proportional
to the flow along the loop and inversely proportional to the
base density, heating and loop length. This is shown in
Fipure 4.3. Also, as expected, when Gd‘\ﬁ, d also tends

to zero and the results of Hood and Priest (1979a) are recov-

ered,

L.3.3 Small-parameter exnansion in 1,

A common approach in solving complicated non-linear
systems of ordinary differential equations is to examine
the solution when one of the soverning parameters of the
system is small., On use of (4.11) equations (4.9) and

(L.10) can be written in terms of L (for uniform area) as

o 5 = ~ 3
oy 3 | X ) i :‘ ¢ \ |
[ = £ L, A"
| \ = o

oo

n / : (4.1
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and

The limit L << 1 occurs when the loop is

duction dominates. (In doing such an expansion, it is

assumed that n_ is of order unity).

£

An expression for L in terms of L with T_ taken as 10_ K is

where L is measured in IMm, and so

Consicder the following solutions to (4.18) and (4.19):

T .
v d
- < = \
> \ _— Vv "\ /
\ > A = v
1 _"r ]
AR < ? ( !) 0(0)
- ~ c X; — N\ 1
i T O S :
{

subject to the boundary conditions

iAs)
W \ :l: (2 ) { .
J |
S - |
\ = \ { ’
0 ' - ) \ y ) (Z;.21)
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Differentiating (L.22) wit) £ 3
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which is zero at some point, s > 1, [hus the maximum teunip-
s ow lies on the downflowing lee. provided the radi
eracure now i e3 0Oon s L QO W )W LT € ) provided vne radl-

y-ion is less than the heating at the base (generally true in

‘ However, one cannot deduce anything about the

sressure ratio, since, to 0(L%), n_ = n.

Consider now boundary conditions which allow the temper-

L

ature to vary between footpoints, such as

3 e y = | )
! {
\ -
R , (4.21)
Ty 2z Vw W8
\ ¥i oz X G

To order L, the solutions are
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(4.26)

Hence, the temperature increases or decreases linearly along

) [he footpoint density n., is ziven b
L ¢ f 2 ! y

and the nressure ratio is

! v | Ve Bl Ng )
: 8 )

=

Thas, if Ts> T a t'low will be driven from lef't to right

L Py One must solve (4.27) to

in Firure 4.2 provided 52:

@

obtain VO which gives the correct ﬁ?‘ Finally, if the

~NE

5), the sonic point is given by

(

temperature is given by (4.

o

the solution of (4.12) in the form

e ) “q - =3 \
&7\,- N L — |
|( '1‘.‘\ / )

SO S.w 2\ , 28 expected from Section 4.3.1.

We wish to solve (4.9) and (4.10) subject to boundary

~onditions (4.8). Firstly (4.4) and (4.©) must be written
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and d¥W/ds never vanish
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critical points
simultaneously).
for

examined

are subsonic,

(i.e

¢ritical

(4.30)

()1A31)
. dn/ds,

If, however,

1
C:

- (4.31) reduce to,
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If v_.=0 and Priest

5= s Hood

centre point (if <<\ ) or

point corresponding to cor
critical point is given by

7 e
< ) }
- R 8
O <
. ¢y o

and close to the

are

found that the
a saddle point

onal values

e

of

critical point is a
(if « >1v ), the centre

. shen v_# O the
hn\o, he

critical point, equations (4.32) and (4.33)
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where o g =

- W VAV

Assuming that solutions near the critical point behave as

hY

P N . o
~ this gives
- -5 - Vi
\ ‘T e “" { g LA“‘; " ”"‘: ‘\\ 1
\ e o ‘o V¢ :f" \ g (. vod
~

If {.c (as in the corona), then the centre point of Hood

~

and Priest has now become a spiral point. Thus the symmetry

present in the static case has been lost,

To solve (4.,29) - (4.31) we prescribe ﬁo and To and
iterate (dT/ds) = = B to obtain T?. Different values of

Vs rive different values of n, and hence a range of pressure

ratios is found. We use a standard Run=ze-Kutta scheme to
solve this system. In Sections L.4.1 - A.L.A_TO is fixed

6

s : o £ < 1, =3 (.. ek B o B
as 10° K and n, as 5 x 10 m (so that ng = lo = 1),

Then Section 4.5 discusses the consequences of varying ﬁo.
Wle first examine how a flow affects a given static temperature

profile with T = T,, then relax this constraint and investi-
gate the range of siphon flows produced by different boundary
conditions, and finally re-examine the cases of loops with

varying area discussed in Chapter 3.

L.L.1 The effect of flows on 2 static loop

lirage and Priest (1981) have investigated the energetics

of loops in hydrostatic equilibrium, Such a loop is chosen




here with a summit temperature of 2 x 106 K and then the
footpoint pressure, P,, is gradually decreased. A flow
will develop and we here examine how a steady flow modifies
the static loop properties, Fipures 4.La,b show the be-
haviour of the loop temperature and density (dashed lincs
are the static case, solid ones the dynamic case). As
predicted in 3ection 4.3, the position of the temperature
maximum is moved along the downflowing leg and its value
is decreased giving an asynmetric temperature vrofile.

This asymumietry can be explained by the fact that the con-

)’ )
0

vective term in the energy equation acts a neat sink when

i

the temperature gradient is positive and a

.

a source when
negative, In other words, the decrease in temperature
occurs because a flow tends to suck up cool matter towards
the surmmit and transport hot material away from it, Figure
L.a also shows that conduction is enhanced along the down-
flowing legz.

The density is enhanced along some of the upflowing
leg (Fig. L4.4b), but for the rest of the loop it is decreased,
as mentioned in Chapter 3. The density minimum (and hence
velocity maximum) is moved to the downflowing leg, as mentioned
in Section 4.3. Figure L.4c shows the variation in the shift
of maximum temperature, d, beyond the summit as a function of
the footpoint upflow, Vo, and hence pressure ratio., For a
given loop length, an increase in pressure ratio increases

both the base velocity and the position of maximum temper-

ature from the loop summit. This continues until VO reaches
its critical value (see Chapter 3): at this point, the flow

can become supersonic at the soni: point and shocked solutions
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become possible. The position of maximum temperature is

then the shock position.

It should be pointed out that, as L varies, then so
does the heating necessary for a summit temperature of
2 3% 103 K, and so equation (4.17) is not relevant, It is
interesting also to note that the values of the heating
necessary to give summit temperatures of 2 x 103 K are sece-
mingly rather high (h = 21.3 for L = 50:m). This means

6

~

that, at 10 K, the heating input is over 2C times the

radiative loss at the footvoint. However, if one scales
the heating against the tempcerature at 2 x 1OLP K (and assumes
the pressure is constant between 106 and 2 X 1Dh K) then hx 1
at 2 x TOh. Thus, the non-dimensionalisation is somewhat
misleading.

L.he2 The range of possible flows for uniform area

Having discussed the general effect of steady flows
on a static loop we now examine the range of flows driven
by a variation of the boundary conditions, (4.8).
Considering firstly subsonic flows, the solid lines
in Figure 4.5 show the solutions generated by given foot-
point temperature and pressure ratios: the curves have been
drawn for different values of VO (i.e. for given base mass
fluxes). The first thing to point out is that the upper

curve, denotes hydrostatic equilibrium, Hence, if one has

two footpoints of a loop rooted in regions of different
temperature (possibly due to different levels of magnetic

activity), then hydrostatic equilibrium is only achieved

incidentally. If one of the footpoint temperatures (TZ, say)
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is increased, then the range of possible subsonic solutions
increases and the pressure ratio necessary for a shocked
flow decreases.

Cne can hence make the following comment about static
loon modelling. The static loop models considered by many
authors (see Szction 4.1) comprise only one of a large family
of solutions. T'ne symmetric static boundary condition,

T2 = To’ P, = P, represent only one point in the 52 - Tz
nhase plane and it seems most unlikely that the Sun should
always provide footpoint conditions representing static
solutions., Hence, the general dynamic solutions discussed
here may be of great relevance to coronal loops.

Figures 4.6a,b show the temperature and velocity profiles
along a loop for different values of 62' In Fizure 4.6a when
T2 = 2, the temperature no longer possesses a maximum but in-
creases all along the loop. This scems to suggest that, as
Tz is increased, conduction becomes the most important term
in the energy equation, On the other hand, Figure 4.b6b shows
that the velocity always possesses a maximum (Zee equation
La12). This implies that there will always be a subsonic -
supersonic transiﬁion point, the position of which is given
by the solution of (4.12).

As pointed out above, the position of the sonic point
cannot be found analytically but a numerical calculation is

relatively straightforward, Like Ch

pt

@

r 3, the unshocked
subsonic - supersonic sclution permits only one value of ﬁ?,

and s> a shock-wave is necessary in the downflowing leg to

-
"

satisfy the boundary conditions at s = 2. Tre jump relations

At

across such a shock are given by equations (2.54) - (2.56).
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(The shock is isothermal, since the medium external to the
shock possesses finite thermal conductivity (Section 2.4).)

The critical solution (i.e. the one to pass through the
sonic point) is specified by a single base velocity and con-
ductive flux for given boundary conditions. Once through
the sonic point, the solutions are generated as follows,

For a given shock position, the conductive flux out of the

shock is automatically determined, and so also is the foot-

point temperature, T,. If one then varies the shock position
. t ’ 2 )

a range of pressure and temperature ratios will be generated.,

P
pe

Th

@

hocked solutions are shown by dashed curves in Figure

L.5 (the dotted line denoting the lower limit of the purely
subsonic solutions). Clearly, the importance of this form
of solution has diminished with the introduction of the full
energy equation, but, where Th= To’ the shocked solutions
still contribute substantially to the possible range of flows.

m

The large dots in Fipure 4.5 indicate that the shock has

reached the end of the loop: this is the minimum allowable

Pressure ratio,

L.heo3 Loops with varving cross-sectional area.

I: Symmetric area

In Chanter 3, we examined siphon flow in loops whose
area diverged up to the summit and then converged, having the

form

hence the magnetic field is k times weaker at the summit
than at the base., . Weraeeg and Priest (1981) examined the

statics of such loops and found that, as the summit area
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1o

of

creases, the temnerature also increases but the density
ecreases, Also, in Chapter 3, we found that an increase
area resulted in an increase in the range of possible
op flows and a decrease in velocity all along the loop.
In Table 4,1, the effect on the maximum temperature

area

Symmetric

diverg

C o TS
1S SnowWne.

ence

Table L.1

1oops whose area is time bigger at the

S

leoop summit than at either footpoint, The variation with |
k and base sveed (¥o) of the maximum terinerature (T;) ;
The loopv has a length 2L = 100iim, dimensicnless heating 10
and a base sound speed c__ = 120 km s~1,
Y K
— 1 2 3
s0 e A
0 1.68 1.79 1.96
0ol 1..66 1.78 <95
0 ol 1.60 V75 1.94 !
0.3 - 1.69 1.93
Oy - 1.60 .91
As k increases, so the maximum temperature rises, but as
the pressure ratio decreases so this maximum falls although

ex

of

k = 3 it is roughly constant. This is exactly what is
pected if the results of Wrage and Priest and Section L.k

this

chapter

are combined., Figure L,.,7a shows the shift

of the maximum temperature from the summit as a function of
base velocity. The greater the loop divergence, the smaller
d becomes., One can interpret this in terms of the conduction




N




term in the energy equation which may be written as

g T 4 PR R B Z
(2 SENY AN FAN '\ Ch 3) ADS ,.l S > (l' .3(\)>

The second term on the right-hand side will act as a heating
term when d1/ds and diA/ds are positive (having the same sign

as hn), and so, from the order-of-magnitude relationship
(L4L.17), an increase in h decreases d.

Frigure 4.7b shows the velocity profile along a typical
loop. As in the adiabatic case, the velocity along much of
the loop is reduced below the uniform area case, except for
a small region near the footpoints, [his is because the
bulk of the divergence of the loop takes place away from the
footpoints and we expect the flow near the footpoints to be
similar to the uniform case, Also, the sonic point occurs

near the downflowing footpoint and so shocked flows are largely

irrelevant.

L. oy Loops with varying cross-sectional area.,

I1T:- Liverging or converging areas

In Chapter 3, as well as symmetric loops, we considered
converging and diverging loops whose area behaves as

(—‘\'\ (’—:\ \ ot \ -4 ( A — .\ ")‘
_’_2.. N

~

where o <« a £ 1 gives converging loops and a>1 gives diverging

loops. It will be recalled that for a diverging loop, no

subsonic flows with a pressure ratio less than unity are found,
Again, the effect of modelling the energetics can be

predicted from equation (L.36). For a diverging loop
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and so the
area case

the c

and so for

now

3, -

has extra heating term in equation (4.31)

an

loon temperature will be raised above the uniform

temperature maximum and lowered beyond

nverse holds for a converging loop. The sonic

siven

oy o 1Y -\,l

T (T |
3

R C T :

(14 032)

a diverging loop this point is shifted further along

ith the uniform case: the con-

the downflowing leg compared w

holds for a converging loop,

The results for two specific cases are fable

[ [he.
1
iincreas;s

|

| variation

tmaximum temperature and the press

\

%

)
|

the starting

Table L.2

properties of loops with a non-uniform area which

factor a from one footpoint to another. The

(T.) of the

(d) and the magnitude 5
i

position

ure ratio as a function of

velocity for two loop lengths,

10 and the base temperature 106 K.

2L=100Im

=1 6 K)

- Rm— ———

11\

1067

(10

m__

Vo(km S >
1 QGIP
56

0

T i

The dimensionless |



3
R
!

'{b) 2L=200kmn
' ¢ \ Vil O . m (-:)' /
? N : v {km s ') d(m) 1m(IO K) Po/ Py
o 2.0 10.0 2.10 0.953
21[-00 21 o,\) 1 o()l‘) 008’¥3
8 12.0 39.0 2 .CO 0,865

18.0 5150 1.93 0.821 |

For the diverging locp (a = 2), one now has subsonic solutions,
but the position of maximum temperature is moved toward the
summi.t. This is a consequence of the role of divergence as

shown in equation (4.31), as is the increase in maximum temp-

erature, The converse nolds for converging loops.
LoS The poasibility of a thermal catastrophe

In the introduction, it was mentioned that, duve to the
non-linear nature of the energy equation, there need not exist

a unique solution. This phenomenon was called thermal non-

equilibriuvm, and it is of interest to investigate the effect

that a steady flow has on the conditions for its onset,

However, since the term non-equilibrium is not appropriate
) 4 t L.

for a dynamical system, we shall here refer to the lack of

solutions as thermal catastrophe. In this section, we show

analvtically and numerically how a steady flow affects the
previous results, Also, the loop considered will experience

a negligible gravitational force, for analytical simplicity.

L5 i Analytical solutions

In this section, the order-of-magnitude form of the
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i

enersy equation (/;.1<f>), is used to derive some elementary
resiuLSs . 1t one increasesthe base density (ﬁo) in a loop
with a hot temperature (';,106K) one eventually reaches a
point where, if ﬁo is increased further, no steady solutidn
exists te the energy ecguation. At this point, d?m dﬁo is
infinite, and so, differentiating equation (L4.16) with respect

to n_ egires, (on settingcl = 0),

' ) . )

- { Y = \ & =0 U WOl f o= s \ >
L 3 g, 1 O O, T O e T ’ $ L& e — 1"7.;‘ (14.3})
- '--.‘_ { - ‘? L i
i e R
) ‘\\ ~ - Vo &yr Y ST \/ Y
ot W el =4 )
! “ L X =\ |\ ~

(4.34)

wh are _l— % -:1!'1(1 T :
i 101'11‘, critb

are the base density and maximum temper-
ature at the point when dTﬂ/an is infinite,
One can then solve equations (4.18), (4.33) and (4.34)

to give d, T ., and n__. The results are shown in Figure
O [£1V¢ ’ l(tl"lt 1 nCl‘lt. 1€ S c 0N N rn 1g
L8, As expected, the introduction of a steady flow reduces
the threshold for catastrophe considerably: a moderate flow

. -1 —_— :
of 50 km s at the base lowers the critical base density by

almost an order of magnitude,

L.5.2 Numerical solutions

m

he conclusions of the previous section may be confirmed
by numerical solution of the energy equation, the results
being shown in Figure L4.9. Once again, it may be seen that

a flow of around.50 km 5—1 can reduce the critical density
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in the next chapter,

It is of interest to compare the adiabatic results with
those derived using the full energy equation, The first
thing to note is that the loop temperature profiles bear
little resemblance to each other. This is because in this
chanter we have not considered the parameter range which makes
the adiabatic law a good approximation to the energy equation
and it would be of interest to investigate the parameters more

— - -

fully. The adiabatic law arises if both 1/n01-‘O and n0£2/§0
are much Sﬁaller than unity. On the other hand, the adiabatic
theory predicts the density and velocity behaviour fairly well,
The concept of sonic points and shocked solutions carries over,
the density behaviour in both cases is similar and the simple
adiabatic equation enabled us to see the effect of area vari-
ations clearly. Thus, in all aspects except the temperature
behaviour, the adiabatic calculations provide basic information
which could well have been missed had numerical calculations

been started straightaway.

Our calculations have tended to concentrate on the role
of flows rather than on varying the other parameters, These
have been studied at length by Hood and Priest (1979a) and
Wragg and Priest (1981), and the behaviour of the solutions
is well tabulated. In particular, our heating, h, has always
been taken so that the loop temperatures are between 1.5 and .
3 x 106 K in reasonable agreement with observations of inter-
connecting, quiet and active region loops.

“e now turn to discuss siphon flows in terms of more
ceneral theory and observations of coronal loops. Firstly,

it should be said that little evidente of siphon flow has




been seen so far, (see Livingston and Harvey, 1981), although

(¢3]

Noci (1981) has suggested that observations in some loops
where only half a loop is seen may be evidence of cupersonic
flows, (and so decreased emission), on the downflowing leg.
The main reason for this lack of observations is that instru-
mentation has often not been designed to pick up loppler shifts
in the corona: indeed, it is often hard enough to see individual
loops at all. It is hoped that one day instrumentation will
improve sufficiently for further searches to be made on coronal
loops for this sort of flow. However, a vast number of flows
have been observed at transition zone temneratures (see Section
1.3); and it may be that these upflows and downflows are part
of a larger coronal network of steady or transient flows,

One of the original reasons for studying coronal loops
was to try and obtain information about the functional form
of the heating mechanism, In fact, this has been a largely
unsuccessful exercise and it now seems to be accented (Chivderi
et al., 1981) that the accuracy of the observations is not good
enought to deduce anything. Chiuderi et al., parametrice
their heating function as

¢

H= Bl
and determine from observaticns that - 2,2<%¥< 6.7, so from the
observational side, one can learn little. In fact, there are
other reasons why little can be learnt at present, and that
is that too many of the parameters in the equations are un-
able to be determined to any accuracy by present observations,
For example, vacrying the cross-sectional area, height or
magnitude of heating in a model will produce different results

to compare with observations and none of these quantities can




be determined observationally to any accuracy at opresent.
Cne must now add a siphon flow to this list of parameters,
Varying footpoint conditions can produce a flow, and this

duces alterations in any given model, It is therefore

g®)
)
(9]

possible to vary any one of three or four parameters to give
a model loop which may agree with current observations. To

try: to vary one parameter to match observations, when in

fact any one of four can vary reduces comparison to a meaning
less exercise given present observations, Future obsarv-
ations should be able to pin down flows, loop ceometry and
oressure to much greater accuracy and one could then leamrn
something useful about loop models,

Another problem is that loops are often part of more
general coronal arcades and observations refer to the whole
arcade rather than separate loops. In turn, this raises the
sroblem of how a coronal arcade (a collection of loops) can
be modelled. Priest and Smith (1973) have modelled static

1

coronal arcades, and we now discuss how a siphon flow can
be included in such 2 model,

Aseume that a constant pressure difference is imposed
along the entire footpoints of the arcade, Then the higher
loops are longer, and for some length of loop, shocked solu-

tions will become necessary. Hence, one has a sequence of

subsonic solutions topped by shocked ones as shown in Figure

H.

L,10a - this picture results if one considers separate f{lux-
tubes revrresenting thermally-isolated fisld-lines, One
possible global picture is shown in Fig, 4.10b, The shocks

will not act as separate gas-dynamic ones but as slow oblique

1.H.D. shock, as is obvious if one joins the gas shocks up.

Je now have a much more complicated Z2-dimensional problem
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(b) Fhe rlobal nicture o>f siphon flow in a coronal arcade.
Insitead of separate flux tubes, the global magnetic field is
coansidered and the2 local gas dynamic shocks are raeplaced by

a single, slow, oblique wm.i.bl. shock, siown by a solid line,
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and this cautions against constructing simplistic one-

dimensional loops., Another possible application of siphon
flows is in the Formation of quiescent prominences., vie

return to this subject in Chapter 5.

Finally, it is of interest to suggest some ways in
which a siphon flow can be generated. One way is by
photospheric motions compressing the magnetic field and

2|

the plasma in it: the enhanced pressure could then be

relaxed by a flow from the compressed point. Alternatively,

a diverginz photospheric flow could reduce the pressure at
one of the footpoints, Supergranular motion (typically
500 m s-1) could drive a downflow of this velocity in the
intense tubes that make up the boundary of a supergranule
cell and, due to viscous coupling, maintain a pressure in

those tubes, which may b2 loop footpoints,. Also, the

nressure at a footpoint could be enhanced by local heatin
¥ £

there,
In conclusion, siphon flows emphasise the dynamic
aspect of the corona and should warn against constructing

simplified static loop models,
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COOLING Qi HOT LODRS \

In Chapter 4, it was mentioned that the static energ
equation did not always possess a unigue solution and that
if the parameters governing the loop structure exceeded

certain critical values, then no hot (T, > TOéK) solutions

I
1 ‘

exist and the loop cools to below 105 K. This was referred

to as thermal non-eauilibriun. In this Chapter, we discuss

the evolution of a loop from the non-equilibrium point and

suggest some possible conseguences of the cooling,

Siel Introduction

In previous chapters it has been stressed that the closed-
field regions of the solar corona are structured as loops or
arcades, The recent Skylab mission has emphasised the dynamnic
nature of the corona (Priest, 1981b) and in Chapters 3 and 4
the theory of steady-state flows in coronal locops was developed.
However, most of the flows observed in coronal loops are of a
transient nature: 1in this Chapter we discuss a possible source
of these flows, namely thermal non-equilibrium.

Recent observations of the corona (Foukal, 1975, Jordan,
1975) have indicated that some loops have cool cores, These
cores are present in sunspot loops and have temperatures below

o
107 X and pressures typically a tenth of the ambient coronal

pressure, The loops are typically 100 IMm long and 10 Lkim wide
(Priest, 1978). An important question is - how do these cool
cores form? Since thermal conduction is negligible across a

field line, the cores are insulated from the ambient hot
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5.2.1 Basic equations

)

The ecuations of unsteady one-dimensional gas-dynamics
in a loop of length 2L are momentum (1.25), continuity (1.26),

(=8 L

state (1.27) and energy (1.30), which may be written as

My DV o OF . e maeUEN
De % R T Tt (5.1)

e ‘ _
3.5 AR T T e R (5.2)
R R I v
D = g § (5.3)
s Dl o ks T DA A (o BT ™ 20y

BN, -~ e = e = /

o S \\L =) 0D Zae.

(5.4)

o T' e
) D e DS )
. @ 2
- ¢ S
=ls)y 2 a3 14 s \
VO3

>
and ==

Hence f(s) is just a geometrical factor representing the loop
structure ana A(s) is the prescribed cross-sectional area,
(In Chapters 3 and 4, we took f(s) = cos(iTs/2L) for a semi-

circular loop.) These equations are non-dimensionalised

RE
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In these expressions, subscripts zero denote quantities
evaluated at the loop base: in particular, TO is taken as
106 K. Subscripts ¢ refer to a reference value, and, in

srticulai is ! 8 5 10”‘L -3 a typrical coronal
narticular, nc is taxkxen as X m -, LY Bl Ce 0 é

number density.

Hence, equations (5.1) - (5.4) are

o, o A ~N —s €
AR dy . WV Iy , — 2% . Ta &§1T) (5.5)
NG 25 5y = ’

PE - _ (5.7)
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if area variations are neglected.




As it stands, this is a complicated set of rvartial
differential equations that are difficult to solve either
analytically or numerically. However, progress can be made
by using an order-of- magnitude approach for the spatial

derivatives, which enables ecuations (5.5) - (5.8) to be

N

reduced to a set of ordinary differential equations in time

- @
Hence, instead of taking a large number of grid points in the
g-direction, we take just three, namely the two footpoints
(8 = 0o, 2) and the loop summit (8 = 1). If some variable

s

(v ) varies spatially, our differencing gives

?;; ~ &}_i: 7 }
AE 2 ’ |
_ ( (5.9)
-\\ \ pe=r: pu ——' 5‘.\ |
DY Wy -, e

One expects such a scheme to be valid whenw, is close

tO\{;and\y,: however, the accuracy scems to be good even

when they differ considerably (Hood, 1980; Hood and Priest,

1981).

If symmetry is assumed a2round the loop summit then, for

all time

W, = 0
)

P ( (5.10)

C

and, evaluating all gquantities at the summit, equations (5.5)-

(5.8) may be approximated by the following three ordinary

— —
~

differential equations for T,, n, and v _:

e}

2 fl:== & s =
. A i W = T s\ S )
/’\ \\_\ (@ BT 0, \ o A VALY, ==Y, \ v o N (X ‘V \

i Az oy 7 (5.1)
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(5.13)

These three equations form the basis of our discussion in the
following two chapters, It should be noted that the momentum
equation (5.5) is satisfied identically on applying (5.10),
and so we have differentiated (5.5) with respsct of § and then
apolied (5.10) to obtain (5.11).

The order-of-magnitucde approximation means that we can-
not mocel steep gracients or shocks: its justification is
that it cives cualitative trends which are an essential pre-
paration to the full numerical solution that should be sub-

sequently attempted. It is essentially a more rigorous form

of dimensional analysis,

5.2.2 The conditions for non-equilibrium

Eood and Priest (1979a) have derived values of the
critical pressure, length and heating necessary for non-
ecuilibrium, Since we are using a different and more

accurate radiative loss function than the one they used

these results are rederived., The order-of-marnitude and
3 S = .
static Lj = QO ) form of equations (5.11) and (5.13) are
¥ )
o i e 2 3 = o plf ey .
L a, — 0, V. ) = g kg ) E (O {(5.14)
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for heatingz constant per unit volune. If z is small, then

the pressure is constant (p = p.), and ezuation (5.15) is
¥ & [6) b

_— e T S

[ T o D N T | \
% V=" \)- = P A S e e )
(5.16)

Further, if 0,562 & T1i 2 then « = 0 and ¥. = 1 and equation

(5.16) may be analysed as follows.,

(a) Non-eguilibrium due to increase in_pressure

Non-equilibrium occurs when de/dp is infinite (Figure

5.1); the critical temperature is given by

)

h (5.17)

)

~- Gy ~ —e \

Teag N Hm T} = = Lk

bl

and the critical pressure follows from solving equation (5.17).

he special case of h = O gives

~3

N (5.18)

B = Lo ¥ &

VRS TF] =
VI O ) )<
(b) Non-eauilihrium due to increase or decrease of length

TH thi

[#]

case, non-equilibrium occurs when df1/dL is

infinite and the critical temperature is the solution of

T B g et ¥ -
k %:'1.>k [ e \3 \em@ ) E= 0 1 | \Cv\]_ == C\ (5.19)

. : : -2 s g
This has no solution if h» P° and so non-equilibrium only

(9]
Qe =K

oceurs if i< p~. If h< p~, can take on two values

crit
(llood and Priest, 1979) so that non-equilibrium occurs if a

long loop is contracted or a short loop stretched, The ;
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critical length is obtained from (5.15) and for the case of

no heating,
. o \

Q
=
i
¢
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ilibrium occurs when dTy/dh is infinite, so the

critical

temperature is given by

=Y |
V1

Non-equilit

rium can only exist if

TR, ‘ (5.21)

5.2+3 Thermal stabilitv of critical voints

Having derived the position of the critical points,

cr

we now investigate their thermal stability. Assuming uni-

.

form pressure, the time-dependent energy equation (5.13)

reduces to

% — Tk - | ) (5.22)
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C(F. W. L . T.) = ¢ (5.20)
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Following Smith and Priest (1977), the stability of (5.22)
may be tested by perturbing the temperature as

= - - I o
’ (5.25)
where C is a constant and 0 is a non-dimensional growth rate.

Expanding (5.22) in a Taylor series about T,, gives

= LY =) k DY \)
- i —rs N — —
B D 208 V1= Ny ?
where & >c (<o) implies instability (stability). Thus the sta-

bility is directly related to the slope of the curves in

Fipure 5.1. The growth-rate, T- is given by
) -~ Ty o - -
=2 - I I v a2 wo SRR S L
o = L3 “_” \ \‘::4 CS~T1 w) P ). SH BT (ot —2) i
= — ;
! - L_l R
(5.26)
However, this analysis fails at the critical point
B a0 B which is neutrally stable a linear analysis
(fcrlt, *crlt)’ vhich is neutrally stable on a line analys
since M />T, vanishes there. wuadratic stability may be

investirated by approximating equation (5.22) by

* soves ': \"‘-—'.: A\
ATy = (U= Vg) ( S A \;
Ak e s 2| EX 1 F Vet

L7 .‘7 Teet (XA —9q) l {5.271)

)
( \"Lr‘\t /Im\ = M‘ )
\',\,
andé so

~ 7 \

r"i \ ~
L\ =l < O
\A"’T«—\*” .

\ \



w 10T =

If f1<, lCllt’ the plasma continues to cool, and if |
T, > T ... it will return towards equilibrium. Thus, the '

1 crit
critical point is cuadratically unstable and cooling occurs

rather than heating,.

5.3 Analvtiecal considerations

Provided that flows are subsonic and gravity is negli-

gible, the order-of-magnitude equations reduce to (5.22) and
G2y These equations are amenable to analytical treatment
in a few special cases. i

Expanding the richt-hand side of equation (5.22) in a ‘

Taylor series about the critical temperature, Tcrit’ gives
= o =2 R = S e e —_— -il'
\ "- l,'\ 3 \'\ \ \-’ ) \ \ ) = v ( !\ ) \"‘. ) (’- ) Cx ) -T'

-T\ =77 oo\l (5'23)

Assume that the pressure attains its critical value (5crit)

and is then increased beyond this by a factor &, such that

P = Peew L\ E)

J

so that we are in a region where no neighbouring equilibrium
exists., Such an increase could result either from slow
photospheric motions compressing the loop or from small-scale
motions in the loop itself but & need not be small. Since
no static solution exists, the loop must cool (as discussed

in 3ection 5.2)

Because FCTl is the critical temperature, it satisfies
Viag { ; v N P -‘{: ﬂ.\ vz & N
r & ‘.-\\ =\ ) k\’ i 'ﬁ ; e \‘\‘. ) - L ( RPAS )

)

and equation (5.28) can be written in the form
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Similar expressions can be found when L or h attain critical
values, as follows, where
‘L.——- = l‘—-l._-\t k \ ._‘ r\‘_\

depending upon whether the loop isstretched or contracted

and
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Use may now b

rasults,

5.3.1 Estimate of cooling times

First, let us assume that £ <<\ and discuss the case

when the pressure becomes critical (the procedure is the

same if I, or h attain critical values).
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functions of
, 1f we assume that a smooth

then ¢ will be small

and relations (5.36)and (5.37) will be valid.

To investigate the cooling time when % =

an idealised loop with no heating (h =

i . . yd £ m “
(valid if 0.562:< 1crit‘

and length are given by equations (5.18) and (5.20).

these results in equation (5.31) gives for P

Y e 3 1 Bitele)
Seopl F = \:;%'“‘\
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and for Lcrit’
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2) the critical temperature, pressure
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Thus, instead of a relationship of the form

\\

{ ~ oo
C
<

e M )

which holds when << 1, we now have an expression behaving

as

N
~

So, 2s = increases, the rate at which

A

L ool decreases slows
dowm, Althouch this result has been derived for the partic-
ular case h = O, it seems likely that a similar result holds
for non-zero values of tnhe heating

5.,3.,2 Initial evolution of cooling

28 a final analytical result, consider how the loop
cools just after equilibrium is lost, Assuming uniform
pressure, equations (5.22) and (.23) may be solved by

exnanding T1 in a power series as

e 3=z _
‘. 1 E ‘(_‘--\\’ \ oo X 4 X e %

5.40)

where & is the perturbation beyond equilibrium of the critical

parameter ﬁ, I, or h, <ubstitutine (5.40) into (5.22)

s

ives

e

a system of equations in o T??’ gte ---, which can be

solved analytically, The conditions that the loop is in

equilibrium at the critical point anc that 2 §/27

> 1 vanish
there give two equations for T . and p__. am
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Substituting into (

5 2
> el

2) gives (for ™ = Q)

& 1CH =

L

oy = N () A, 5 SR = s
Ty = g™ &% \ — — h \a v OCe™ \
¥ Vet / (5.41)

g
One thus has a linear decrease in temperature with
{

time, directly proportional tc the zerturbation of the

critical pressure and the critical pressure itself., this

solotion is valid provided

7 \.'*. \ & o NG,
~ Fin e ’
LXE =N Dt

t
Otherwise, a more detailed analysis is needed due to the non-
uniformity of our expansion.

Finally, it may be n>ted that an examination of the con-

tinuity equation (£.12) in the form

:’70 w s ads DN )

shows that an vplflow is driven when the temperature decreases

in time,

Numerical results:- A more detailed coolings analysis

The equationsof motion are governed by three time-scales,

namely the conduction (ZC) radiative (IR) and sound travel (zs)

defined as
Y = Y L2

e - '

times,

m

2)\,\(:)—\\ \ 73

(50142 )

=
Ltp = 20

FE nt X. "\‘

TB = L‘/¢'§

ol >

SRR

)

v
and in the corona, these are roughly cf the same order,
Consequently, little analytical progress can be made beyond

that outlined in Section 5.3, Recently, Antiochos (1980)

s doid
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has obtained useful separable solutions in the regime of
radiatively-dominated cooling, but to study non-ecuilibrium
we must follow the evolution from the stert when radiation
does not dominate.

Equations (5.11) - (5.13) are t.be solved numerically

subject to the following initial conditions at € = O:

Ve 2 Vool )
o= N,
- ;

Vet

i T

NC, = () & ‘
For now, we neglect the effects of gravity and flux-tube
divergence, The critical pressure and temperature are
found by solving ecuations (5.16) and (5.17) and then the
pressure is written as

——

\\ = .";\"\‘\: k \-\"Q..) .

The numarical results are shown in Figures 5,.,2a-C
for a 1oo§ of half-length 50im and heating, h = 2 (R =1
corresponds to a heating H of 2.5 x 10'6 Hm'B). Figure
5.2a shows the variation of temperature with time for several
perturbations. Clearly, the results depend strongly on £
(as was found by 3mith and Priest, 1977, in the analogous
problem for neutral sheets). The time for the teaperature

to fall below 2.5 X% 10u K (defined as ¥V ) increases

cool
dramatically as & decreases,
fhe cooling occurs in two distinct phases. A slow
fall in temperature, the expression for which is given b
s b I E
equation (5.41) is followed by a rapid cooling when the

temperature drops from 8 x 105 K to below 105 K in a few

minutes. The second phase of the cooling is.driven by




e e

AT K)

Ficure 5,2a The variation with time of the summit
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Tre dashsd curve is for a semi-circular loop with the
of eravity included.



~ 308 -

the large increase in radiation below 8 x 105 K and the
resulting rapid energy loss, Thus, non-equilibrium gives
similar results to linear instability up to a certain point,
after which a violent non-linear evoclution occurs.

The corresponding behaviour of the summit density and
base velocity are shown in Figures 5.2b and c, Initially
the loop cools very slowly with the pressure remaining
roucghly constant but driving a small upflow, However,
during the non-linear phase, the summit pressure falls off
guickly driving a large upflow which results in a substantial
increase in the summit cdensity. The time taken to fall from
7.5 x 105 K to below 2 x 10% K is 2 small cart of the total
cooling time if ¢ <« 1, so we expect equation (5.31) and the
(uniform pressure) approximations derived from it in Section
5.3 to be fairly accurate,

The dotted curve in Figure 5.2a shows the effect of

including gravity in a semi-circular loop where £ = 1 and

\

$@y = s (F).

Gravity decreases the critical temperature but raises the
critical base vpressure (.ragzg and Priest, 1982a) and hence
increases the radiative loss function, The loop then cools
more cuickly, but gravity should not affect the dynamics
until the temperature is of order 105 K. Gravity will
cause cool, dense plasma to fall until hydrostatic equili-
brium is reached, but by thea, the field configuration may
have altered (sze Section 5.5).

Figures 5.3 and 5.4 give the variation of the cooling

time (7 cool) with the loop half-length, L, and the heating
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h, respectively. Increasing the length results in an

increase in cooling time, since longer loops possess lower

m

values of p crit and higher values of T crit, thus lowering

el ol i a6 e ittt o Uk ik o S

the radiative loss. Increasing L also decreases the loss
due to conduction. The difference in 7 between loops

> cool
of 10 and 100Mm length is just less than a factor of ten,

civing good agreement with the analytic result (5.37).
Increasing the heating, however, lowers the cooling
time. This is a seemingly contradictory result since, by j
increasing h, one is depositing more energy in the loop. |
The contradiction can be explained as follows. An increase

in h raises p crit sufficiently to increase the value of

0

radiation ané overcome ths increase in heating. The vari-

ation in with heating is not large: the dashed curve
>

i

- cool
is the analytic estimate for small values of € derived in |
Segbion 5.3.2.

The case of L becoming critical is shown in Figure 5.5.

= - : . =R
L is only critical if h < p%, and a loop can undergo non-

e i kit 2 SNl b D

equilibrium either by stretching or contraction. The cooling
time has been calculated from the analytic approximation (5.30).
The lower branch of the curves are for a loop being stretched

such that

C o= Teng L14E)

and the upper branch for a loop that has been contracted,

Thus, longer loops take longer to cocl, but the variation !
alonz the lower branch is small,
The czse of h becoming critical is not so interesting,

since only one critical value exists provided (5.21) is
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5 Discussion and conclusions

N
0

'

In this chapter we have discussed the possibility of
a coronal loop undergoing thermal non-equilibrium if the
pressure or length are iancreased byond certain critical
values, The time for the loop to cool below 2 X 10"

is strongly paramecter-denendent, but the cooliag times

zenerally lie in the range 5000 s - 105 S The most impor-
tant parameter is = , the marnisude by which the parameter

(o, i or E) is pushec¢ beyond the critical point, and for

€ <& 1 the cooling time is typically in the rznge mentioned.
Downflows are expected to occur only when the plasma is cool
enouch (T‘§_1O5 K) for sravity to become important, but this
pihase has not been studied in detail, e results obtained

)

ara2 relevant to 2 number of observecd physical processes in

the selar corona, namely the formnation of guiescent promin-
ences, the presence of cool cores in some coronal loops
(foukal, 1975) and the loop evacuation observed by Levine and
wit*roe (1977).

Priest and Smith (1979) pointed out that, if the foot-

points of a coronal arcade are sheared enough, a cool region

forms &t the arcade sumnit, This was sugpgested as a means
for the formation of a quiescent prominence. Our single
field~line model here may recpresent a single part of the
arcade, and it has been shown that thermal non-equilibrium

provides a means of achnieving the high denrsities observed
16 1 -
~ 10 7 i 3.

in prominences (typically 10 ;  Tandberg-Hanssen,
197L) . The proposed scenario is shown in Figure 5.6a.
Z t £,

The hignh density is achieved by a siphon mechanism, which

operates when the loop summit temreraturc and pressure fall

aseaaadd
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50 that a pressure gradient exists between the summit and
the bhase, driving plasma upwards, The deansities produced

i 1t s S et AR 1 (s B : - T \1'3 -3
in this way are high (Figure 5.2b), typically above 10 ni
and the subseguent svolution is exvected to be complicated.

he sugpest that, when the density is high enough, the force-

free condition in the loop breaks down, so that the field

lines sag and suprort the prominsnce (Kippenhahn and Schluter,

1957; Lilne et al., 1979). It should be pointed out that

this is not the same mechanism as that of Pikl'ner (1971).

at the arcade summit, whereas the 2bove process can result

from a smooth evolution which sudadenly underzoes non-equili-
brium. The time of formation of such a prominence lies

between 10% ana 5 X 10 s, in agreement with the menerally
accented values, The important feature of non-equilibrium
is the sudden, non-linear development when the temperature
"2lls from & x 10 > K. A linear analysis would give sub-
stantially longer times for the temperature to fall below

02 K - in this respect our results are analogous to the
nunerical calculations of Hildner (1974) who found a similar
rapid fall in temperature.,

A possible steady-state is shown in Fipure 5.6Y. The
material is continually sucked up by a siphon nechanism and
becomes supersonic at the appropriate point along the loop
as in Chanter 4. The flow is shocked by a slow oblique
<.H.D. shock and then enters the prominence, Hence one
can keen a large quiescent prominence continually suprlied
with plasma.

Foukal (1975) observed cool, low-pressure cores in

some sunsnot loops and thermal non-eguilibrium is a possible

He ga2nsrated an wpflow by the inhibition of mechanical heating
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mechanism for their formation. one can visvalise a loop

being slowly twisted up until the critical pressure (or :
lenpth) is reached and then, once this value is exceeded,

the loop cooling c¢own to 105 ¥ or below, Qur calculations

can easily explain the temperature-pressure benaviour but

the density is somewhat harder to understand, since we i
predict large-scale upflows. However, it is likely that 1
gravity will cause the material to fall eventually and a é
continually dvnamic state may persist, 4 full numerical

code able to dezl with shocks would be needed to simulate
this; In faect, the behaviour of a loop after non-eguilibrium
will cepend on the magnitude of the gas pressure and magznetic
field =zt the summit and also on the magnetic field structure.
The important parameter ig the sunit value of the plasma

beta (% =2wr/B™). If non-equilibrium occurs in a loop

then either a cool core or a dense filament (or prominence)

will form, For small values of (>, the transverse force
balance =across the loop will still be force-free and any 1
evolution will occur along the field line. Bowever, if

is of order unity due to a large pressure increase, then it
is possible that the field lines may become deformed and a
dense condensation result around the loop summit; supported
by the magnetic field. «e interpret this as being a cool
filament. On the other hand, if the field line in our model
is part of a coronal arcade (as in Figure 5.6a, b) we expect
the scenario discussedearlier to arise. This serves to em-

nhasise the inherent multi-dinensional nature of coronal

loops and cauticons against constructing too simple a model,

The event observed by Levine and Withbroe (1977) has



= 113 =

been connected with thermal non-equilibrium by Hood and
Priest (197%9a) and Roberts and Frankenthal (19280). These
authors considered that the cdownflows observed could be
explained by loop plasma falling under gravity after non-
equilibrium had occurred, Lownflows are observed at
temperatures of IOS - 5x 105 K and we point out that at
no stage did our calculztions produce downflows at these
temneratures., Gravity dos2s not become a dominating

chanism until below 105 X and so we must regard the link

11

t

.D-

()

tween tzne Levine-Withbroe event and non-equilibrium as
unproved at this stage.

In conclusion, thernal non-eézvilibrium in coronal
loops seems to be of considerable importance in the formation
of cool structures in the solar corona, [t has the attract-
ion that no violsnt event is needed to trigger the cooling,
One just needs a smooth variation in one of the parameters
such that it exceeds 2 certain critical value and a thermal

catastrophe results, It produces large-scale flows and

=

could be partly responsible for the largely dynamic state

~

of the solar corona, (e.z. Priest, 1981b),

Beool Lo
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CHAPTER 6:  THYRNAL NON-EJUILIBRIUM:- IT - A LBCHANISH FOR

—— .o SP— e e ———

,]", N .y -~

- o3 1 . }

6,1 introduction
5

As noted in Chapter 1, solar [lares i.ay be generally
split into two types:- the simnle-loop (compact) flare and 3
the largze Z2-ribbon flare. The simple loop flare occurs in
2 magnetic loop which remains essentially unchanped in struc-
ture tnrourchout the flare, The temrcerature is seen to rise .
to over 107 ¥ within a fe. minutes and the emission measure, 3

which is defined by Craiz (1981, p.23C) in its simplest form

25 . A
g |‘\- 2 A \/ 4

o585

ises to typically 1 ’, Ctaining its maximumr a few minutes

after the temperature maximum (uil&ey et al,, 1971; Latlowe ek ]

al., 1974; kHoore anu Lutlowe, 1975; Figcure 6.1). The eleciron,
, . . . S i : RE TRy, | - T 17 _~3
number density lies typically in the range 5x10 "¢ n< 5x10 R Sl

It is generally considered that such flares occur due to a

e kAR CALRL

rapia release of marnetic energy (e.g. reviews by Brown and Sith o

1980; Van Hoven, 1931), and that such an energy release results |
i 2 ¢ . ]
in the tanermal evolution discussed zbove, bcdels for this ev;lu-i

tion have been reviewed by Craig (19481) and have usually procszaedaed

along the following lines, The equations of one-dimensional

- |

rpas-dynamics are first derived and an initial equilibrium is set
up, Thne heating is then rapidly increased, due to magnetic

energy release or particle acceleration, and the subsequent

evolution followed. This procedure has been used by Kostyuk

and Pikel'ner (1 }75\ Nagai (19¢0) and Craig and wsiacClymont

(1981). An alternative anpro2ch is to look at the nature of
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solution exists, The loop heats up to a new temnerature (Tf),

whose value depends on L. The base temperature, Tq» is here

I
taken as 2 x 10™ XK.
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the static energy balance equation (Hood and Priest, 1981) and
so in this chapter, we discuss this alternative trigger for the
simnle-loop flare.

Hood and friest (1981) have surzested that thermal non-
squilibriuvm in cool loops may be responsible for some flares,
The magznastic field is assumed to play a purely passive role
by chann:iiing heat. It is interesting to note that Cheng and

widine (1975) in their study of simple-loop flares found that

o
L

i

several of these flares had " no obvious evidence % rticle

12
I

(W)

acceleration,” suzgesting a passive rele for the electric (and

[¢4]

fer)

field, The cool loops (such as those observed by

cr

magnetic
“oukal (1975)and cdiscussed in the previous chapter) have temuper-
atures of 2 - 5 x 1OA K and their energy balance is between
hesting and radiation, as shown by the lowest curve of Figure
6.2 1f the heating is increased, then the summit tenperature
rises until it reaches 8 x 10M K. Beyond this point, the
radiative loss cdoes not increase with temperature (Figure 1.1),
and any acditional energy deposited cannot be radiated away,

Thermal conduction i3 neglirible so no ejuilibrium exists and
flaring occurs. Hood and Friest found that the loop heated
up to over 107 K, but their analysis looks at only unifornm
pressure solutions of the static energy equation. The high-
temperature solution is the top curve in Figure 6.2, and the
path the fiare follows is shown by a dashed line.

Ta this Chapter, we follow the non-linear =volution of
this flaring in order to see if the heating can occur quickly
enough. The idea is analogous to that discussed in Chapter

5 for the cooling of a loop, but the physics of fthe non-linear

evolution is substantially different in that tre flare occurs
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onsiderably shorter time-scale.

o
<
®
pie

e
(2

.2 asic eouations, time-scales and stability of critical
points
T

6.2.1 Basic eauations

Qur equztions are the same as in Chapter 5, namely the

ordav-of-magnitude equations (5.11) - (5.13),

\ - A\ \/- N ST 1 -\ L — “— = —— - : .‘ ". \
i\ ik, SRR AT R B g — O Vi) {0y o ‘\
— — A \
3 I Vo,
2 CRyy Yoy T35 | ¢ -
(6.1}
J\“ 5 )T ‘/

= o n = e O | =" A\
¢, QLY B L\‘/ ) (‘ \L\\"L . \__'\\ O ¢ X ) S
A Ty M T s
o =}
-~ T— —_— O l { ~ A
- 0y X o\, - R L Pgy v )

& )

2 (603)
reatated here for convenience,

Juantities with subscript 1 denote summit values and those with

subscrint zero denote base ones., A is the ratio of sound-travel

(o)
-,

to radiation time-scales, L is the ratio of conduction to radi-
’

ation time-scales, h is a dimensionless mechanical heating, and

¢ is the ratio of loop length to scale height.
6.2.2 Timescales

During a flare, temperatures range from 105 - 107 K and

2

censities from 1015 1O18 m~-, aad it is expected that different

time~-scales will dominate at different phases oif the flare.

NESFTFREN
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The large variation between the time-scales was absent in the
case of loop cooling discussed in Chapter 5, when, for the
ereater part of the calculation all the time-scales were of
rovghly the same order, The three time-scales, radiative

(T 3), conductive (7,) and sound-travel (T ), are civen by

= AE'
equation (5.42). In Fipgures 6.3a-c the importance of each

5

time~scale is shown as a function of temperature and density
The loop half-length, L, is taken as 20, 50 and 100 im respec-
ti-‘/e]_y.

By far the most interesting region is the bottom one

"'\

where raciation dominates, The temperature and density here
are comparable with those in a cool loop befcore flaring, and
we analyse this rezion in Section 6.3. slsewhere, it can be
seen that sound waves are easily propagated, and clearly as
tiie temrcerature increases conduction becomes more important
until

, for hot, rarefied plasmas, it dominates.,

6.2.3 Thermal. stability of critical points

In Chapter 5, it was shown that the growth-rate, ¢ , of

perturbations to an equilibrium is given by

- =%

o LE-0[ Tye L5~ 1T - \'T\T"‘;_'Lp«—'ﬂ]{

L

»

x

(6.4)
' P 48 fl o L2 >\) 1 d ooy _1 ~ F’y' \‘F

However, for tae are case, > and so ¢ and MF/YY, are
discontinuous when X\ changes sign., (6.4) indicates that ¢

is negative when T1'< 8 x 1OLF K ( X = 2) and positive when

> 8 x 10h K (& = 0), and so we write (6.4) as

'V1 =
— I_“ -— C\' ‘— - ~—
2gh (¥ =1 \ (85~ iT\)
W wp LT *
- == -
+ LEETEH O ? %1 ) = = (6.5)
L= )

i
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where H represents the Heaviside function, At the critical
point, however,>%/ ¥, = 0 and guadratic stability may be
investirated by writing

.LK'F\ B ' ST T > 5 5

g — N AT T4 =
uk i s 5 T R oA ’
where
~ e ¢ y ! 5 .5’..
!/ O~ \ L 3 \ R g N 7
AR P i T V% | ol . AN -
\ S ) 2 B R ; = a &
- ' ~ =g = - =
| 5 = % 5 | {2 =
\ B~ T , o \ }
r TLLA-g) ~+ " > b % 1DV /) e
/ = .

(6.6)

1

(D2

.G6) is positive, and the

s

30 (¢

N is the delta funetion, and
critical point is asuadratically unstable.

Anzalvtieal solution for initial heating
. - S an B ATt Aasd

=1
i

is was mentioned in Section (6.2.2), a cool dense loop
will evolve on the radiative time-scale, Since our model
proposes that such a loon flares to higher temperatures, we

analyse this initial phase, The scaling of the parameters

(6.7)

N —~ \ .
A8 . ”’(K) ) (6.8)

;‘-SA-'Q_A d s
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To zeroth order,

il 2= & .
A My (6.10)

)
T = (6.11)
i (¥-I LR o~ o o )
v - ‘ )
o o (6.12)
provided the velocity vanishes at the summit, These are also

the form of the full, undifferenced equations under the same

1]

Zquztion (6.12) can be integrated if &« is an integer, and

the reneral solution is given by Gradshteyn and Ryzhik (1980),

a
P.63 ¢ However, to model a flare up to temperatures of 2 x 10~ K

/

we only need to consider <l = 0 and A = -2 (Table 1.1). The

; - . B N - _ R o
b= 0 W= Teet) Qaiet e T & .S %00

\ 2 ~
(Y=-\) (w-F2) (6413)

| [ = i -
L N '.\: k V\ - A C\ ~ \(J' ’ \\> v __.(\ ’_;' 2 \ 1“ )
' sy ‘/'\ (X 7‘\ ‘(\
! \ s = o e
[ v . "'1’\ ‘\:f::)(nf-\c) 1
= K‘::T ;] Tawnn S UL T S
n K Y & \"T\T_c) \ )
9 e 1
e \
A — - S
Y el V&L S ek X LO
(0'1[4-)
£ =2 ELTz 5 o212+ M LTy T )

.60 x40 £ 7 =« L% \C,

(6.15)

where TC represents 'the temperature at which X changes sign.

I |
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Now, suppose that, after recaching the point of non-equilibrium,

the heating is increased by a factor © , such that

———

2 Ve i ) , . N O
‘ / J
where hc“it satisfies
.
-— el
M~ = Neet .

since conduction is small at such low tenperatures (Figure 6.2).

The initial flaring behaviour is given by (6.13) in the form

\

\

—— Vil / . —
-n - f ’ \
T, = Vearze 1 A+ &% %EL*W\\SQ \
\ n 2 J ) =
o G (6 . 16 )
where ﬁo is the base density, fhus, the tempsrature increases

linearly in time, and the rate of increase is proportional to
both the base censity.and heating perturbation, This can be

identifiec as the "“preflare phase",

Bouation (6.14) may be written as

o o 2 &0 X w = s
1. = (N leet! | \ LAk = TC" -

| 53 e i i e

LY 6 ¥ =N, Cvre)
osie T2 o \ s — \ \ :
s -..i-— \"?\ n 1, \ \_ o \'., .\.\.-‘, 1 ﬁ_-‘. <. ) \
o ?\ \ 1= L €) ~‘\T\—T'(_ ) l (6.17)
g

Tauation (6.17) shows that once the initial (preflare) phase is

over, the next stapge of temperature rise is approximately inde-

nendent of £ for % <<1, Beyond this stage, our approximation

will not be valid,
In theory, one would extend this analysis by the derivative-
expansion method but this yields little further information (Hood

and trriest, 1982) since the equations are too complicated to be

solved analytically,
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22

6.4 Mumerical solution for initial nphases of flare

In the previous section, an analytical solution for the
initial or preflare stage of the flare was derived, and it is
now necessary to solve eguations (6.1) ~ (6.3) numerically in
order to find the summit temperature of the flare up to . its
maximum value,

The point of non-equilibrium is given by

&’\_ \:. \ - N — (-)

:‘5\"»\‘-— )

v changes sign from negative to positive, we move

from a stable to an unstable branch of the eguilibrium curve

(Section 5.2.3). For the racdiation law adopted here, this
sccurs at 8 x 10% X and the critical heating (Ecrit) follows
from the steady-state energy eguation. Thus,‘all heat deposited
in the loop is being radiated away, If the heating is then
increased beyond Rcrit by

Y\- - ﬂ\’:..g\-\\t LA € }

then the extra energy cannot be radiated away and the loop heats
s Equations (6.1) - (6.3) were integrated numerically by

a unge-Kutta scheme.(neglecting gravity and area divergence)
subject to initiq} conditions at t = o of

A R

1= \eet

i

!

Ny = D_A_J j
S0

Vo T {

\ ) }

and using an initial time~scale of t = 0,01,
Figure 6.4 shows the viriation of the summit temperature

with time for severzl values of the heating perturbation, % .

it aad gt
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Ficure G.)  The temnmoral evolution of the summit temperature
(%)) with time (t) as a function of £

, the heating perturbation,
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I'he loop has a half-length of 50km, base density 2.5 x 101/ m <,

: o 5 1 -3

base temperature 2 x 10™ I anc critical heating 3.2 x 107" & m



7e have chosen a loop of half-length 50 fim ané base density

2.5 & 1017 m-3. For large increases in heating (L x1), the

temperature exceeds 2 x 107 K after approximately 30s, but,

9)]

as ¢ is decreased, so the time taken to reach this temperature

increases. For small & , the tempersture increases in two
phases which we identify as the preflare phase and the flash

hase (or flare-rise vhase). First, there is a slow increase

)d

up to 2.5 x 10° X (Equation 6.,16), and then there is a very

ranid flarinz which is initiated when . becomes necative.

The duration of the second phase (when the plasma heats up from

2D X 1O5 K to its maximum temperature) is approximately inde-

nendent of £ The temperature increase is eventually stopped
when conduction becones effective. The phase between the

flash-phase and the temnerature maximum is referred to as the

intermedizte phase and is characterised by a slower increase
in the temperature, The initial parts of these solutions

were checked against the analytic solutions of Section 0.3 and
gave good agreement, It should also be pointed out that any
value of & ()c) will give rise to a flare eventually,

The flare rise-time, 7.:, may be defined as the time for

the summit plasma to heat from 8 x 104 K to its maximum value

(vhere dT1/dt = 0). 1t depends on the physical guantities
L ng, and € ., In Figure 6.5,'T% is plotted against L for

several values of & , Increasing the loop haltf-length increases

botrn the conduction time-scale and the sound travel-time, so

that variations due to both conduction and sounc waves take

nlace more slowly. Thus, both the flaring time anad flare
temnerature increase with L. For the values of € and L

considered, T¢ lies within the range 5 - 15 minutes, which is

PSSR

anbe el S g
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Ficure ()_.‘2 The flare rise time-scale (T f‘) as a function of

; 2 ; A0 s .
the loop half-length (L) in :m (=10 m) for seversl values of
1 perturbation £ . o is cefined as the time for the
sunmit temperature to rise from its critical values to its
. 3 ) 3 . . -~ 1’“ "'. .
maximnum, I'he base density is 2.5 x 10 l 2 ana tne base

, = A
tenmperasure 2 x 107 K,
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in reas-onable apreement with observations (3ee Section 6.6).
Firure 6.6 shows the variation of 7+ with the base

density (no). ny may possgibly increase as the magnetic

cr

fi21d is twisted up due to the conservation of total pressure,

However, unlike the case wnen the length is varied, a change
in ng does alter the critical (mechanical) heating. If

= B 3 10h K, the
Tapie: ™ X% K, then

oo
T = g TR
RO \ F1/ - (6.19)
t

TuriE
'[Y aecreases as n

increases,

@]

In Figure 6.5 it can be seen tha

flares occurring in active regions with high gas pressures
will tend to attain their maximum temperatures more rapidly than
those taking place elsewhere,

Figure 6.7 shows the variation of the flare maximum temp-
erature (Tf) with base density for several loop lengths, with<=
held fixad as 0.1, If ny or L are increased, then so does T,.
A simple scaling relationship may be cerived from the numerical

results, namely
.Tf% ~ L.bx VO (. kN < .

This may be explained if the plasma reaches a quasi-static equi-
librium at its maximum temperature Tf. Such a balance between
conduction and heating (See Hood and Priest, 1981) together with
equation (6.19) gives the scaling law

= =7 b f
T.&. = ".\; ¢ \Q LL'-\-‘-\;\ ! ‘!'/\ by

where L/7~ 0.,57. 'he agreement is therefore reasonable despite |
the fact that large f'lows are vresent during the flare rise,. e |

discuss the role of flows in the next section.

S0 far we have not discussed the role of gravity and of







WY o ~ L Ty £57 oy an Y Yy o - [« " " . e o
Ficure 6.7 The flare temperature (l’f) as a function of

1

m

eritica

.
1

\
ne

s
Lf 18 th

the base density (no) for several loop half-lengths (L).

aximuim temperature of the summit plasma, The

heating varies with no.
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flux tube diveregence in flare modelling, but one can make a
e

few simple statements. Gravity is a stabilising effect

(Wrage and Priest, 1982a), so on2 expects ¢ bo increase due to
a decrease in the initial growth-rate. The mz2in effect of
gravity is one of stratification, as seen from tne static forn

of (£.1),

- Vs
T GE a TEa)
R (6.20)

where £'(8 = 1)< 0.
(6.20) shows clearly that introduction cf stratification reduces

the summit density, the magnitude of the reduction depending on

the parameter g, g is a weasure of ths loop-leneth, L, to the
scale-heirht, and for cool loops, 7 can be large. Thus, grav-

ity is clearly an effect to be included in future calculations,
Its inclusion in ow numarical code led to an increase in T

and a reduction in T both by swmall amounts.

£t
Flux tube divergence is unimportant at low temperatures
but becomes important when large mass fluxes and temperatures
(7576455 oA Wragg and Priest (1981) show that, if d;/dg and d}/d;
are both positive, flux tube divergence acts like an additional

heat source. Thus, we expect loops with strong divergence to

-

possess higher flaring temperatures,

Up until now we have examined the case when the heating
becomes critical, so now let us consider the bshaviour when
the base density becomes critical instead. It may be chown

that the critical values are

- 2 ~ &

{Cc-\’: = 5 N D i3 )

~ 2 }“ —_— AN -
Mee = Lk / (LVeee /¢

Non-equilibrium occurs when the base density, n., is decreased
s
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below its critical value
S e PRI AR v i
Ro = T CY—2Y e 1
and the temperature grows initially like
o - : o b 2 1 > o
T o T v 22— gl E Oy -ORG )
b = LT l"\-—-':') _;,M'L [ ) P
- - ‘Lt\t / (0.21)

vhich is simply equation (6.16) with & replaced by
,5 e e 4 = ¢ 1y
Lv= g}

S A - .
Thus, for ¢ «< 1, thepreflare phase proceeds at twice the rate

(»".

if the density is critical rather thasn the heating.
Firnally, other forms of the heating pesrturbation may be

considered, such as a linear increase to a constant value

F
- \
n =

X

or a sinusoidal pulse,

Weew LT £E/E) |t <%,

\’\cwm Ly k) ) L 2%,

i) 34

(6.22)

o T : ._ S A\ = T 1
T n et L% & Sua L = )> N L &
o7 - it N ) -
L hear , T *T, | (6.23)
- -

Little difference was found in the resulting flare parameters
for either of those forms, and so we conclude that non-equili-
brium will proceed at approximately the same rate no matter

how the heating is increased beyond its critical value provided

<L 1. This is seen in Figure 6.4 where the dashed curve

represents a heating pulse of the form (6.23).

6.5 Tre behaviour of flare densitv anc velocities

In Sections 6.3 and 6.4 we have obtained solutions of the
order-of-magnitude equations for the flare rise, anad have shown

that the onset of thermal non-equilibrium can give reasonable

v indis 16 e

s b b i

Mk <o
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values o1 the flare temperature and rise-time, The subsequent
ur of the loop density was not discussed, since the as-~

ol

sumption of fixed footpoint density and temperature is unlikely

to be true. Under our assumed boundary conditions, the be-
naviour is as follows, after non-equilibrium, the loop summit
cemperature rises and so does the pressure. A pressure gradient

exists between summit and base, driving a downflow and decreasing

1

the density. This ¢ownflow possibly is the same as that observed

. ; RS 2 5 : -1
yy Lites et al,, (1931) which was seen to be of order 70 km s .

citions fixed, we always have a pressure gradient between susnmit
an¢ base drivingz a dowvn{low, However, since an increase in
deneity is observed, this description is clearly inadequate, and
we surzest the following alternative,

The downfilow steepens and forms a shcck which propagates
down the loon, impiaging upon the chromosphere. The temperature
2t the loop base is enhanced sufficiently to drive an upflow
(which may well be supersonic). We are unzable to model this
evaporatlon exactly but can make analytical progress as follows.

Supoose that conduction has not yet become important
(I, 2 1) and that mechanical heating and enthalpy flux provide
the main energy deposition or loss. (kadiation falls off as
T'1 above 8 x 'IOLF K and is assumed unimportant). It is also
assumed (for analytical simplicity) that the flows are subsonic
and so the pressure is spatially constant, Onz can then develop
separable solutions similar to those of Antiochos (1980) in
which heatineg drives an upflow: by comparison he used radiation

to drive a downflow., The equations of momentum, (5.5) state,

sdia




(5.7), continuity (5.6) and enerey (5.8) are

P = ka\ 5
(6.24)

P 2
| ) (6.:25)
% = e ~ — T - NG
~ AP DY ;\ De — VP AT ooV 3
= — — = % ‘ =, = L2, ((3 2/‘)
‘_ D ;: - f " ':‘ < r(,) ‘:\ ) 3 6]
S > = 0w (6.27)

right-nand

@

t A AP

(1030) has a radiative loss term on th
i o (L - Y 5 ' .

side of (6.27) instead of heating.

’

Dliminating ¥ from (6.24) - (6.27) gives

o f owE A3 1T AT ) ~ =
el 2 2t - DN Vo . A D 3 YN &
e ) ST L W 0 = i -
- -~ e -~ P A=
\‘\ ”» = AT 7 N
IT (42, \ .\— -—\‘ﬁ \ — \_, .

Followinge Antiochos directly, we seck separable solutions

of the form

AT 1 2.¢2 - =3 \ L = e
~ 4 N \ \ - Lo ﬁ‘, S Sl ’ e ) fig 7

Separable solutions exist if the time-dependent coefficients are

censtants, SO that
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5= Pellit w1, IL
= - Y ' - = \
b= Tk =) L (e) ) |

(6.30)

where k and 1 are constants whose range of values are to be
determined,

lfext Y\ may be expressed as
A

£ Plenhy T W
l.:.t = “E_E( & ) \ ) :
wnere S

o

(6.32)

I

; : ¢
EED T S
|

\"x}i)

so that there is a two-parameter family of solutions in terms of
k and 1,
The zllowable values of k and 1 may be determined as

follows, The velocity is given by

P - \

% , ™
) . ku\vz A

ve = 3 : N ey
2 \9t -\ \3 x,\.T;k(J\)/'J\.S

(6.33)

and for evaporation we need v > O which implies that
o >0

- (6.3&')
e, £ Ziivay

[ ‘1;)

It is also required from observations that P and T increase in
time and so 1 and k are positive, Finally, it is required
that the c¢ifferential emission measure (D.S.i.) increase with

time (Craiz, 1981), The D.B.it. is defined by Craig as

RREARER Ve




vhere kB is Boltzmann's constant,
Thus we require

k< 1, (6.36)
Squations (6.34) and (6.36) give a restriction on k and 1,
Fisure 6.8 shows the time-dependcence of the temperature and

velocity (@ () and v (E)), vwhere

LS 0ly + () '
Clearly the temperature is increasing and the velocity is posi-

v (E Y 22 ) -5k

tive for all time and one has a solution of the form regquired.
The general effect of increasing k is to raise the value of ©
and decrease v, This shows that the time-~dependent eguations
permit solutions in which both the temperature rises in time

and the velocity is positive (i.e. an upflow), as is reguired

in the intermediate stages of the flare, However, further
calculations are required to back up this simple, semi-kinematic
aporoach.,

Further upflows are present in the decay phase, The decay
nhase can be defined here as the time when the flare temperature
is falling and the density is still rising (Figure 6.1).
Antiochos and Sturrock (1973) have analytically demonstrated the
existence of an upflow in this phase. Again, subsonic flows

and constant pressure are assumed and they find that

% [ 4
-~ 1\ == ol s
V= XX1\Q \ al .
‘_.\? s

Since heat is being conducted away from the summit, a velocity
is driven upwards,

It thus seems that continual mass evaporation is occurring
throughout the flare: i1i.e. from the flash phase until well on

into the decay phase.
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v(t)

rioure 6.8 (a) The time cependent nart, © (T:,), of the
e solution for the temperature curinege the iy termediate

Ley..'zr-;_z'f,“:1:'J'_~.>.n) phase 2 f :

t =t/ :JC) ; pO/L. is

is 2, and 1 is a2llowed to vary, (b) The time denendent part,

v(t) of the velocity.
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6.6, Discussion and conclusions

In this chapter, we have considered thermal non-equilibrium
as a mechanism for the simple=loop flare. If the mechanical
heating in a cool loop becomes too big or the density too small,
thermal non-egquilibrium occurs and the loop flares to tempera-
tures of order 2 x 107 K in a time oi between 5 and 10 minutes.
oore and Datlowe (1975), for instance, have examined data from
17 flares occurring between 10th October 1971 and 25th May 1372,

6 8

They find the loop length lies between 6 x 10° and 107w, and the

maximunm temperature lies between 107 and 2 x 107 K, I'ne cdur-
ation of the flares in X-rays is between 150 s anc 200 s, while
the rise-time is typically a few minutes. Qur theoretical
valucs give reasonable agreesment with such observations.

%“ith the order-of-magnitude approach, we have identifiea
two distincet phasses of a simple-loop flare, First of 3ll, the
temrerature of a cool loop generally rises linearly with time

£ 2.5 % 10? K, at a slow rate that depends on how the equili-

brium was perturbed: this was called the reflare thase.

Subsequently, it rises explosively to over 107 K in a matter

of 60 s: the flash phase. It did not prove possible to
!

examina the behavioﬁr of the flare density in any detail without
an ad-hoc adjustment of the base bouncary conditions, but a
useful analytic solution for an intermediate phase was derived,
In this case, an upflow occurred at the same time as a tsmper-
ature rise,

Clearly, the analysis in this chapter is of a crude nature

but it has demonstratea the viability of thermal non-equilibrium

as a flare trigger. One rust now solve the full set of equations

numerically to obtain exact solutions, but this is a procedure

bt e
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fraught with difficulties, Attempts have been made along
these lines bylxastyuk and Pikel'ner (1975), Nazai (1980),
Craig and Kchlymonb (1981) and wu et al., (1981}, Hearly
all of these authors have run into computational problems.
Kostyuk and ’ikel'ner, in an attempt to nmodel the chromosphere
realistically, attached a model atmosphere onto the base of the
transition 2zone. Ihey then 'fired' a beam of electrons at
the chromosphere and watchaed the subsegueat evolution,. The
loop flared to 107 X in approximately 100 s, but as pointed
out by Somov and Syrovatskii (1376), their results are dubious
due to the value of their time-step, chosen as 1s. Since the

cale in a flare is initially the radiative one

77}

gominant time-

ctection 6.3) one must choose a time-step much less than this

—~

time-scale, [he radiative time-scale is of order 1-5 s, and
so a time-step of 1 s may rmiiss out information. In fact, a

time-step as small as 1/100 S may be needed (iacliece, 1981).
Nagai followed Kostyuk and Pikel'ner in attaching a mocel
atmosphere and succeeded in avoiding the rroblem of time-step
size. However, Craig (1981) has cast doubt on Hagai's grid
spacing in the transition zone. Nagai assumes a release of
energy, either at the loop summit or at one of the footpoints,
and follows the evolution. A conduction front v»ropagates from
summit to base and heats a portion of the chromosphere, which
then rushes up the loop with a velocity of up to 400 km 5"1.
The satisfactory lower atmosphere and time-steps make this
the ‘'best! moael rrnduced so far.
Craig and kKeClymont (1981) consider the evolution of

deposited in it, Their loop

7]

a cool loop after somz heat i

(03]

is isolated in that no mass is allowed to cross the base, but

Rl fsine .




the ootpoint temperature is allowed to respond to coronal
evolusion. They find thzt the loop settles down to a new,
hot ecuilibriuvm after sbout 20 minutes. Subsequently, more

energy is deposited in the loop ana a second new eguilibrium
arises. They suggest that an infinite number of equilibria
can exist for a given loop mass, but attribute this result
to lack of numerical resolution in the transition zone.
Wragg ancé Priest (1982b) also point out that all but their
first equilibrium are spurious soclutions,

Wu et al, (1981) ignore the transition zone by fixing
their base temperature at 1O6 K, They then vary this base
temperature, and studay the loop evolution,

It is clear from the above discussion that the choice

of time~step and the ability of a numerical code to model

steep gradients is vital in flare simulations. Hecent use
has been made of the SHASTA code (Boris and Book, 1972)

by Hood and Priest (1982) to niocdel flaring due to non-equili-
briun, They find the flaring times to be similar to those
in this chapter and, like us, are unable to get realistic

densities  due to the chosen boundary conditions, However,

the SHASTA code can cope with shocks well and is of preat
potential in flare modelling.

The second important problem is one of boundary con-
ditions. In this chapter we have fixed the base conditions
for all time and have pointed out the drawbacks.of this in
Section 6.5. Howaver, Kostyuk and Pikel'ner (1975) and
Jagai (12€0) have made some prosress in this field by attach-

ing a model atmosnhere to the base of the transition zone,

ey

This enables shocks propagating down the loop to interact
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reali .ically with the upper chromosphere rather than simply
bei reflacted as would occur with a fixed boundary. It is

also worhh notine that the summit temperature will be in-
depencdent to a large degree of the base conditions. This
is because the time information takes to propagate from
summit to base and back will be of roughly the same time as
T Thus we expect that the temperatures and time-scales

jn this chapter are essentially of the right order since our

base conditions are not relevant to the flare-rise phase.
Finally, it is worth comparing briefly the differences
between the calculations of Chapters5 and 6. Lespite solving

the same equations using the same approximations the physics

of the two problems is significantly different. This can be
attributed to the different relevant time-scales, In the

23

cooling, all of the time-scales were of order 103 s, and so

any evolution proceeds slowly. 4lso, the initial evolution
was at constant pressure, In this chapter, the radiative

time-scale was initially three orders of magnitudé less than
the otliers, typically being a few seconds and any ¢volution
ocecurred rapidly. It was also of interest to find that the
initial evolution was at constant density. This serves to
point out that two apparently similar problems in fact exhibit

distinct physical behaviour.
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Chapter 7: THE HisaTING OF "205TNFLARS LOOPS T 2 - RIB3ON

—— e e e 48 e .

As outlined in Chapter 1, Z-ribbon flares are the most
energetic events in the solar photosphnere and corona releasing

up to 3 x 10°% J in a large flare, First of all, a marnetic

fielc eruntion takes plzce, and then, in the place of the pre-

flare magnetic field confipuration, a system of loops is seen
to rise in the atmosphere, These are pgenerally referred to
as post~-flare loops. In fact, the word 'post' is misleading,

becausa, 2s nointed out by Pnzuman (1931a), the loops are a
major mart of the flare and their formation accounts for a
large cnerpy release,

Qur knowledge of "post"-flare loops has increased greatly
with the observations from Skylab, and the Kopp-Pneuman (1976)

del has been remarkatly successful in explaining their bpasic

properties, ke return to the Kopp-Prneuman model subsequently
hut first discuss the observations of "post"-flare loops.

1t is instructive to consider first how a preflare magnetic
field confipuration can erupt. One possible trigger for a
2-ribbon flare is new flux emerging from the solar interior,
as aescribed in the emerging flux model of Heyvaerts et al.
(1977) and Tur and Priest (1978). The new flux éncounters

old flux as it rises, and a current shest forms between old

and new flux, +hen this sheet reaches a certain height in
the atmosrhere, thermal equilibrium ceases to exist: the

sheet heats up and becomes turbulent, triggering a fast

Lnam ekalibil ol s
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reconnection in the large-scale overlying field. An alter-
native mechanism involves the L,H.D. instability of coronal
loops and arcades: Hood and Friest (1379b, 1980b) included
the dominant stabilising feature of thotospheric line-~tying,
and found that, if a plage filament situated in a coronal
arcace is twisted too much or lifted too high, then it becomes
unstable and erupts outwards, Preuman (1980) has also exan-
ined the eruption of arcades and showed on the basis of an
order-of-magnitude analysis that a prominence with its over-
lying field would erunt outwards,

In this chapter we shall assume that, after a filament

\

eruption, the nagnetic [ield is dragged open to form a large-
scale current sheet confizuration as shown in Figure 7.1.
I'nis subsequently relaxes by reconnection through a series
of configurationrs shown in Figure 7.2 as the field closes
back covwm.

The récent skylab workshop on solar flares (uturrock,
1980) has provided a wealth of data on "post'"-flare loops.
#or examvle, those of the 29th July, 1973 flare have been
described in a series of pavers by iolte et al. (1979),
Petrasso et al, (1979) and Svestka (1978). In the initial
stages of the flare, the temperature was at least 107 K.
After 3 hours it had fallen to 5 x 106 K at the swmit and

6

3.5 x 10° K at the footpoints, while the corresponding elec-

e s -1 = 1 =

tron densities were 7 x 10 > m 3 and 7.5 x 10 > 1 3. As
the "postP-flare loop system increased in size, the temper-
ature continued to decrease slowly: 12 hours after the flare

; g PR o &
start, the sunmit and footpoint values were still 4.5 x 107 K

ot
5 5 y . . -
and 3.1 % 10° K, respectively, while the corresponding densities

e
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Figure 7.1 The open~field conficuration that is nroduced
by a filament eruption. The thick-headed arrows represent

a solar wind outilow.
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15 =3 z

were 5 x 10 m and 6 x 10

15, =3

m =, vithin the errors
nuoted by Petrasso et al. (1979), the deasity therefore
rexains roughly constant anc the temperature decreases
slightly as the flare progresses, the height of the soft
X-ray loops was observed to be avproximately 30,000 km after

three-and-a-half hours and 106,000 km after 12 hours, (Nolte

et al, 1979). For the first 3 hours, the average speed of
. . "1 . ~
rise was approximately 10 km s and for the next 9 hours it
-1
was only of order 0.5 km s . Early on in the flare, however,

the loops could have been rising as fast as 4O km s"1 or more,

ioore et al, (1980) give the best fit to their observations of

v

the rise speed as

. 5 N Ae (‘,.!...«J
V= abk, ] e\\f- i ) ) (7.1

where t is in units of 20 minutes and vV is in kn 5'1.

The values of the physical paraumsters in tne ambient
medium outside the loop systen are a little uncertain., The
masgnetic field strensth probably lies between 10 and 100 gauss,

ensity and temperature in the

while typical values for the

; \ ) - 15 .3 " 5 . I
active-region corona are 2 x 10 m anda 2 x 107 K. This
corresponds to a plasma beta (2:=2wd (™) of 0.1 - 0.01
(but se2 Section 7.3).

The mass of a typical system of ®wpost"-flare loops was
12

1]

estimated by Kleczeck (1964) to be of order 10 1013 Kg and

1

Kg). This is of

by Pneuman to te even preater (7.5 x 101
the order of the total coronal mass and therefore it is unlikely
tn be of coronal origin.

The model of ¥opp and Pneuman was developed to explain

this observation, They considered a system of rising loops

il

il
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and solved the equations of motion in the following kinematic
manner, The equations of continuity andmomentum were first
reduced to those hclding along an isolated field line, and the
marnetic field configuration was prescribed as a function of
space and time. It comprised a region of closed field lines
(the loops) whose heisht rose with time and a region of open
(radial) field lines, Hence the rate of rise of the neutral
point, P, at the top of the loops, was prescribed,

These equations were solved, and it was found that as a
flux tube (defined as the region between two field lines) moved
towards the neutral point, its width increased greatly, hence
zeneratine a large upflow, Juszt before reconnection, the
rass flux entering this flux tube was 12 times greater than
at ¢ = O, when the field lines reconnected, this enhanced
solar wind outflow was trapred in the loops.

By this simple idea, Kopp and Pneuman found that they
could trap Sver 1012 Kz in the loops - short of that required
but a great deal better than obtained by any previous theoret-
ical calculation. Once the field line closed, a gas dynamic
shock rropagated down the loop bringine to rest the upflowing
plasma and heating it. However, if one does not think in
terimns of flux tubes but rather considers tre global KM.H.D.
picture, these pas shocks will become an oblique Li.H.D. shock,
as shown in Fipure 7.2. The temperature aobtained by Kopp and
Pneuma for the loops is far too low ana gas dynamic shocks
can never explain the loops temperature but the use of i.H.U,
shocks gives a clear source of additional energy namely the
marnetic field,

In this chapter, we construct firstly a local model of

ST TR
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these shocks to show that the correct temperatures may be
obtained, and then we apnly the general theory to the 2-ribbon

flare of 29th July 1973, Finally, a global model of the

reconnection is constructed,

Recent order-of-magnitude calculations by fneuman (1981a)
have shown that ohmic dissipation can account for the energy
release in the loops. The analysis presented here shows in
detail how the energy is actually released in the slow shocks.

!

TR The slow shock model

As pointed out in Section 7.1, the original Kopp-Pneuman
model was defective in that the plasma was heated by zas shocks
oropacating down individual flux tubes rather than i..H.D. shocks
propagating outward and uvpward across the incoming field. In
a magnetic medium there are no purely gasdynamic shocks since
they became magnetoacoustic ones,

Locally-straight sections of these shocks are shown in
Fisure 7.3. In a frame of reference fixed to the 3un (Figure
7.3a ), the Y-tyve (orcusp-type) neutral point P (and the shocks)
are seen to rise with speed Vi while the loops below the shocks
are stationary. The fluid ahead of the shocks moves with

velocity components v | along the field and v_L normal to it,

In a frame of reference moving with ? and the shocks (Figure
7.3b), the plasma ahead of the shocks has an extra downflow
comnonent vp and the plasma below the shocks is nmoving down
with speed v. .

P
Using the notation of Chapter 2 (Fisure 2.1), the normal

and tansenitial components of the incident velocity in the shock

frame (Figuve 7.3b) may be written
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Vin = VY ©os &y Vi sind + L?Loaxl : \

V\T.' = V\\ Sin A VR \’.__L oy N = Ve Sin k.’,‘):‘z_-

L~

(72.:1)

Note that may be negative provided Vi and Vp are so large

1

that vy, is still positive. It is then possible to solve the

stock relations derived in Chapter 2 and so deduce Vi and vJ

. rar -3 TS p. i / P
from (7.1). For civen values of Vi vl,{31, 11,‘\1 «JK1€1
the aim is to solve the jump relations ror vp, Tg,d.z,fsz,ciz
and Bo. Since the shoek is of the slow type, the fielc is

refracted towards the normal by the shock passacge (Section 2.3.2)

anc¢ recleases marnatic energy to heat the plasma,

The input parameters may vary over wide ranges zne it is

inportant to note the range of interest. The neutral point
speed (Vp) is expected to lie between 1 km s~

50 km s—1 or even more, The parallel flow speed must not be

or less and, say,

too much larger than the sound speed, in general line with the
Kopp-2Pneuwman concept, For the ambient temperature (T1), den=-

GK, 2 -1.3,3(' 1015

sity (n1), ana beta (Q1), values of 2 = 2.5 x 10
m—3 and 0,01 - 0.1 are expected for the active region corona,
where this process is taking place, Solutions with vp small
enougzh Qere found only fore 1 close toW!L and vl relatively
small, so that the shock is vpropagating at a small angle of
inclination to a slowly collapsing field., This parameter

range unfortunately does not allow a simple analytical solution

of the shock jump relations. The problem is due to ﬁ&1 being
close to Wi . As was pointed out, the low-beta calculations

break down in this limit,

we thus solved equations (R.36), (2.37) and (2.39)

adeianl
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numerically and the effect of varying the parameters (v,,,
iL’d4’ g1) have been plotted in Figures 7.4, 7.5 and 7.0.
In faet, Vin and Vqg Were specified with Vi and Vl following

from (7.1) as

V.L. - \/u\ s\ ’K.\. - 4.\./.‘1-; oSy

;’if' glv\ L (WL v f*.‘,_B

e o)

First of all, Figures 7.4 anc 7.5 show the variation of

the loop temperature (TZ) and the neutral-point speed (vp) wit
Vi and v, for {%1 = 0,1 and 0,01, ¥ is a measure of the

speed of collapse of the field lines, Increasing ! raises

the reconnection rate and the magnetic energy release, which

results in a higher temperature (TZ)' It also increases
v__ and 82 so that the shocks move closer tocether. rhe rele-

vant value affl1 close to the snocks is rather uncertain, both

because the mzgnatic field strength is not very well Fmown zand

also because the values ahead of the shocks may differ substan-

tially from the ambient coronal value, since the flux tubes
divergze just before reconnecting (Kopp ond Freuman, 1976) .
The effect of lowering (> ] from 0,1 to 0,01 is to change T2
only slightly and to decrease vp substantially for a given
inflow; also, the switch-off speed increases. Increasing
\&T tends to increase both Vs and T,, although at (5, = 0.01,
Vs is approximately constant.

L

Firure 7.6 gives the resulis of vnrying:ﬁi for a fixed

s s :
value of TL (= YL). (vl is the value of Vl that makes &, zeroly
; . . " O
and {5, = 0,01, As A, increases from 87° towards 90 T
1 i ’ g

S |

gy




K]

1618 20 T,x10

10 12 14

2 L 6 9

falh]

Figure 7.4 The effect of the parnllel upflow (vl I) and the
field line speed (VJ.) on the temnerature ('i‘?). 50lid

lines are for (\1 = 0,01, and the dashed lines represent

(

N = Ol In each case the magnetic field incidence (\.11
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o the shock is 87 and the sound speed (051) for a temnverature
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increases only slightly and so is not shown, but vp decreases
-1 .

markedly o values as low as the 0.5 -~ 1 km s that one

finds in the late stages of "post"-flare loop evolution,

3

It is now desirable to apply these results to a specific

flare,
A The evolution of the "rost!-flare loons of 25th Jul
b
1973

In Section 7.1, the basic cetails of this large flare were
3

L o

1

outlined and it is now the intention to see how well our slow-
shock model can simulate the loop temperature and upward rise
speed. The rise speed, U, is civen by koore et al. (1980)

and is shown as a function of time in Fiesure 7.7. The temper-
ature after the first 3 hours is piven by Fetrasso et zl. (19793)

is shown as large dots on Firure 7.8. Both the rise speed

and temnerature may be accounted for by slow shock heating as

follows., For the first hour, it i35 necessary to have field
line speeds (vl) lareger than the minimum value (VT), so we have
prescribed<i1 to be 87° and Vyy to be 1.3C., =and have cdeduced
from Figure 7.5 the variation VL(U) which produces Vp(t) showin
in Figure 7.7. Then Figure 7.4 has been used to deduce the

resulting loop temperatures (T2) shown in Figure 7.8. for the
. . 3 1 "'1
first 30 minutes, we have taken v_L to be between 20 and 10 km s ',

This gives temperatures of over 107 K for the first 15 minutes

<

(not shown)and between 107 and 8 x 106 K for the next 15.

The values of v, are rather high ( 60 km 3’1) for this period.

&

After 30 minutes, V, is below 10 km 3“1 and is chosen to give
3

1

the observed VD,

)

It is interesting to note that very early in the flare,

I e o lidilanis ik e e Rl i
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Fisare 7.7 The observednzautral point rise-speed (‘-’m) 2

o

a function of time after flare onset for the "post"-flare
loops of 29 July, 1973. (aifter vicore et al. 1980).
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ambient beta (§11 ) of 0.01, ‘or the [irst hou
we ‘1-1:;4\11_? wut Aq = C_‘-?O and 1~I|| = (‘.” [/'(;:,“,l) = 1u3s Thereafter
Vi o= VT and the results for several values of LII are shovin .
(The sound speed (n,1) for a temperature of 2 X 10° K is

o
0]

~hout 200 km 3-1).




reconnection could be nroceeding even faster than mentioned
above, and, il the shock approaches switch-olf conditions,
temperatures of order 103 K are possible if 15 0,01 Such
temperatures are tentatively claimed in new results from the

Solar Maximum Mission (idachado, 1980).

s
o

For the remaining time we have asstumed that vl = Yl
and used Fipure 7.6 to deduce the angle of inclinationc{l(t)

that produces the rise-speed v_(t) shovmn in #igure 7.7. Then,

T

the resulting temperature T,.(t) has been deduced for several
S 2

values of I, (i VII/Cs1)’ as showm in Figure 7.8. It can

be seen that after 3 hours, values off’L1 = 870, Hyy = 1.3 and

M = 0,9 will reproduce the observed v_ and T? at the summit

I P
and footooint, respectively; whereas after 10 hoursni1 = 89.50,

M,y = 1.0 is needed at the swawit and N" = 0.5 at the footpoints.

K
~

In fact, v, will decrease steadily to v,

in Tp rathker than the Jjump to YI after 1 hour portrayed here,
Also, for an ambient coronal density of 3 x 101) m"3, our model
9

nroduces loop densities of typically 9 x 1015 m 7 at the summit
after one hour, decreasing to 6 x 10'? ™3 at the swmmit and
to 5 X 1015 m"3 at the base after 10 hours, The base density
is somewhat low, but could casily be enhanced by evaporation
of chromoscheric material (5ee Section 7.5).

It should be pointed out that other values of the para-

meters can also reproduce the observations, but the above

estimates do demonstrate the viability of slow-shock heating,

0 The ~lobal reconnectiocn process

In this section we. shall construct a simple @lobal model

for the reconnection that is believed to be taking place above

giving a smooth decrease

aclugs i
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a "-ast"-flare loop system as the field closes back down and
the neutral point rises, Steady reconnection at an X-type
neutral point is thought to occur by the mechanism of Petschek
(1964) ( see, e.g., Vasyliunss, 1975), and this has been put
on a firmer mathematical foundation for both incompressible
and compressible plasmas by Soward and Priest (1977, 1982).

In these models, on?renerally ouotes the maximum reconnection
rate as the principal result, and for the Petschek model, it
is typically a small fraction of the Alfvén speed at large

istances away from the reconnection region, This parameter

Q.

is a measure of how fast magmetic flux can be convected inward
te the diffusion region where the field lines actually break
and reconnect. However, the analytical model of Soward and
Sriest is rather complicated, and so we turn here to the sim-
pler mod:” rroposed by Sonnerup (1370). Not only are the slow
shocks of the Petschek model present but exrmansion waves have
also been introduced, These originate outside the diffusion
recion and are physically unrealistic. However, Sonnerup
(1973) has justified their use by stating that they may be
regarded as a lumping together of all interactions ahead of

the shocks, The invoking of this second discontinuity

meant that Sonnerup could construct solutions where the mag-
netic field and velocity are uniform in each region between
the discontinuities and are related tothe external conditions
by a simple matching across the discontinuities (which, in

the incompressible case are Jjust Alfven waves) . The compres-
sible version of this model (Yanz and Sonnerup, 1276) is
complicated and requires the simultaneous solution of four

ordinary differential eauations for the expansion fan,

Siess el hiaalss .«J
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Sonnerup found a maximum reconnection rate of order the Alfven

speed, much larger than that discovered by Petschek, However,

Forbes (1981) has pointed out to the author that this discre-
sency may be due to the difflerent locations at which the re-
connection rate is measured. The Sonnerup rate may only be
valid in the external region close to the diffusion region
whereas the Petschek rate is valid far from the origin.

’ -~ > . . > fa ) . .
Hence an Alfvenic inflow near the diffusion region may be a

manifestation of the Petschek inflow far away.

One effect which mskes "post"-flare reconnection differ-

ent from conventional reconnection models is the presence of
a strong solar-wind flow along the ambient field. Juch a
flow has already been partially included in the Sonnerup
mocel by liitchell and Kan (1978). Fi-tre 7.9 shows the

geometry in a frame moving with the shocks and with an upflow

<

in the inflowing region (1). This model is a simplified
case of the geneval iitchell and Kan formulation, They
allowed two regions with different densities and vertical
inflow velocities to reconnect, with the aim of simulating
magnetopause reconnection. The general problem is thus
asymmetric about both x and y axes, For the case of equal
inflow densities and velocities, the problem is greatly
simplified, After matching across the two waves PA and PB

and for a downflow Vp in region 3 we find:

Vi = Vay A Q=) fa

V""ﬁ R, (_\‘i‘ ’X’L\Q— \3/1 ) ) l
\/P 2 V(\.\ /\'\ ) |
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Firure 7.9 An incompressible reconnection zeometry in a frame
movine upwards at Yo (like Fimure 7.3b). The lines P\ and
- / i - L . » - [} .
P3 represent Alfven waves ana (artificial) Alfven waves, which
lc 7 ne slow shocks d (artificial) expansion vaves ir
|

viou Lt Deco and
the compressible case. Note also that Vi, may ke cirected

i(‘l aither t';"l positive or !-l‘.)',':"’»\-ti"fe )f~|fij,1‘ng';cti.31—1'
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By :@nlﬂ'*iikfﬂ f(WVLVKLXyaH)Qw
E ;
ij\ = %\\QG\ )
where
Tz | Vg
VA
H\ = WMix (7:3)
My )
K. 2 | .
| 4 L g Y2 (7.4)

In these equationns, Vi1 is the inflow Alfvén velocity. In a

fixad frame of reference (Fisure 7.3a), the y-components of

velocity are

\/,_"3
i

V\ =
1T Vg vV, (7.5)

~

Vlt.s i v \/(: >

where V1y represents the y-component of the solar-wind flow,
After eliminating Vp, v1§ and'i between (7.2) ~ (7.5) we obtain

an equation relating K and v1;/vk1, namely

\ \
e = i V. )
-+ &‘Lﬂ— Yon 42 ) k (%..6)
Va \<
whichh may be solved to give \
- - 5 )
L Iy f -
ZL L Yog ) a Vi Y

for the transformed frame.

furthermore, the constancy of total pressure (gas plus

masnetic) across both PA and FB gives
9. A
T S ~ = bl
. =3
?; + By - ‘F,,_‘ + Da Piy 5 )
= TA g

L
5|

After usineg (7.2) for

Gy

5 ang 83, we find
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Now (heR), (4.6) and (4.7) may be solved to give OI’

S5 93 and P3 in terms of the reconnection rate A, and the
inflow Vv.,! A i CEASeS, S he ang 5
inflow LTS As A, increases, so the angles ©,, O,, 93

decrease and the waves spread out, a behaviour which is
typical of reconnection models, As the solar-wind flow
(v1;) inerease, so the angles increase (Figure 7.10) and
an¢ system of ilfvgn waves closes up, which was expected
from the vresults of Section 7.2. At the same time the
neutral point speed (vp) was found to increase so that the
system of loops rises more guickly. 4lso, the pressure

D3 increases with v1; ana is strongly cependent on 91.

sion and conclusions

6]

2.5 Liscu

——

On the basis of a simple model we have shown in this
Chapter that the heating and rise-specd of "post"-flare loops
can, in all stages of their evolution, be attributed to slow

¥.H.D, shock waves, hence removing a major problem in the Kopp

and Cneuman (1976) model. By varying the inflow parameters,
a wide range of loop temperatures can be obtained, These

parameters inclucde the upflow (VII) along the field, the rate
of collapse (vl) of the field and the inclination®, of the
shock normal to the field.

The analysis of the present chapter ignores many poten-

tially imvortant effects, however, and it is instructive to
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discuss them, 1t is desirable to solve the full two-dimensional,

resistive, time-dependent, comoressible problem numerically to
see what effects have been missed by the zbove kinematic ana-
lysis and zlso by the calculations of Xopp and P:ieuman.
(Indeed, this is in the process of being undertaken Dy Forbes,
1982). One of the most interesting problems concerns the
effect that line-tying of the magnetic field to the photosphere
has on the reconnection rate, This seems to be one of the
reasons for the nen-uniform rate of reconnection (and hence
the rate of rise of the loops). A second problem coancerns
the role of fast magnetoacoustic waves generated at the re-
connection site, Slow waves generated here steepened into
shocks but an interesting question concerns whether fast Waves

can nropagate outward to warn the incoming flow that a shock

lies ahead of it. It is possible that such waves could
alter the configuration, Another problem concerns the source
of the mass of the loops. «hile the Kopp-imeuman mechanism

is able to trap a considerable amount of material, it ié now
zenarally considered that this is not enough. Preuman (1981b)
has suggested that chromoscheric evaporation is the principle
mass source but the relative contributions of both sources
nave not been studied in detail. However, it woula be
desirable for observations to detect upflows either inside or
outside the reconnected region,

Finally, it will be most interesting when more flare

observations become available to test the model vroposed in

this Chacter.
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Chapter 8:  KAGNATIC NON-% UITIBRIUK AND BXPLOSTTS

PHENOLEA

841 Introduction

well before the launch of the Skylab satellite, a
largse number of eruptive and explosive phenoniena were Known
to exist on the Sun, including surges, sprays (or eruptive
active prominenées), eruptive quiescent prominences and
coronal transients. Surges are streams of plasma rising
vertically from the chromoschere at velocities betwaen 50

and 200 km 5-1 .

They reach a height of between 20,000
and 200,000 km and are then seen to fall back along the same
trajectory. A surre has a temperature of typically € x 103 K,
a magnetic field of 30 G and a number censity of tvpically
10’7 m 7 (Rust et al., 1980). Sprays are similar to sureges
except that they are ejected at hisher speeds (600 km s~1) and
do not return to the sun, They have temperatures in the
ranee 10h - 1O5 K and magnetic fields as big as 100 G,
asrupbtive prominences are larger-scale events, They
have a fairly weak magnetic field (210 G) and rise into the
coronz at 200 km 8—1. Their temperature and density are
similar to a surge but they do not return to the Sun after
eruption.,
A coronal manifestation of an eruptive process is a
coronal transient (Preuman, 1978). These typically have

6 K and a weak field (only=x 2G). Trey

temperatures of 10
are much larger than any of the other eruptive events and
eject up to 1013 Kg into interplanetary space.

In this chapter, we shall discuss how a static magnetic

ani o
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field can erupt due to excess gas pressure and possibly give
rise to such explosive phenomena, The structure of a pre-

eruptive magnetic field may be given by th2 magnetostatic

equation
Ve = %8 + myaq
= (8.1)
where
B o= ¥R .
and
(8.3)
Taking the scalar product of B with (8.1) gives
O,_F = = WM 22
= \ q C2.%5
e il b S (3.4)

where 8 is the coordinate measured along & fisld-line and %
is the unit-vector in the vertical direction. (8.4) shows that
hyérostatic. balance holds along any ziven field line, and, if
the plasma is isothermal, it can be integrated to give
—EIA
(8.5)
where £\ is the scale-heicht, defined as
[& = Céilﬁ) “
Considernowa structure that is much lonzer than it is
high or wide, so that variations alonz the horizontal (x-axis)
can be ignored. Then, quantities depend only on y and z,

and so the magnetic field, B, may be written as

874

|

E = (P‘)\ \‘-S)'T'_\

, DAY,z — DAL, )
o

> ) s (8.6)

v
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where A is the Z-component of the vector potential,

comnonents of (8.1) reduce to

c\;_\:j\'?‘\\)«;: DB x C\R

3
1
!

2p - — 1 2 BI - 20V -
% 2 X N2 D2

Now p = p (A, Z) from (#.4) and B, = B
(8.5) 4s
o %
PLR 2) = poin) &

and (£.8) or (£.3) reduce to

VA . QR\(' 3):

If we assume also that the

than any vertical variations then both

field in the x=-direction are constant along

and (8.10) reduces to

7+ -
V7R &Q

and if p(A) and Biz(ﬂ) are prescribed,

be possible to solve this equation.

general non- llnnar and need not have a
f'orm

may be written in dimensionless

vlﬁ o &_ é:gﬁ).v
AR 3

e
V}G

scale-height is much

1
@5(3){ ,

The
(8.7)
(8.8)
"f}H Qo
1\10:f\' (8.9}
(A) from (8.7) so
(AN

P LR 2

(8.10)

~reater

the gas pressure and

any flux surface

(Rx(\l\ ¥ ‘«Q(\ﬁl)> )

(8.11)
then in theory it should
Squation (£.11) is in

unique sclution., It

(8.32)
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where ?
W "5 = B - S ;
p=rp , A=HR , F=-2
P) J P‘s o \'\, \?C i
?S o .‘.é- 3 -:;:' = -’Z—' bl & ws = E} ]
g n 68

and vo’ Bo and h are scaling ftactors. i
e discuss this equation briefly in Section &.3.

However analytic solutions of (8.12) are complicated and do

ke Ctas

not give much physical insisht to the problem, Instead,

it

we first cdiscuss somz simpler solutions to (8.1), which,

althourh »cstrictive, do give us a clear view of the problem,

8.2 Cylindrically svmmatric equilibrium models

oy

g.2.,1 General Theory

e Tirst ciscuss some simple models for cylindrically

symmetric magnetic fields in wrich the gas pressure is pre-

scribed and the magnetic field deduced. If the magnetice d
fisld is assumed to be purely azimuthal (Figure 8.1a), then

the momentun ecuation reducas to

K 5.

\

J}
G
L
—_
W
S~

This is non-dimensionalised as follows:

s ?/"PU‘:\) ) Rz B/Reec=1)

so that (8.13) is

i - ) (8.14) 3
where
e A
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current
(b sheef

Ficure 2,1

(a) a cylindrically-symmetric arcade with a purely azimuthal
otide field,

simuthal maegnetostatic field esnfined at a gistance
r_ by a prossure po.

e il =




and r is non-dimensicnalised against some length-scale 1.
I the mas pracssure is imposed everywhere, then (8.1L4)
integrates to give

Re = & - gp + B Loy dr
' % ) (8.,15)

where C is a constant of integration.

—-)

Cna,c:n thus pick P(r), and use (£.15) to evaluate the
properties of the wmagnetic field, In practice, the Sun will
rresceribe doth the cressure and normal component of magnetic
Aiold at the photosphere but our assumption of eylindrical

' Y

symmetry means that we cannot prescribe both of these.

-

(o n S = S = A e 3
E.2,2 opecial Cases

{a) Consider first the cass of p being imposed as :

G

L\r\_’lBL (8.10)

50 teat the nressure falls from the origin to infinity.

Integrating (8.15) gives

e ) - ‘< .
Ry = &+ BPGBe v e™x0)
b s

e 7 ) (8017)

80 that, as > 0, we recover a potential field as expected,

%}

Considering the behaviour of By near the origin, it can be

g

seen that
- . 3 R
Rp 2 =, (1=@) « O(r?)
5 ; ~ .

s0 that we require (A< 1 for equilibrium,

A more general case of (8.16) is

Cia e )0

which gives

= T
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zvaluating C from the condition that B+= 1 at r = 1 gives !
ey P . 5 / n N

\b:{; = ..L - -._.C?_.__ " \.Cv\+--\‘,\(_\»\- ) u\..\)Lwlrz) j

2 LT\*\)(““T\""&) = ?

£

1

T \ P ?

\5‘{:’ = = Y —P———- o 4 B \"O‘)\Cs\,\\-t‘\‘l,) ‘*"_Z‘L\w 1—1) y l

t r‘l(\ﬂq-’i"") : !

=1, 4

Close to the origin, the restriction on @. becomes ;

Cw —1\) L i

V; < = : w02 R ; |

LA =) = ()

whiclh: becomes more severe as n increases. Forn =1, i

there is no restriction on @ .

These solutions may also de derived from equation (8,12) f
by a method first discussed by Low (1977), however the above

derivation is somewhat simpler.

(b) one interesting case of the previous 3ection is to con-

sider a magnetic {ield given by (8.17) surrounded at some |
distance S by a field-free gas, We wish to ascertain |
whether a body of plasma can be contained if its internal §
pressure is pumped up. Asuumiﬁg that the ftield is given

by (8.17) and the pressure by (8.16) then a current sheet

exists at r = r, as shown in Figure 8.1b, Pressure balance
must hold across this sheet and if the external presure is ‘

zgiven by Pas

Dres:

UJ

ure balance implies

[.‘:“-q.ju socd SELY
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where P, = pe/p1. Hence, C in (8.15) is determined by the
pressure~balance at s rather than by normalisation at r = 1.,

(8.15) becomes

) 5

— s o 2
o . R o 1
S = Ble r__@) T——%_L" e l«-ﬁk\—v Af )
- - c2 e EE Cree2) 02
where, if r_ is fixed an ejuilibrium exists provided
b 2 |
\5 ~ R ~ = a
Ciwrg )y ~Te e )
So, for a chosen Py increasing'ﬁ means that thz plasma can

o

b}

no longer be contained, Also, increasing Pg 21lows higher

-

valuzs of pressure to be contained,
(c) A further possible form of the imnosed pressure is to
consider the pressure at the dimensionless distance r = 1 to

be fixed 21d to vary the pressure toward the origin trig-

onometrically, Such a pressure is
>C ) - e
r.__ = .5 S— G ~c\)(-0‘ (T (“) 3

o (8.18)

where Py is the pressure at r = 1, a is a constant

uch

[}

that the pressure changes smoothly from unity at r

i

1 to |
2a - 1 at the origin, Equation (8.15) may be integrated

imnediately to give ;

— 1 G )
\ \
P)(p . - l(», \ TIPS | \ A+ (4@ =iYeosl r)z‘\‘

“*(_‘:_‘) % (q—ﬂ§ Sonlre)
| .

— 1. (ca&(ﬂr) ~v\3}
C2 &% T e )| )

(8.19) 1

where B%ﬁnd F are definad in Section (8.2.1). e now

]



examine (8.19) to determine whether any values of a or P

reclude the existence of fields, Hear the origin, {(8.19) |
, '

== - |

S = ..‘._ \\ \ - \"\ -f—')_\l ('l((L—\) _('{3 |

G : o - ) ]

e T L g

and so if g 8 ]

S A>". e
\ Lih~TV %) -\»'L:.\(TIQ-»Q_) )
no physically relevant solutions exist,

Hewriting in terms of a, this becomes

a > Tge) - a
BLUNE T P el

20T —-2) (8.20)
for the non-existence of solutions, So if either a or ﬁ

are held fixed and the other is increased, non-equilibrium

-

will eventually result due to excessive pressure buildup.

P

Fizure 2.2 shows the variation of pressure and magnetic field :
with radius for such a configuration, The gas pressure is

fixed at r = 1 and is allowed to wvary at the origin,

vhen the condition (8.20) on a is violated, no field can be
coastructed, It is also worth noting that such fields have
been discussed in the context of coronal loops by Chiuderi

et al., (1977).

(d) e have explicitly shown that magnetic non-equilibrium
occurs in three specific cases of an imposed pressure distri-
bution. However, one can pic!z many other possible values of
p(r) anc some of these will give rise to non-equilibrium too,

for example, if
P = <

no solutions exist if

V-

-
(e -~ S)
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Firure 8.2 (2) The pressure and (b) the mapnetic field
civen by ecuations (Z2.18) and (£.,19), respectively, as functions
of the dimensionless radius, r, veveral values of a are shown
and (> is taken as 1.0,
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and one could continue generating such solutions in many other
cases,

The next development must be the inclusion of gravity
into such an analysis, but a stratified atmosphere introduces
complications into these simple calculations, In particular
gravity does not act in a cylindrically-symmetric manner and
50 the simple calculations there will have to be modified,

Also, it is of importance to follow the evolution in time of
b} !

these structures after the onset of non-ejuilibrium,

8.3 General two-dimensionzl solutions

.

43 roted in Section &€.1, the eguilibrium of a magneto-
static field can be written in terms of 3 single elliptic
rartial differential equation (£.12), (See Tsinganos (19€1)
for a more general outline of this arproach). Zguation (8.12)
is, in general, non-linear and need not possess a2 unique
solution aAd srogress towards solving it has proceeded furthest
for the case of force-free fields (f3 = 0). This has been
considered by Low and Nakagawa (1975), Low (1977) and Heyvaerts
et al., (1979). ‘These zuthors have simplified (8.12) by
writing

B = A§CA)

(8.21)
where increasing >\ represents an increase in gx' They find
that, ifA is too bigz, no solutions exist to (£.12), and they
interpret the maximum as the onset for a flare due to excess
footovoint shearing, This conclusion has been criticised by
Jockers (1978) and Priest and Milre (1920), who note that

BY(A) attzining a maxinum does not correspond to a maximum shear,

|
|



P(A) has been prescribed by Bim et al., (1978) and Low
(1920), and, unlike the force-free case, the physical neaning
of increasing P(A) is clear. If p(A) is too big, the

field cannot contain the excess gas pressure and will blow

out.
The tvio cases of breakdown of magnetostatic and force-
free equilibria are related by the following simple relation-

hip
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ProVv

Bl = PLA).

A particular case is given by Bifm et al., who assume

. 2
P= 2 DNacothly
(:. v LI \\35\(‘ (\1\-l,¢) — \3) ’
-

and obtain

A= 2 \eq {“mva\i (- )

% Lo

2 3 Q. Cy S\\'\ \3
where b s a solution of

. “-Fi’uoakla
v, 2
If a= ¢c=1,s0lutions exist if(> < 1. In terms of the physical
parameters, this gives
N
/ ¢ & ‘ﬁ“
N > bx\O (‘:: )
~ ! )
for eruntion where B is measured in Gauss, For B = 10 G,

6 16 m"3

T =10, n% 6 x 10

, a density which is achieved in the
1yyoast - : / ;
corona during flares. If T is lower, say 10" K, (as in the

photosphere) then n 6 x 1018, a typical photospheric density.

| £.,3.1 Senarable solutions

Approximation (8.21) is, in fact, 2 rather sevave
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restriction and attempts have been made to overcome it by
looking for separable solutions to the force-free cquations
(Priest and iilne, 1980). This is easily extended to
cylindrical magnetostatic fields in two dimensions,

The non-dimensional form of eauation (8.1) is

) - )
where
B= ppllel,g2m)  F» P
3D - 4 )
\‘5\~L(.-.-\ )&%:O \BCV:\)\:}:Q)
- )
R - »
‘3\_(--\\\;' L))
The r and ¢ components are just
(@l\; = - E‘I‘ Ll(rﬁ%) o M{ ] ) -
> = R A (8.22)
B 5§ A iz? ?L§.': O
3 r s S : (8.23)
and flux conservation gives
Y (el SR
2 e + 29 = 0 3
®r. r> ?}‘— (80213/)
Assuming separable solutions
P = Pled T Lp)
B.s Re Ce) @ \P}
Ry = Ry DT (),
gives (8.22) - (8.24) as
TpderRp) v cpdp o s Ry dle
W e Ry QA0 ™ &Y ‘
Cecdp 2 q 2 ~ Ty dw (828

) ) o Ty
C‘f)? o —(E(_'r\- l,(\p
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—)-—. &{\"‘(‘1(—) — N = —— _L L.\ 9!:(;:.

E e )
] fi v
Ry de gra¢ (8.27)
where 1, n and m are constants of separation. This system

is separable if

"y
g‘i’ ~ Cownwsl.
w

) (8.28)
or
o & L\‘\lqp\ = Const,
R ¢ (8.29)
(a)‘§$7'T = const.

Thep - equations give

ZE“L = COS\L(‘b y
:D\(- e $\“9L¢>) (8-30)
. 2.4 ok
T = Lo K
W= ’ (r.)
and the r-egusations

O\(_: B8 Tt(kﬁ?\\‘vl

c

PR
1¢ B %_%}L_ALK{J~@C)] ) (8.31)

- A
. { vﬁ\
p = [T (lip Cﬂ ,
where Jy is the 1l-th order Bessel function (Abramaowitz and
Stegun p. 362).
These are just the magnetostatic analogy of the linear
(constant -RA ) force-free field and always give equilibrium,

(v) Solutions subiect to (8.29)

Consider th2 case when

i} '
SRS RN (558
AT )
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vhere k¥ is a constant, fhe radial equations give
Q _ -\-
Ny —— r h,
_\_ -~
[?\(P = = , (8.32)
— 2L+ k)
c

_—0
It

&2 ) - 2 q’/ % 2

L-.——'—_:\f)‘* \({, @l g (’)/\‘\R\EE \qf¢)“ O) .
h 2L \ \’;) T
T A \ ‘TJP\ ) 8 1353
s L ATy

QY T e e e

? R A ) (2.36)

wheregkxis a constant of integration. Bquation (8.34) is
the same as the force-free cquation with )\replaced by ﬁ)\z.
Zouation (2.34) can be solved analytically if k = -7 and it
can be shown that (> lies in the range

O < GA* \

for solutiore to exist. Hence if the pressure is too big,

1N

maenetostatic eguilibrium bLreaks down.,

8.0 A simnle time-dependent model

Consider 2 magnetic arcade with a uniform
magnetic field B and cross-sectional width d. The arcade
is so long that any variations along it may be ignored. If
this arcade is situated in a field-free region with pressure
PO below it anu P above it, then equilibrium exists if the
pressure gradient across the arcade is balanced by the tension
exerted by the field (as shown in Figureé€.3a ), If the arcade
has a radius of curvature T and fixed footpoints separated

i ’ 2 2. R : ;
by a distance 2a, then r® = (a®+h").  There therefore exists

Rl




irure 8.3
a) sarnetic arcade of width d and field strength B set in

| |
field-free mecium with pressure Py below the loop and B
above it, The footpoints are separated by a distance 2a

D —~yra]

and the loop has radius r° =
a second equilibrium, the cent
h sbove the footpoints.

(b) The arcade as a time t > 0, The footpoints are separ-
ated by a2 fixed distance a but the arcade has become elliptical
with major radius s and minor radius a. The dashed lines
denote the arcade at time t = 0. The pressure, p

s P [he totted lines denote
: loop being a distance
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O
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been increased byond its critical value by a factor £ .
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for any wvalue of lhl, two possible equilibrium configurations, ]
one with h< O and the other with h?0 as in Figure 8&,3a.
soquilibrium is given by
Ty 2
Paspe o 8>
y o ) 8.37 i
L e (¢.37) 8

an¢ h is determined by
= 2 \X
h= ta ) (_E?§~> ‘f:l“ﬁ Sl
= (.L\A L\'b"‘\’ﬁ) (8,38)

If a, B and d are kept fixed, when p_ - P, Dscomes too big,

s
h no longer has a real value. Thus, for either configuration
shown in Figure 8.3a as Py = Ps increases, h tends to O and
the loop beccmes semi-circular. ~hen the critical value

of By~ Biga given by

29

S - 3-&

(?V \Qxcr‘t ] %—_

_p

is exceeded no equilibrium is possible. ihis can be under-

) (8.39)

stood physically since the magnetic tension exerted by the |
arcade field can no longer confine the plasma in the field-
free region velow the arcade.

The magnetic .energy is given by

v ;.\{ (8.1+O)

vhere V represents the volume permeated by the field,

0.2 3
\Aﬂn = ¥ C\V

For the arcade case, Hm is just

S‘ 'g\:‘}l“ L (L’l X \\—l )HL \'T\A‘\x ‘ ( i / h ) p) \(\ A OI

\1\1 et '5'\" ¢ o~ &F = \

A ?L K:ﬁ—‘- ( o [ -~y h‘) 'z ( W= Yw ‘ ( ‘1/\\ \\ ; \'\\? O
IIV\.

(8.41)

where L ic the length of the arcade, so h = 0 is not a maximum

of the magnetic energy. !

i
= |



The thermal enersgy density ig given by
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B = 3o
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-

’ ‘ (8.42)

so the oaset «of non-gquilibrium does correspond to a maximum
i

in B. The respective energzies are shown in Figure 8.4.

Consider now what hapnzas if (p. - p.) is increased
s L 1

e

ERSRS FLAARIRSTTHAC T Y VOF S SSNPo ERr i oere s

o
o
&
@)
e
)
cr
(¢
&)
£
e
<t
i
O
pres
i~
%
i}
o
<G
g
iy
a.
ct
(@)
=3
(e
O
o
o
=
I
o
j4%]
cr

‘r:\'\z \ ; \
tos (pe~x B3 i<e) - |
A \\4\ : 80;}-3)

4 very simple time-depencent model may be constructed
as follows, Assume Gthat, for all time, d (and hence 3) i
remain fixed, {This is & prest simplification and may or i
i

may not be justifiasble: future cslculations are needed to !

1

check this). Agsume also that as the arcade evolves, it i

behaves as an cllivse, centre the photosphere (Figure 8,3b)
30 that
Ce o alk), (8.45)

where 8 = a at & = 0 and r is the coordinate of the summit.
The radius of curvature of an ellipss of form x2/32 + yz/b2 =1 i
p )

R _ i { a A ‘:{-'-\'.' ‘

d . o o

SO B T )
- A p ™) 3.46)

y o 2 ; -
and so, at the summit, R = a%/sit), Hence, as the ellipse
rises, R, decreases snd the effect of .magnetic tension increases,

1

te assume that the mass below the arcade is constant in

time and for an isothermal plasma, this gives

-
)
i
N
i
i
—
C
-~
C
A

T Bl (&.47)

4

Finally, the mass in the arcade is also held constant in tinme,

e
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Ficure 5.k

{a) The form of the maenetic

+ Q0

d
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funceoion o1 h.

(b) The form of the energy density,
P, @S A function of h,
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“ is length of the ellipse.

Considering force-balance around the summit gives

60 Q

T e
i ‘,‘(u.‘*« 5. 1 o thz
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and, writing (8.49)

the arcade, ¢ = Do/fo’ C

e
alfven s
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in terms of the sound speeds inside ¢

peed, v, = B¢, gives
A M, e 3 \,l
L [F:P Ca®eg™) 7 = Cge tas wg” -
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Integrating once gives
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is determined by the condition,
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This gives, on application of the equilibrium condition

and after

3 ”i\.?\l > (f?e
o R <
P
e C e

extensive

2t [E4s
R -

algebra,

12 () T,
X‘Vgéqﬁ\*g) La*+%l>7~tl&wk
9]

M

"\ =
) *KSWA1 ( >'~\H (RL
‘j ?.\ VR (.\’5

(U .l;d)

(P23

*
N
-

—

e i s e b e T B D it




- 164 -

F
Cep o - r s r . —\
-\f ‘E&.L{ \$\v\\f\_ — m‘\ a5 __,__R__\ ~~}' A ‘>\\'\\'\ \ \ } -
273 5 ~
- w,\cx (\ = &w\\\r\
& ey .
(6.52)

(8.52) is an eguation for the velocity of the summit of
the arcade and the velocity can be shown to be zero at some
point s . . Hence, the arcade travels upward initially

until the external pressure and wagnetic ceasion increase and

prevent the arcade from rising further and the arcade will

then fall back., This is what is seen to happen in a surge.
5 2 2 T = S o
Wor ¢ ., =v, =50kms ', d = 10im and a = 50m, one finds
ha i m £ = 0,2

1at — 30 im for € B u

8.5 Conclusions

In this Chapter the magnetostatic equation (#.1) has
been solved analytically fuo several cases and the feature
of magnetostatic non-eguilibirium shown bto exist. This non-
equilibrium may be interpreted as saying that the plasma can
no longer be contained by the m2metic field ano must evolve,
on the fast magnetoacoustic timescale. we have been mainly
concerned with demonstrating the existence of non-equilibrium
than in calculating specific values of parameters but it does
aprear that if f> 1 then the possibility of non-equilibrium
i5 always present. Values of ( as large as this are not
generally expected in the high corona, where macnetic non-
equilibrium is likely to be cue more often to excessively
sheared [ootpoints (Priest and iwilne, 1920). However in the

nhotosphere and chromosphere values of(l as hizgh as one are

i

sl




il

to be expected,

The next question is to consider how this non-eguilibriun
manifests itself observationally. Ls wentioned in the intro-
duction, sprays and surges are eruptions from the cnromosphere

anc their temperatures are characteristic of the chromospheric

\

values, “e sugzest that one possible explanation of these
eruvtive phenomena is that magnetostatic non-ecuilibrium occurs
and material is ejected at high speed from the photosphere as

shown in Section 8.4. The sreed of ejection depends on the
r “

loeczl concditions in the region of non-equilibrium, 1t is

indeed possible that surges and sprays could both be mani- !

estations of magneticnon-equilibrium with a different para-
meter range in each case, However, usinz the typical values
of physical quantities quoted by Rust et al,., (1980), it may

be seen that surges have 2 plasma beta some two orders of
oo }

= -

4}

magnitude higher than sprays and are hence the more likely
candidate.' Zirin (1974) has also studied surges and
notes that the erupting material is well confined and flows
outward in a collimated way. This suggests that the magnetic
field surrounding the surge remains roughly vertical, inhibiting
lateral motions,

This is the situation modelled in Section {9.4) where
it was found that after non-gcuilibrium, the plasma could only
rise to a certain height,. However, this calculation is very
idealised and a much more rigorous analysis is needed before

any conclusions are drawn,

It is zlso important to consider whether all our magneto-

static fields are stable, The most important feature of zny

such analysis is photospheric line-tying and the results of
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Hood and Priest (1979b, 1980a) suggest that this is the
dominant ef'fect. e thus expect the fields discussed to

possess great stability.

In this Chanter, we have Jjust scraped the surface of

what is a large subject and have contented ourselves with

showing tnat the well-knowm phenonmenom of force-free non-

o

enuilibrium carries over to magnetic fields contzining
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WL CONCLUSIONS

In this thesis, several dynamic phenomena have been
discussed, and it is the aim of the present chapter to summa-
rise briefly the various results and suggest how the work
described can be improved upon and extended.

Chapter 2 provides an extensive review of the behaviour
of shock waves, The well-~known results of ras shocks were

stated, anc then an analysis of slow magnetohydrodynamic

shocks was undertaken. e relaxed the usual assumption
of alimned incident field and flow (or vanishing electric

field) znd undertook analytical and numerical solutions of

the full jump relations. It was found that considerable
plasma heating can be obtained under thess circumstances.

In particular, when the tangential component of the magnetic
field is switched off, a temperature ratio of 2A5@1)across

the shock becomes possible for Rz« 1. It was thus suggested
that slow shocks are a very effective heating mechanism and
could be responsible (in part) for coronal heating.

Chapters3 and L discussed steady flows in coronal loops:
the so-called siphon flows. Chapter 3 considered adiabatic
and isothermal flows, The energy equation was here re-
placed by the simple polytropic law p = KnY whereY = 1 and
¥ = 5/3 were considered. The equations of momentum, con-
tinuity and state were solved along a single field line
subject to prescribed foot-point pressures. It was found
that, for a loop of uniform cross-sectional arsa there
exists no wholly subsconic f{lows with a pressure vatio less

than unity. Therefore, for a wmiven sub-unity pressure

TR _



ratio, the [low undergoes a subscunic-supersonic transition

at the lcop summit and is decelerated on the downflowing leg

by a standing shock to give the renuired boundary condition,
Several c¢ifferent loop cross-sectional areas wvere also

considered., In particular, a Loop whOoSe area converges

from one footpoint to another was ifound to allow pressure

ratios with wholly subsonic solutions. However, a diverging
loop permits only shocked ones, the effect of the flow is

to lower both density and temperature below their static

levels, sugzesting that such siphon flows should be observ-

w

ble, due to the drop in emission measure (Noci, 1981).
Chapter 4 extended this theory to include a realistic
energy equation, Such an equation incorporates terms re-
rresentinz thermal conduction, optically thin radiation and
a mechanical heating term which is constant per unit mass,
The full set of steady-state equations was solved numerically
subject to fixed temperatures and densities at the footpoints,
A larze range of footpoint boundary conditions were found to
be satisfied by loops having siphon tlows, sugpesting that the
static loop models previously considered (Hood, 1920 and
references therein) are only one oi 2 large range of possible
coronal loop solutions. Also, the need for shocked sclutions
was removed, although they still c2n occur for large pressure
ratios, A flow was also found to reduce the maximum loop
temperature anc move it to some position on the cownflowing
leg, thus creating asymmetric temperature profiles, The
onset for thermzl non-equilibrium in a loop (see below) was
found to be enhznced by the preseace of a steaay ({low,

The work on siphon flows can be extended in the




Vi) It is necassary to' find out how siphon [lows
aetually arise, sna this can be done by a time=-dependent
calculation in which one starts nwith a static loop and then
gyacuzlly raduces one of the {ootpoint pressures. a flow
will start, and it is of interest to see how long it takes
before a steady flow is set up if at all.

(ii)  Improvements in coronal loep observations are
necessary before one can expecht to detect such a {low, but
recent eclipse photographs (Livingston and Harvey, 1981)
have proviced tne first evidence of' coronal siphon flows,

Tt ig important to calculate the deviation from the predicted

1

which a flow would cause and the work of lloei is a

v
=
ra
()]
fdo
)
ot
b

firs®t step in this direction,

f

(iii) It is desirable to model steady-state siphon flows
dovmi to the base of the transition zone instead of starting
at T = 106 K. This will enable us to see whether the large
nuwber of observed transition zone flows are, in fact, part
of a witer eirculation. It seems unlikely that steady or
guasi-steady flows are not occurring in coronal loops due to
the continually changing naturc of the loop base,. It is
thus hard to believe that loops are always static, and there
sesms little doubt that flows from one end of the loop to the
other do exist provided the base conditions remain steady for
a few sound-travel times (typically a sound-travel time is
between 5 and 20 minutes).

In Chapter 5, the coolingz of 2 corcnal loop due to ther-

aal non-equilibrium was examined, Hood and Priest (1979a)

showad that, if the pressure in a2 coronal loop became too
b >
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then it is unable to maintain a temperature of over

-

t'.‘ 3 ~ .
and cools to below 107 K. Usine an order-of-maznitude

ot e -
wWe X

foliowed the non-linear evolution of the ccoling.

v

7
: e S : O
fouma that the loup conls slowly from typically 107 K
1R B hmd Ehe 551 ¥ o 3 o L
w 107 K ond then c¢ools non-linearly to below 10" X in
ter of & few minutes, It was surgested that, depending

loop srometry, the »2sult could either be a cool loop

observed by oukal (1975) or a prominence supported
¢ be developed along the

{1) A Tull numerical solution should be attempted of

muf%i<q ). equations. Inis is well within the

1
o
"J-

rasources of current computers, and it should be able to follow
'tbe.evolutinn for a considerable time, Such a code should
aaahle ong to model the transition zone down to the temperature
minimum and recent vork of Peres et al., (1981) has made this

5 practical ;robosition. They have developed a piecewise

. rouiative 1loss function for temperatures down to the temper-
ature minimum based on the calculations of Vernazza et al.
(1941), 2and such a2 loss function can be easily included into
current codes

(2) Fuller i:.H.U. simulations of arcades and loops
would enable us Lo see exactly how (and whether) it is necess-
ary Lo couple in the magnetostatics to the energetics., The
single-=field line model is only of use if a field is approxi-

cately force-free, and it is not always clear that this is

Chapter 6 discussed another aspect of the*mal non-equili-

brium, nanely the supgestion that it is respons 1b1= for the

R P NORRIUN
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commact flare, In a cool loop, heating approximately
bilances radiation, and, if the heating becomes too big,
the input cannot be radiated away and the loop hsats up.
The loop flares to over 107 K in typically 5 minutes, in
zood agreement with flare rise-time observations. The
avolution was followed by using the same order-of-magnitude

-

approximation as in Chapter 5, and it was sugrested that

his gives a reasonable approximation to the temverature

cr

behaviour but & poor approximation for the density. ihe
following improvements are likely to be of use:

(1) As ir. Chapter 5, a full numerical code is needed
and preliminary results (Hood and Friest, 1982) are encour-
acing.

(2) The question of hHase boundary conditions is of
vital importance, It is clear that any disturbance gener-
ated in the corona must be allowed to interact asfar down as
the temnperature minimum if necessary. Thus one nust con-

struct a lower atmosnhe

3
)
@
24
4]
w

suzgested by i'eres et al,
(see above) . fhis is somewhat simpler than the approach
undertaken by WHagai (19€80), but the end result should be
similar,

(3) Gravity should be included fully since the scale-
height is small in cool regions,

(4) Area divergence should he considered, However,
it is important to remember#hat the {laring loop must rewain
force~-free for all time, and a rapid area divergence could
aive fise to very weak fields, and a situation of masneto-

static rather than force-fres equilibrium could arise

goubt on Single Tield line nodels

, casting
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(5] 1t should be remamnberad that thermal non-equili-
brium is just one possible triszger for the compact flare,
Other models of energy release such as the kink instability
(Hood and Priest, 1979b) and tezring modes (Spicer, 1977) are
also important, Therefore one should also try to develop

further models of the response of hot loops to an energy

input. (See Craig, 1981,

for a review of current work

on this subject).

Crapter 7 re-examined the Xopp-fneuman model for ™posth-
{iarz loops. Kopp and 2neuman (1576) suzpested that "post”-
flzre loops are heated by pas-dynamic shocks but the tempera-
tures obtained this way are nowhere near high enough. In-
stead, it is supgested that the loops are heated by two slow

1.E.U. shocks extending from the Y-typ2 neutral point. Using

the theory of Chapter 2, temperatures of up to 107 K and

(3]

neutral point speeds of 1 km 5'1 were found and the model

[«

was then applied to the 29th July 1973 flare.

Clearly, a full 2-dimensional, compressible i.H.L.
caleulation is desirable, but this gives rise tc considerable
numerical problems, Also, it will be of interest to conpare
this model with other observations of "post"-flare loops to
test itse more reneral applicability.

Finzlly, Chapter 8 examined magnetostatic rnon-equilibrium.
Tt was chown analytically that magnetostatic equilibrium could
breal: down if the gas pressure becomes too large in certain
magnetic structures. Soth one-and two-dimensional models
were ¢xamined, and it was sugeested that non-equilibrium is
a =oseible explanation of surges and sprays. This work can

he recarded as a oreliminary analysis and future vork should

ineclude:
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