259 research outputs found

    Entropy estimates for Simplicial Quantum Gravity

    Get PDF
    Through techniques of controlled topology we determine the entropy function characterizing the distribution of combinatorially inequivalent metric ball coverings of n-dimensional manifolds of bounded geometry for every n ≥ 2. Such functions control the asymptotic distribution of dynamical triangulations of the corresponding n-dimensional (pseudo)manifolds M of bounded geometry. They have an exponential leading behavior determined by the Reidemeister-Franz torsion associated with orthogonal representations of the fundamental group of the manifold. The subleading terms are instead controlled by the Euler characteristic of M. Such results are either consistent with the known asymptotics of dynamically triangulated two-dimensional surfaces, or with the numerical evidence supporting an exponential leading behavior for the number of inequivalent dynamical triangulations on three- and four-dimensional manifolds

    The geometry of dynamical triangulations

    Full text link
    We discuss the geometry of dynamical triangulations associated with 3-dimensional and 4-dimensional simplicial quantum gravity. We provide analytical expressions for the canonical partition function in both cases, and study its large volume behavior. In the space of the coupling constants of the theory, we characterize the infinite volume line and the associated critical points. The results of this analysis are found to be in excellent agreement with the MonteCarlo simulations of simplicial quantum gravity. In particular, we provide an analytical proof that simply-connected dynamically triangulated 4-manifolds undergo a higher order phase transition at a value of the inverse gravitational coupling given by 1.387, and that the nature of this transition can be concealed by a bystable behavior. A similar analysis in the 3-dimensional case characterizes a value of the critical coupling (3.845) at which hysteresis effects are present.Comment: 166 pages, Revtex (latex) fil

    Combinatorial and topological phase structure of non-perturbative n-dimensional quantum gravity

    Full text link
    We provide a non-perturbative geometrical characterization of the partition function of nn-dimensional quantum gravity based on a coarse classification of riemannian geometries. We show that, under natural geometrical constraints, the theory admits a continuum limit with a non-trivial phase structure parametrized by the homotopy types of the class of manifolds considered. The results obtained qualitatively coincide, when specialized to dimension two, with those of two-dimensional quantum gravity models based on random triangulations of surfaces.Comment: 13 page

    Entropy of random coverings and 4D quantum gravity

    Full text link
    We discuss the counting of minimal geodesic ball coverings of nn-dimensional riemannian manifolds of bounded geometry, fixed Euler characteristic and Reidemeister torsion in a given representation of the fundamental group. This counting bears relevance to the analysis of the continuum limit of discrete models of quantum gravity. We establish the conditions under which the number of coverings grows exponentially with the volume, thus allowing for the search of a continuum limit of the corresponding discretized models. The resulting entropy estimates depend on representations of the fundamental group of the manifold through the corresponding Reidemeister torsion. We discuss the sum over inequivalent representations both in the two-dimensional and in the four-dimensional case. Explicit entropy functions as well as significant bounds on the associated critical exponents are obtained in both cases.Comment: 54 pages, latex, no figure

    Implementing holographic projections in Ponzano--Regge gravity

    Get PDF
    We consider the path-sum of Ponzano-Regge with additional boundary contributions in the context of the holographic principle of Quantum Gravity. We calculate an holographic projection in which the bulk partition function goes to a semi-classical limit while the boundary state functional remains quantum-mechanical. The properties of the resulting boundary theory are discussed.Comment: 20 pages, late

    The modular geometry of Random Regge Triangulations

    Get PDF
    We show that the introduction of triangulations with variable connectivity and fluctuating egde-lengths (Random Regge Triangulations) allows for a relatively simple and direct analyisis of the modular properties of 2 dimensional simplicial quantum gravity. In particular, we discuss in detail an explicit bijection between the space of possible random Regge triangulations (of given genus g and with N vertices) and a suitable decorated version of the (compactified) moduli space of genus g Riemann surfaces with N punctures. Such an analysis allows us to associate a Weil-Petersson metric with the set of random Regge triangulations and prove that the corresponding volume provides the dynamical triangulation partition function for pure gravity.Comment: 36 pages corrected typos, enhanced introductio

    A Renormalization Group Approach to Relativistic Cosmology

    Full text link
    We discuss the averaging hypothesis tacitly assumed in standard cosmology. Our approach is implemented in a "3+1" formalism and invokes the coarse graining arguments, provided and supported by the real-space Renormalization Group (RG) methods. Block variables are introduced and the recursion relations written down explicitly enabling us to characterize the corresponding RG flow. To leading order, the RG flow is provided by the Ricci-Hamilton equations studied in connection with the geometry of three-manifolds. The properties of the Ricci-Hamilton flow make it possible to study a critical behaviour of cosmological models. This criticality is discussed and it is argued that it may be related to the formation of sheet-like structures in the universe. We provide an explicit expression for the renormalized Hubble constant and for the scale dependence of the matter distribution. It is shown that the Hubble constant is affected by non-trivial scale dependent shear terms, while the spatial anisotropy of the metric influences significantly the scale-dependence of the matter distribution.Comment: 57 pages, LaTeX, 15 pictures available on request from the Author

    Nondifferentiable Dynamic: Two Examples

    Get PDF
    Some nondifferentiable quantities (for example, the metric signature) can be the independent physical degrees of freedom. It is supposed that in quantum gravity these degrees of freedom can fluctuate. Two examples of such quantum fluctuation are considered: a quantum interchange of the sign of two components of the 5D metric and a quantum fluctuation between Euclidean and Lorentzian metrics. The first case leads to a spin-like structure on the throat of composite wormhole and to a possible inner structure of the string. The second case leads to a quantum birth of the non-singular Euclidean Universe with frozen 5th5^{th} dimension. The probability for such quantum fluctuations is connected with an algorithmical complexity of the Einstein equations.Comment: essential changes: the initial equations in section III are changed, as the consequence the obtained solution describes the quantum birth of the nonsingular Universe with the matter (electromagnetic field=nondiagonal components of the MD metric

    Cosmological Perturbations in Renormalization Group Derived Cosmologies

    Get PDF
    A linear cosmological perturbation theory of an almost homogeneous and isotropic perfect fluid Universe with dynamically evolving Newton constant GG and cosmological constant Λ\Lambda is presented. A gauge-invariant formalism is developed by means of the covariant approach, and the acoustic propagation equations governing the evolution of the comoving fractional spatial gradients of the matter density, GG, and Λ\Lambda are thus obtained. Explicit solutions are discussed in cosmologies where both GG and Λ\Lambda vary according to renormalization group equations in the vicinity of a fixed point.Comment: 22 pages, revtex, subeqn.sty, to appear on IJMP
    corecore