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Abstract 

Through techniques of controlled topology we determine the entropy function characterizing 
the distribution of combinatorially inequivalent metric ball coverings of n-dimensional manifolds 
of bounded geometry for every n _> 2. Such functions control the asymptotic distribution of 
dynamical triangulations of the corresponding n-dimensional (pseudo)manifolds M of bounded 
geometry. They have an exponential leading behavior determined by the Reidemeister-Franz 
torsion associated with orthogonal representations of the fundamental group of the manifold. The 
subleading terms are instead controlled by the Euler characteristic of M. Such results are either 
consistent with the known asymptotics of dynamically triangulated two-dimensional surfaces, 
or with the numerical evidence supporting an exponential leading behavior for the number of 
inequivalent dynamical triangulations on three- and four-dimensional manifolds. 
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1. Introduct ion 

The purpose of this paper is to count the isomorphism classes of triangulations, with 
fixed edge-length and given number of vertices, on Riemannian manifolds of arbitrary 
dimension. The search for such combinatorial entropy bounds in geometry is inspired 

by a long-standing conjecture [Fro] in (euclidean) simplicial quantum gravity and in 
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Regge calculus [RG]: Does the number of triangulated manifolds of given dimension, 
volume and fixed topology grow with the volume at most at an exponential rate, possibly 
with a non-trivial subleading asymptotics? 

In the case of surfaces, fine entropy bounds of this nature are provided either by direct 
counting arguments, or by quantum field theory techniques [ITZ,FR] as applied to graph 

enumeration, a technique that has found use in a number of far reaching applications 
in surface theory [Wt,Ko,Pe]. In higher dimensions, the natural generalizations of such 
approaches are not viable, and a systematic method for understanding and enforcing 
entropy bounds relating topology to Riemannian invariants still appears as a major 

issue for providing a deeper understanding of higher dimensional models of simplicial 
quantum gravity [Da]. 

Numerical as well as some (very limited) analytical evidence [Am,Ad,Ag] shows 

that exponential bounds do hold in simple situations (typically for manifolds with three- 
sphere topology). In such cases one can costruct a tentative statistical model of Euclidean 

quantum gravity through computer simulations of a representative set of inequivalent 
triangulations. It must also be stressed that this topic has an indipendent mathematical 
interest. For instance, by controlling the rate of growth of inequivalent triangulations one 

can provide an effective mathematical regularization of the formal functional integration 

over the space of Riemannian structures. 
Without any restriction on topology, the above exponential growth conjecture is defini- 

tively false since it can be shown [Am] that the number of distinct (three-)manifolds, 
with given volume V and arbitrary topological type, grows at least factorially with V. 

Thus suitable constraints on the class of Riemannian manifolds considered are necessary 

for having exponential growth of the number of inequivalent triangulations. In this pa- 

per we implement such restrictions by considering Riemannian manifolds M of bounded 
geometries. Namely, for arbitrary r E ~,  v E R +, D E ]R + and integers n > 3, we con- 
sider closed connected Riemannian n-manifolds, M whose sectional curvatures satisfy 

sec (M)  >_ r, whose volume satisfies Vol(M) > v, and whose diameter is bounded above 
by D, d iam(M)  <_ D. We let ~ ( n ,  r, D, V) denote the Gromov-Hausdorff closure of 
such a collection of manifolds [Gr]. This is an infinite-dimensional compact metric space 
whose utility in simplicial quantum gravity has been stressed in [CM1,CM2,CM3]. 

Our main result may be summarized as follows: 

Theorem 1. For any r, D > 0, v > 0, and integer n >_ 3, the number of  isomorphism 

classes of  triangulations, with A n-simplices, of  a manifold M E 7%(n, r, D, V) of given 
Euler characteristic and Reidemeister-Franz torsion is exponentially bounded in A. 

The explicit expression for the bound is provided in the proof of the theorem. It 
must be also stressed that this result can be extended to a class of metric spaces 
considerably more general than Riemannian manifolds. This is partially implicit in 
the remark that Tg(n,r ,D,  V) contains as limit points metric homology manifolds, 
but more generally, Theorem 1 can be formulated in the set of all metric spaces of 
Hausdorff dimension bounded above and for which Toponogov's comparison theorem 
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locally holds (Aleksandrov spaces with curvature bounded below [Bu,Pe] ). These are 

the spaces which arise naturally if one wishes to consider simplicial approximations to 

Riemannian manifolds, or more in general if one needs to avoid excessive assumptions 
of smoothness. Spaces of bounded geometries such as 7~(n, r, D, V) are easier to handle 

than Aleksandrov spaces, and afford a good compromise for what concerns a proper 
mathematical setting for simplicial quantum gravity. 

For the proof of the theorem it is worth recalling that the field theoretic approach used 
by Br6zin, Bessis, Itzykson, Zuber and Parisi [ITZ] does not seem to apply to higher 
dimensional manifolds (n > 3). Instead we develop a very elementary argument based 

on the properties of geodesic ball coverings. In particular we count the inequivalent 
ways of introducing, in a manifold M E ~ ( n ,  r, D, V), coverings with metric balls of a 
given radius. The basic observation here is that such coverings are naturally labelled (or 

coloured) by the fundamental groups of the balls (for spaces of bounded geometries, 
these balls need not be contractible). Their enumeration is thus relatively elementary, 

and the associated entropy function can be obtained through a rather direct argument. 

Finally, since the topology of such geodesic ball coverings dominates the topology of 

the underlying manifold, it follows that the number of inequivalent triangulations is 
controlled by the entropy function so obtained. 

The paper is organized in three sections. After the introductory remarks, Section 2 

provides the basic background to the properties of geodesic ball coverings on manifolds 
of bounded geometry. Also, we recall finiteness theorems concerning homotopy types 

and simple homotopy types, since these results provide the rationale for a geometrical 

understanding the entropy estimates. These latter are proved in Section 3. 

We refer to Gromov's book [Gr] and to a very readable review paper of Cheeger 
[Ch] for basic tools and results in Riemannian geometry that will be used freely. 

2. Review of geodesic ball coverings 

The point in the introduction of ~ ( n ,  r, D, V) or of a more general class of metric 

spaces with a lower bound on a suitably defined notion of curvature, is that for any 
manifold (or metric space) M in such a class one gets packing information which is 
most helpful in controlling the topology in terms of the metric geometry. In the case of 

~ ( n ,  r, D, V) this packing information is provided by suitable coverings with geodesic 
(metric) balls yielding a coarse classification of the Riemannian structures occurring in 

~ ( n , r , D , V ) .  

In order to define such coverings [GP], let us parametrize geodesics on M E 
T~(n , r ,D ,V)  by arc length, and for any p E M let us denote by ~rp(X) =- dM(x ,p )  

the distance function of the generic point x from the chosen point p. Recall that o- l, (x) 
is a smooth function away from {p U Cp }, where Cp, a closed nowhere dense set of 
measure zero, is the cut locus of p. Recall also that a point y ~ p is a critical point of 
o-t,(x) if for all vectors v E TMy, there is a minimal geodesic, y, from y to p such that 
the angle between v and ~/(0) is not greater than ~/2 .  
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Definition and Proposition 2. For any manifold M E 7~(n, r, D, V) and for any given 
• > O, it is always possible [GP] tofind an ordered set of points {Pl . . . . .  PN} in M, 
such that 

(i) the open metric balls (the geodesic balls) Bn(Pi , • )  = {x E M I d(x,  pi) < •}, 
i = 1 . . . . .  N, cover M; in other words the collection 

{Pl . . . . .  PN } (1) 

is an •-net in M. 
(ii) the open balls BM(Pi,• /2) ,  i = 1 . . . . .  N, are disjoint, i.e., {Pl . . . . .  PN} is a 

minimal •-net in M. 

Similarly, upon considering the higher order intersection patterns of the set of balls 

{BM(Pi, • )} ,  we can define the two-skeleton F (2) (M),  and eventually the nerve ./V'{Bi} 
of the geodesic ball covering of the manifold M: 

Definition 3. Let {B i ( • ) }  denote a minimal •-net in M. The geodesic ball nerve AF{Bi} 
associated with {Bi(•)} is the combinatorial complex whose k-symplices _(k) k = Pil i2"" "ik+l ' 

0, 1 . . . . .  are defined by the collections of k + 1 geodesic bails such that Bl M B2 M. • • N 

Bk+l ¢ O. 

Thus, for instance, the vertices p[0) of .A/'{Bi} correspond to the balls Bi ( • ) ;  the 
edges -(1) l-'ij correspond to pairs of geodesic balls { B i ( • ) , B j ( • ) }  having a non-empty 

intersection Bi(•)  N B j ( • )  :/: 0; and the faces p(i~ 2) correspond to triples of geodesic 
balls with non-empty intersection Bi( •)  (-I Bj( •)  f'l Bk( •)  :/: 0. 

Notice that, in general, this polytope has a dimension which is greater than the 
dimension n of the underlying manifold. However, as e --~ 0, such a dimension cannot 

grow arbitrarily large being bounded above by a constant depending only on r, n, and 
D (see below). 

According to the properties of the distance function (see, for instance, the paper of 

Cheeger [Ch]) ,  given •l < •2 < c~, if in n i ( •2 ) \B i ( • l )  there are no critical points 

of the distance function o'i, then this region is homeomorphic to OBi(•l) × [•1, •2], 
and aBi( • l )  is a topological submanifold without boundary. One defines a criticality 
radius, •i, for each ball Bi(e) ,  as the largest • such that Bi( • )  is free of critical points. 
Corresponding to such a value of the radius e, the ball Bi(e) is homeomorphic to an 
arbitrarily small open ball with center pi, and thus it is homeomorphic to a standard 
open ball. 

The point of the above remarks is that it can be easily checked, through direct 
examples, that the criticality radius of geodesic balls of manifolds in ~ ( n ,  r, D, V) can 
be arbitrarily small (think of the geodesic balls drawn near the rounded tip of a cone), 
thus arbitrarily small metric balls in manifolds of bounded geometry are not necessarily 
contractible, and therefore, in general, the Bi( • )  are not homeomorphic to a standard 
open ball. 
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The above remarks suggest that one should be careful in understanding in what sense, 
for • sufficiently small, the geodesic ball nerve gives rise to a polytope whose topology 
approximates the topology of the manifold M E 7~(n, r, D, V) (the metric structure of 
the polytope is instead a rather good approximation to the metric structure of M, in the 
sense of Gromov-Hausdorff topology). 

Actually the topology of the nerve dominates the topology of the underlying mani- 
folds, a natural consequence of the fact that the criticality radius for the geodesic balls 
is not bounded below. In particular, it can be proven that the inclusion of sufficiently 
small geodesic balls into suitably larger balls is homotopically trivial [PW], and the 

geodesic ball nerve is thus a polytope which is homotopically dominating the underly- 
ing manifold, viz., there exist maps f : M ~ JV'(Bi) ,  and g : Jkf(Bi) ~ M, with g.  f 
homotopic to the identity mapping in M. 

Even if the geodesic ball nerve is topologically more complicated than the underlying 
Riemannian manifold, in particular being of higher dimension, the above homotopical 
approximation (yielding the homotopy finiteness theorem recalled below) is really all 
that is needed for the analysis of the entropic estimates that follow. 

Remark 4. Notice that the triangulation of the geodesic ball nerve generated by the 
(k) P~ir.. is coloured by the non-trivial fundamental groups of the balls: to each vertex of 

the polytope there corresponds an intrisic label defined by (a representation of) the 
fundamental group 7rl ( B i ( e ) )  of the corresponding ball, and each k-simplex (k _> l) 
gets a corresponding labelling according to Van Kampen's theorem. 

On the geometrical side, there are a wealth of good properties of geodesic ball 
coverings which make them particularly appealing for applications in simplicial quantum 
gravity. As a good start, we can notice that the equivalence relation defined by manifolds 
with (combinatorially) isomorphic geodesic ball one-skeletons partitions 7~(n, r, D, V) 
into disjoint equivalence classes whose finite number can be estimated in terms of the 
parameters n, k, D. Each equivalence class of manifolds is characterized by the abstract 
(unlabelled) graph F~,) defined by the 1-skeleton of the L(e)-covering. The order of 
any such graph (i.e., the number of vertices) defines the filling function ~o~ while the ,,(~), 
structure of the edge set of F~,) defines the (first order) intersection pattern I~,)(M) 
of (M, {Bi(e)}). 

It is important to remark that on T~(n, r,D, V) neither the filling function nor the 
intersection pattern can be arbitrary. The filling function is always bounded above for 
each given e, and the best filling, with geodesic balls of radius e, of a Riemannian 
manifold of diameter diam(M), and Ricci curvature Ric(M) >_ ( n -  1)H, is controlled 
by the corresponding filling of the geodesic ball of radius diam(M) on the space 
form of constant curvature given by H, the bound being of the form [Gr] N~ °) < 
N(n, H( diam( M) )2, ( diam( M) ) /e) .  

The multiplicity of the first intersection pattern is similarly controlled through the 
geometry of the manifold to the effect that the average degree, d(F) ,  of the graph 
F~)  (i.e., the average number of edges incident on a vertex of the graph) is bounded 
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above by a constant as the radius of the balls defining the covering tend to zero (i.e., as 
• ---+ 0). Such a constant is independent of • and can be estimated [Gp] in terms of the 
parameters n, and H ( d i a m ( M ) ) 2  (it is this boundedness of the order of the geodesic 

ball coverings that allows for the control of the dimension of the geodesic ball nerve). 

As expected, the filling function can be also related to the volume v = Vol(M) 

of the underlying manifold M. This follows by noticing that [Zh] for any manifold 
M C T~(n , r ,D ,V)  there exist constants C1 and C2, depending only on n, r, D, V, such 
that, for any p E M, we have 

C1• n <_ Vol(B,(p)  ) < C2• n (2) 

with 0 < • < D (actually, here and in the previous statements a lower bound on the 
Ricci curvature suffices). Thus, if v is the given volume of the underlying manifold M, 

there exists a function pl (M) ,  depending on n, r, D, V, and on the actual geometry of 

the manifold M, with Cl < ( p l ( M ) )  - l  < C2, and such that, for any • < •0, we can 
write 

N(,°) ( M)  = vpl ( M ) •  - n  • (3) 

We conclude this section by recalling the following basic finiteness results. They 

provide the topological rationale underlying the use of spaces of bounded geometries 

in simplicial quantum gravity. We start with a result expressing finiteness of homotopy 
types of manifolds of bounded geometry [PW]. 

Theorem 5. For any dimension n > 2, and for  • sufficiently small, manifolds in 

~ (  n, r, D, V) with the same geodesic ball 1-skeleton F(,) are homotopically equivalent, 

and the number of  different homotopy-types of  manifolds realized in ~ ( n ,  r, D, V) is 
finite and is a function of  n, V-1D n, and rD 2. 

(Two manifolds M1 and M2 are said to have the same homotopy type if there exists 

a continuous map ~b of M1 into M2 and f of M2 into Ml, such that both f .  ~ and 
• f are homotopic to the respective identity mappings, 1M1 and IM2. Obviously, two 

homeomorphic manifolds are of the same homotopy type, but the converse is not true.) 
Notice that in dimension three one can replace the lower bound of the sectional 

curvatures with a lower bound on the Ricci curvature [Zh]. Actually, a more general 
topological finiteness theorem can be stated under a rather weak condition of local 
geometric contractibility, and one obtains the following [GrP]: 

Theorem 6. Let ~p : [0, a )  --+ R +, tx > O, be a continuous function with ~ ( e )  > e for  
all e C [0, or) and such that, for  some constants C and k E (0, 1], we have the growth 
condition ~ ( e )  < cek, for  all • C [0, tx). Then for  each Vo > 0 and n E R + the class 

C ( ~, Vo , n) o f  all compact n-dimensional Riemannian manifolds with volume <_ Vo and 
with ~b as a local geometric contractibility function contains 
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(i) finitely many simple homotopy types (all n), 

(ii) finitely many homeomorphism types if  n = 4, 

(iii) finitely many diffeomorphism types if  n = 2 or n >_ 5. 

105 

[Recall that ~b is said to be a local geometric contractibility function for a Riemannian 

manifold M if, for each x E M and • C (0, a) ,  the open ball B(x ,  • )  is contractible 

in B(x ,  ~O(e)).] Actually the growth condition on ~b is necessary in order to control 

the dimension of the limit spaces resulting from Gromov-Hausdorff convergence of a 

sequence of manifolds in C(¢, V0, n). As far as homomorphism types are concerned, this 

condition can be removed [Fe]. Note moreover that infinite-dimensional limit spaces 

cannot occur in the presence of a lower bound on sectional curvature as for manifolds in 

R(n ,  r, D, V). Finiteness of the homeomorphism types cannot be proved in dimension 

n = 3 as long as the Poincar6 conjecture is not proved. If there were a fake three-sphere 

then one could prove [Fe] that a statement such as (ii) above is false for n = 3. Finally, 

the statement on finiteness of simple homotopy types, in any dimension, is particularly 

important for the applications in quantum gravity we discuss in the sequel. The notion 

of simple homotopy will be explained in same detail later on; roughly speaking it is 

a refinement of the notion of homotopy equivalence, and it may be thought of as an 

intermediate step between homotopy equivalence and homeomorphism. 

3. Entropy functions for geodesic ball coverings of manifolds of bounded geometry 

In what follows we shall explicitly assume, mainly for the sake of definiteness, that 

we are dealing with a space of bounded geometries R ( n , r ,  D, V),  even if many of 

the statements which follow hold either in Aleksandrov's spaces with curvature bonded 

below or in spaces admitting a local geometric contractibility function, and as a matter 

of fact, one can develop a rather general theory along the lines discussed below. 

Within the above geometrical setting we now provide the exact entropy function which 

estimates the number of combinatorially inequivalent one-skeleton graphs associated 

with geodesic ball coverings of manifolds of bounded geometry. To this end, we shall 

enumerate the number of isomorphism classes of geodesic balls one-skeleton graphs of 

manifolds of a given homotopy type. 
Since the geodesic ball nerve is a finite dimensional polytope (with the dimension 

bounded above by a constant depending on the parameter n, r, D, V and not on 

the radius of the balls), it follows that through the entropy function associated with 

geodesic ball one-skeletons we can recover the corresponding entropy functions for the 
generic k-skeleton of the nerve. Moreover, since the topology of the nerve dominates the 

topology of the underlying manifold, it follows that the entropy function we are going 
to introduce dominates all the possible inequivalent (dynamical) triangulations of the 

underlying manifold. 
Let L ( m )  -- 1/m, 0 < m < cc denote a cut-off parameter to be interpreted as the ra- 

dius e /2  of minimal geodesic ball coverings on manifolds of bounded geometry, and let 
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us consider L(m)-geodesic balls coverings whose filling function ,,(0) takes on the run- ~V(m) 
ning (integer) value a. Correspondingly let us introduce the function Ba(V,m, zr(M)) 
which, at scale L(m) ,  counts the number of combinatorially inequivalent 1-skeletons 
F(,,) with A vertices which can be generated by minimal geodesic balls coverings on 
manifolds M, of given volume V, in the homotopy class {~(M)}.  This latter topological 
specification is justified by the following: 

Lemma 7. There is an mo depending only on n, r, D, V, such that, for any m > mo, 

Ba ( V,m, 7r( M) ) is a well-defined function of  the the volume, and of the parameters n, 
r, D, in each homotopy class 7r(M) of manifolds M E R ( n , r , D ,  V). 

Proof. This is a trivial consequence of the properties of minimal geodesic ball coverings 
as far as homotopy is concerned (see the previous paragraph and Theorem 4.1 in 
[PW]):  There is an e0, whose value depends only on n, r, D, V, such that any two 
manifolds in R(n ,  r, D, V) having minimal e0-geodesic ball coverings with the same 
intersection pattern are homotopy equivalent. In each such homotopy class, the number 
of inequivalent one-skeletons is finite (such a number depends on n, r, D, V and m), 
thus Ba is a well defined function of each homotopy type, as claimed. [] 

As will be explained shortly, the function Ba(V,m, ~r(M)) is too rough for utility in 
simplicial quantum gravity, and we will be forced to specialize it a little bit. The point 
of the above lemma is that it is a good starting point on which we wish to elaborate in 
order to understand how much of the topology of M we need to know for estimating 
the entropy function. 

To make explicit the relevant topological dependence of Ba (V,m, zr(M)),  let us start 
by noticing that the function BA (V,m, 7r(M)) has natural continuity properties under 
Gromov-Hausdorff convergence. In particular, by using the relation between Gromov- 
Hausdorff convergence of manifolds and Lipschitz convergence of corresponding mini- 
mal nets [Gr] (generated by geodesic ball coverings), we can prove the following: 

Lemma 8. I f  {M(i)} is a sequence of  manifolds in R(n ,  r,D, V) de-converging to a 
(topological) manifold M then for every fn sufficiently large giving rise to L( fn)-geodesic 
ball coverings on M(i), there is a corresponding L(m)-geodesic ball covering in M, 
with m > fn, such that, as i ~ oo, both coverings have the same value of the filling 
function: ~(o) = ~(o) = A, and the same intersection pattern, and ""  ( fn )  "" ( m )  

lim B~(V(M(i)),fn, zr(M(i))) = B~(V(M),m, Tr(M)). (4) 
M(i)  ---*M 

Proof. If a sequence {M(i)} of Riemannian manifolds converges, in the Gromov- 
Hausdorff sense, to a (topological) manifold M, then for every positive e and ~ > e, 
every E-net of M is the limit, for the Lipschitz distance, of a sequence of an C-net 
of M(0. By definition of Lipschitz distance [Gr], the net on M and the correspond- 
ing nets in M(i) have the same number of vertices, say A. Restricting our attention to 
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minimal geodesic ball nets, we can establish, in this way, a one-to-one correspondence 

between geodesic ball nets (with A vertices) on M(i) and geodesic ball nets (also with 

,~ vertices) on M. Thus the statement of the lemma follows. [] 

We can put this last remark at work by relaxing the volume constraint in ~ ( n ,  r, D, V) 

so as to allow for a sequence of manifolds {M(i)} with three-dimensional volume going 
to zero. Under such conditions we may have {M(i)} collapsing to a lower dimensional 
manifold. The classical example (see the paper by K. Fukaya quoted in [Gr] ) in this 

direction is afforded by the Berger sphere: let gcan denote the standard metric on S 3, 

and consider the Hopf fibration 7r : S 3 --+ S 2. Define ge (v, v) = • -  gcan ( v, v) if 7r. v = 0, 
and g~(v, v) = gcan(v,v) if the vector c E TS 3 is perpendicular to the fibre of 7r. It is 

easily checked that (S3,ge) C 7~(n = 3, D = l, V = 0) for any • _< l, and that 

lim de[  (S 3, g , ) ,  (S 2, ~)] = 0 ,  (5) 
¢---*0 

where ~ is the round metric on the two-sphere with curvature 4. 
In such a case, and more in general when three-dimensional manifolds collapse 

to surfaces, the counting function B~(V,,F(m),~r(M~)) approaches, as • --~ 0, the 
corresponding function on the surface 2 resulting from the collapse, namely 

Ba(m, 7r(2) )'~--*C~(A) a,,~x('~)()'-2)/2-1 • p( 1 + O( l /A)  ) ,  (6) 

where A, % and p are suitable constants (as stressed in the introductory remarks, these 

asymptotics can be obtained in a number of inequivalent ways [ITZ] ). We caution the 
reader that in this particular example the homotopy type is obviously not preserved. This 

does not contradict the homotopical characterization of the counting function since we 
are allowing for a sequence of Riemannian manifolds along which the three-dimensional 
volume goes to zero. Under such circumstances geodesic ball one-skeletons with the 

same intersection pattern do not necessarily correspond to manifolds of the same homo- 

topy type. 
It is also clear that the above result seems somehow at variance with the remarks 

following Lemma 7. The fact is that the topological dependence in the graph counting 
function B~(m, z r (2 ) )  comes by (in the subleading asymptotics) through the Euler 

characteristic, a topological invariant which basically classifies surfaces. Thus, it seems 
that a detailed knowledge of the topology of M is after all needed in providing the 
asymptotics of the counting function. However, notice that the role of Euler character- 

istic, in the above expression, rather than classifying surfaces, is only that of providing 
the homotopy cardinality of the complex determining the surface 2 (this dimensional 
point of view on the Euler characteristic and a similar cardinality interpretation of the 

Reidemeister torsion, which we exploit below, has been suggested to us by the paper 
of D. Fried on dynamical systems quoted in [RS] ). In a sense it is only an accident 
(due to the particular use of X(2~) in surface theory) that the role of X as a homotopic 

dimension is traded for a topology labelling role. 
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The homotopical dimensional meaning of the Euler characteristic mentioned above 
comes about by noticing that the Euler number of a finite complex is the only homotopy 
invariant that satisfies x ( A U B )  = x ( A )  + x ( B )  - x ( A N B )  for any two sub-complexes 
A, B of ~, with the normalization X(point)  = 1. 

This latter remark confirms that homotopy is a natural topological label for Ba (V,m, 
7r(M)).  However a good counting function of utility for simplicial quantum gravity 
should provide the number of inequivalent geodesic ball one-skeletons in nerves which 
are piecewise-linearly (PL) equivalent, and not just of the same homotopy type. But 
according to the finiteness theorems recalled in Section 2, asking for such a counting 
function is too much. In dimension three we have not yet control on the enumeration of 
the homeomorphism types while in dimension four no enumeration is possible for the 
PL types (otherwise by Cerf's theorem we could count the differentiable structures). 
Thus in the physically significant dimensions there is no enumerative criterion for PL 

structures. 
The necessary compromise between what can be counted and what is of utility for 

quantum gravity brings into evidence a particular equivalence relation in homotopy 
known as simple homotopy equiva!ence [Co]. The homotopy equivalence associated 
with geodesic ball nerves with the same one-skeleton is a simple homotopy equivalence 
if the induced homotopy equivalence between the associated closed regular neighborhood 
in some ~n is homotopic to a piecewise-linear (PL) homeomorphism. Moreover, two 
nerves (one may think of them as polyhedra) are simple-homotopy equivalent if they 
have PL homeomorphic closed regular neighborhoods in some ~n (here and in the 
following remarks on simple homotopy theory we follow the particularly clear discussion 
of the argument due to S. Ferry [Fe] ). 

Thus, roughly speaking, resolving the homotopy types of the geodesic ball nerves into 
the corresponding simple homotopy types comes as close as possible to providing an 
enumeration of geodesic ball one-skeletons in manifolds which are PL homeomorphic. 

Intuitively one should view simple homotopy as a sort of generalized holonomy 
representation which with any geodesic ball nerve associates as a label an element 
of an (infinite dimensional) abelian group: the Whitehead group of the (fundamental 
group of the) nerve Wh(A/) .  More explicitly, let ZTrl(A/') denote the integral group 
ring generated by the fundamental group of the nerve 7rl(.A/') _~ rrl (M),  i.e., the set 
of all finite formal sums ~ nigi, ni E Z, gi E 7"rl (./~c), with the natural definition of 
addition and multiplication. Then the generic element of the Whitehead group Wh(JV') ~_ 
Wh(Z~rl ( M ) )  can be represented as a non-singular Z~-l (M) matrix wik which basically 
tells us how the nerve in question is generated, as a CW-complex, by adjoining cells to 
the underlying two-skeleton r<2) --(m)" 

The matrix wik is naturally acted upon by a set of operations which consists in: (i) 
multiplying on the left the ith row of the matrix by (plus or minus) an element of 
the fundamental group ~rl (/'2, eo) ; (ii) adding a left group-ring multiple of one row to 
another; (iii) expanding the matrix by adding a corner identity matrix. 

The equivalence class, r(Wik), under the operations (i), (ii), (iii), generated by 
the non-singular incidence matrix wik, is the Whitehead torsion associated with the 
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given nerve: a topological invariant which distinguishes between nerves having the same 

homotopy type (thus in particular having isomorphic fundamental groups), but with 

different simple-homotopy types. Thus, given two manifolds M1 and M2 in 7~(n, r, D, V) 
with the same geodesic ball one-skeleton and hence in the same homotopy type h : 
Ml --~ Me, it follows that h is homotopic to a simple homotopy only if M1 and M2 
have the same Whitehead torsion [Co]. 

For a given fundamental group the Whitehead group is, in general, an infinite- 
dimensional (abelian) group; however, as recalled in the section dealing with the prop- 
erties of geodesic ball coverings, similarly to what happens to the number of distinct 

homotopy types, the number of inequivalent simple homotopy types realized by mani- 

folds in R ( n ,  r, D, V) isfinite. Thus, independently of m, there are only a finite number 
of inequivalent Whitehead torsions T(wi~) realized as we consider the totality of finer 

and finer geodesic balls coverings of manifolds in T~(n, r, D, V), and the following holds 
[ Pt ,GrP, Fe ] : 

Theorem 9. There is an eo > 0 which can be estimated in terms of  the parameters n, r, 

D, V such that any two manifolds in ~ ( n ,  r, D, V) whose Gromov-Hausdorff distance 

is < eo have the same Whitehead torsion, (i.e., they are simple-homotopy equivalent), 

and the number of  distinct Whitehead torsions is finite. 

Notice that the original formulation of the above theorem is more general, see e.g., the 

paper of S. Ferry [Fe]. 

For our particular purposes, the knowledge of the full Whitehead torsion associated 

with a given geodesic ball nerve (i.e., of the Z~rl-incidence matrix Wik) is not necessary, 
since we do not need to reconstruct (in a simple homotopical sense) the nerve from 
its two-skeleton. We need only to be able to tell if two nerves have the same simple 
homotopy type. To this end it is sufficient to evaluate the torsion of the nerves in 

correspondence to an orthogonal representation 0, of the fundamental group 7rl ( F  ¢2) ), 
say by orthogonal p × p matrices, turning the p-dimensional Euclidean space ~P into a 
right R(zrl (F (2)) )-module. 

The point is that the orthogonal representation 0 : 7rl (A/') ---* O(p)  induces a ring 
homomorphism ZTrl (A/') --* Z ( O ( p ) ) ,  which allows us to represent the Zcri-incidence 

matrix wik via a non-singular real matrix O.(wik). Since orthogonal representations 
capture in an essential way the structure of the fundamental group, we may use O. (wik) 
in place of wit without losing much. Moreover, in so doing we have a further advantage, 
since the determinant of O.(wik) can be used to keep track of the represented torsion, 
for the operations which take the represented incidence matrix 0. (wit) to another matrix 
of the same torsion, can only change the determinant by a factor of the form (up to 
a sign) det0(zr l) .  As a matter of fact, one can define the Reidemeister-Franz torsion 

associated with 0. (wit) according to [ DR] 

Definition 10. Let us denote by O.[Wjl('Ti'l(I~12~))] (if  no confusion arises we shall 
write O, (wa))  the image under 0 of the incidence matrix wjt; then 
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A° ( M) = I det(O.(wjt)l 

defines the associated Reidemeister-Franz (RF) torsion in the represention O. 

(7) 

Notice that O.(w) is a a(m) x a(m) matrix with entries in Matp(N), namely a matrix of 
order pa(m) with real entries (where Matp (N) denotes the ring of all p x p  matrices with 

real entries). Notice also that, strictly speaking, the above definition of Reidemeister- 
Franz torsion is valid if the CW-pair (.A/', F (2)) is homotopically trivial, i.e., if the two- 
skeleton F (2) is a strong deformation retract of the nerve .hr. Without the assumption 

of homotopical triviality of the pair (.A/, F (2)), the definition of the Reidemeister-Franz 
torsion takes on the more familiar aspect of a product of ratios of determinants [RS], 

and can be extended also to representations which are not acyclic. In such a case, we 

let go - .JQ" x ~P/~" denote the flat orthogonal bundle associated with the representation 
O, where J~ is the universal cover of .A/" and ¢r acts on .K/by deck transformations and 
on ~P by O. The cochain complex C* (.Af, g0) and the cohomology H* (.N', go) are then 
defined. The torsion associated to this twisted cochain complex, still denoted by A°(M), 

can be computed provided that we choose volume elements vi for ci(.N',go) and /zi 

for the cohomology groups Hi(.N ", go) (see [Co,RS] for details). If/2i = kilzi, f'i = hivi 
is another choice of volume elements, then the corresponding torsion, d°(M;/2,  ~) is 

related to A°(M) by 

AO(M;/2,~) = H ( k j / h j ) ( l ) S z l ° ( M ) .  (8) 

J 

Let Hom(Trl(X), O(p)) denote the set of all orthogonal representations,¢rl (X) --~ 
O(p), of the fundamental group of the generic space X. Then, for what concerns 
the possible inequivalent Reidemeister-Franz torsions realized we have the following 

obvious 

L e m m a  11. For each given orthogonal representation of the fundamental group, 0 E 
Hom( zrl (M) ,  O(p) ), there are only a finite number of distinct representation torsions 
A ° that can be realized for the manifolds in ~ ( n ,  r, D, V). 

Proof The homomorphism 0 : ~ l ( M )  --~ O(p) induces a homomorphism 0, : 
Wh(Z~rl (M)) --* Wh(ZO(p) ). Since the distinct simple homotopy types realized in 
7"~(n, r, D, V) are finite in number, it follows that for each given orthogonal represen- 
tation of the fundamental group there are only a finite number of possibilities for the 
values of the corresponding representation torsions. [] 

Notice also that, given an orthogonal representation, O : ~rl (M) ~ O(p), the associ- 
ated Reidemeister-Franz representation torsion of the manifold M, A°(M), is a topolog- 
ical invariant which satisfies a cardinality law which is analogous to the one satisfied by 
the Euler characteristic. Let A and B denote subcomplexes of the geodesic ball nerve with 
H = A U B, and for a representation 8 E Hom(¢rl (A),  O(p) ) 71Hom(~'l (B), O(p) ) f-I 
Hom(*rl(.Af),O(p)) denote by A°(MIA), AO(MIB), and A°(MI A M B) the Reide- 
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meister-Franz torsions associated with the subcomplexes A, B, and A A B respectively. 
Then 

A° (7-[A,B) A° ( MIA tO B) A° ( MIA N B) = A° ( MIA )A°( MIB) , (9) 

where 7-/A,B is the long exact cohomology sequence associated with the short exact 
sequence generated by the complexes C* ( A t3 B),  C*( A ) ® C* ( B),  and C* ( A A B) 

(the correction t e rm  AO(7-[A,B), associated with the twisted cohomology groups of the 
above three cochain complexes, disappears when the representation is acyclic). 

The cardinality laws which hold either for the Euler characteristic or for the Reide- 
meister-Franz torsion suggest that we can try to determine the asymptotics of Ba (V,m, 
7r(M) ) for higher dimensional manifolds by direct counting. 

3.1. Determination of  the entropy function 

According to the foregoing remarks we can specialize the rough counting function 
Ba(F~m) (M) ,  7r(M)) according to the more specific 

Definition 12. Ba(v, m, X, A°) (M)  is the entropy function which counts the number of 
combinatorially inequivalent one-skeletons r ~l) with A vertices which can be generated --(m) 
by minimal geodesic ball coverings on manifolds M, of given volume v, of given 
Euler characteristic X, and given Reidemeister-Franz torsion in the given representation 
0 : 7rl(M) ~ O(p) .  

We shall obtain the asymptotic estimate for this counting function by a direct argument 
exploiting geodesic ball coverings and the cardinality laws for the Euler characteristic 
and the Reidemeister-Franz torsion so as to obtain 

Theorem 13. There is a value mo of the parameter m, depending only on n, r, D, and 

V, such that, for any m >mo and for any manifold M C TO(n, r, D, V) with RF-torsion 
A °, Euler number X, and volume v, the entropy function Ba(v, m, X, A° ) (M)  is given 

by 

At 
Ba(v, m , x ,  A° ) (M)  = x / ~ m n p l ( M )  AO(M ) 

>( ( ,~)y(M)()q-2)/2+l/2.  exp(a/12A) , (10) 

where AI and Yl are suitable constants, a is a function of A with 0 < a < 1, while Pl is 
a function, depending on the metric geometry of M. Pl is uniformly bounded below and 
above in terms of  the parameters n, r, D, V. The costants A1 and Yl can be explicitly 
computed and measure the average topological complexity of the generic geodesic ball 

of the covering. 

Proof. As recalled in the section on the properties of geodesic ball coverings, each of 
the metric balls B, (p )  has, in general, a non-trivial fundamental group 7rl ( B , ( p ) ) .  In 
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order to exploit the argument described in the sequel, we need to consider the ball Be(p) 
included in larger balls, say Bce(p),  with C > 1 (and in the underlying manifold M),  

and we let 1 : Be(p) ~ Bce (p) denote the inclusion. Thus, the question naturally arises 

of the size of the induced group I.(Trl (Be(p) ) ) .  Since arbitrarily small metric balls 

can be topologically complicated, it cannot be excluded a priori that I .  (Trl (Be(p) ) )  
has an infinite number of generators, and this may spoil the possibility of defining the 
RF torsion associated with a reconstruction of the manifold out of a minimal geodesic 

balls covering. (This possibility, as well as the indications of how to take care of it was 
kindly pointed out to us by P. Petersen.) In order to avoid such troubles, it is sufficient 
to choose • small enough as follows from [Zh] 

L e m m a  14. There are constants R0 > 1, and •o depending only on n, r, D, V, such 
that for any manifold M E ~ ( n ,  r, D, V), p E M, • <_ •o, if I : B , (p )  ~ BRo,(P) 
is the inclusion, then there is no element of infinite order in 1. ( ~rl (Be(p) ) )  whenever 

6~EO.  

Actually, this is a part of a more general result proved by S. Zhu [Zh], which also 

provides, under the same hypotheses, a uniform upper bound to the order of any subgroup 

of I .  ('/7"1 (Be(p) )  ). 
With the notation of the above lemma, for any given • _< •0, let us consider a 

collection of A metric balls (Be(pi)}i=l,...,,I in the generic M E ~ ( n , r , D , V ) ,  with 
Be(pi) N Be(pj) = O, for every i,j. 

Let us denote by M(j) - [.J/~ BRoe(Pi), and, more generally, for any integer k _> 1 we 
set 

2t 

M(k) =-- U B(2-1/k)Roe(Pi) • 
i 

( l l )  

Note that we assume that for k = 1 the balls {BRoe(Pi)} are pairwise disjoint in M, while 

for k ~ cx~ the balls {B2Ro,(Pi)} cover M, in such a way that {BRo,(Pi),B2Roe(Pi)} 
defines a minimal net with A vertices in M, and we correspondingly define l/mo - 
Roeo/2 and 1/m = Roe/2, for every • < •0. 

The family of  metric spaces {M(k)}~l interpolates (continuously in the Gromov- 
Hausdorff topology), between the collection of disjoint balls {BRo, (Pi )}  and the cover- 
ing {B2R0e (Pi) }. The idea is to use such an interpolating family to extend the asymptotics 
of the function which counts the inequivalent ways of introducing disjoint balls into M, 
to the function counting the corresponding inequivalent coverings of M. 

The counting of the possible inequivalent ways of introducing pairwise disjoint 
geodesic balls in M is related to few elementary considerations exploiting the topol- 
ogy of the metric space M(1). To begin with, let us note that if the balls {BRoe(Pi)} 
were contractible then x ( B , ( p i ) )  = 1 and A = x(M~I))  (since the balls are disjoint). 
However, for manifolds M E R(n ,  r, D, V), arbitrarily small geodesic balls need not be 
contractible and consequently X(BRoe(Pi)) is not necessarily unity. Thus, it is natural 
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to introduce a parameter Yl, which measures to what extent the local e-balls fail to be 

contractible and which is defined according to 

A 

x (  M~I~) = Z X(BRoe(Pi) ) = 2A/(T1 -- 2 ) .  (12) 
i 

(The particular choice of  the ratio 2 / ( y l  - 2 )  is for later convenience.) More explicitly, 

2 / ( y l  - 2) is the average over M(1) of  the Euler characteristic of  the balls BR,,,(pi), 
viz.~ 

2 1 a 
y~ - 2 - ( x (  BR°'~(Pi) ) ) a = -A Z x (  BR°'~(Pi ) ) " (13) 

i 

For what concerns the characterization of  the RF-torsion of  M(l~, let us remark that 

it' we denote by Qi(k)  = Hom(.'rrl (B(2-t/k)l¢o~ (Pi)) ,  O(p)  ) the space of all represen- 

tations of  7rl (B(2-UI,~R~(Pi)) into the orthogonal group O(p) ,  then Hom("rrl (M~k)), 
0 (p) ) = N~=l Qi (k) .  Since 1. (.n'l ( Be (pi))  ) are of finite order, it follows that, given an 

orthogonal representation 0k E ~ Hom('rcl (M) ,  O(p)  ) N/a=t Qi(k),  we can evaluate the 
corresponding RF-torsion of  M{k), A°(M{k)),  if we provide volume elements for the 

twisted cochain complex C* (A/', £0~). In particular for k = 1, since the balls are disjoint, 

we get 

A 

A° ( M(I)) = H AOl ( BRo,~(Pi) ) • (14) 
i 

I f  we introduce the average value of log[A °l (BRoe(Pi)) ] over the set A balls BRoE(Pi), 
v i z . ,  

A 
1 

(log[ A°I (BR0, (Pi))1).~ ~ ~ Z I°g[A°'(BR°'~ (Pi))  l ,  
i=1 

(15) 

then we can write 

A° ( M~I)) = exp[ A(log[ d°~( BRo,~(pi) ) ]) al , (16) 

which, in general, depends on a choice of  volume elements uk and #k in the twisted 

cochain complex Ck(M(1),  £0) and in the cohomology groups Hk(M(1), £o) associated 
with the given representation 0 (we stress that the volume elements must be the same 
for all twisted cochain complexes associated with the balls). To keep track of such a 
choice, we can introduce a parameter, A1, defined according to 

A I = exp [ (log [ A °~ ( Bt¢o, (Pi)) l ) a - 1 ] ( 17 ) 

(the normalization of  A1 to e -1 is again for later convenience), and in terms of which 

we can write 
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A°(M~l)) = exp[,A + a l n A l ] .  (18) 

Having established these preliminary results, we can introduce a natural counting 
function for the possible inequivalent ways of introducing the set of disjoint balls 
M(l) into M. We exploit the fact that each of the A induced fundamental groups, 
I.  (~1 (BE(pi))), can be thought of as providing a colouring of the corresponding ball 

BRoe(Pi). 
More explicitly, given an orthogonal representation 0 E N/a=l Qi( 1 ), let H*(BR0, (Pi), 

G0) be the twisted cohomology of the generic ball BRo,(Pi). Since the balls are disjoint 
we can write H* (M~ 1), G0) -~ ~ ) :  H* (BR0, (Pi), GO) and we can define inequivalent 
any two Mfl) if the corresponding balls are labelled with distinct permutations of the 
cohomology groups H* (BRo, (Pi), GO). Therefore there are A! ways of distributing the 
labels H*(BRo,(Pi),Go) over the unlabelled balls {BRo,(Pi)} in M(1) (the coordinate 
labelling of the balls arising from the centers {Pi} are factored out to the effect that 
M(l) is considered as a collection of A empty boxes on which we are distributing the a 
labellings H*(BR0, (Pi), GO)). Consequently we can define a counting function for M(1) 
according to 

Ba(v,m, x,  AO) ( M(1)) :_ mnpl ( M) A! , (19) 

where the mn-dependent factor which multiplies ~! connects the volume of the balls 
Be(pi) in M(1) to the volume v of the underlying manifold M (it is the inverse of the 
average volume of the balls, see (3) ) .  

In order to extend to the generic M(k) the above argument notice that, as soon 
as the balls in M(k) start intersecting each other, the cohomologies H*(M(k),Go), 
~H*(B(2_l/k)Ro~(Pi),Go), and H*([')B(2-1/k)Ro~(Pi),Go) are related through a 
(twisted) Mayer-Vietoris exact sequence. 

For instance, given any two intersecting balls B(2-1/k)Roe(Pi) and B(2_l/k)Ro,(Ph ) in 
Mtk), there is a corresponding twisted Mayer-Vietoris short exact sequence 

0 ~ CJ(B(pi) U B(ph)) ~ CJ(B(pi)) • CJ(B(ph)) 

CJ(B(pi) A B(ph)) ~ 0 (20) 

(with obvious notations), with an associated cohomology long exact sequence. We 
can define inequivalent any two M(k) if the corresponding balls and their associated 
intersections are labelled with distinct permutations of the corresponding cohomology 
groups, according to the constraints expressed by the Mayer-Vietoris sequence. Namely, 
inequivalent labellings are generated only by those geodesic ball groups whose elements 
are in the kernel of the map ~inJ(B(p i ) )  ~ nJ(NiB(pi)). (Think of colouring 
intersecting boxes in such a way that on the intersections the colours blend according 
to a given pattern.) We can easily count the inequivalent ways of performing such a 
constrained labelling by exploiting the cardinality properties (9) of the RF-torsion (and 
of the Euler characteristic), which indeed are a consequence of the constraints associated 
with (20). 
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We start by noticing that the information we have gathered on M(l) allows us to 

rewrite (19) in a geometrical way in terms of the topological parameters x(M<I))  and 

A ° ( M< 1 ~ ) introduced above (see Eqs. (12) and (17) ). 
First we apply Stirling's formula to (19) so as to get 

a 
B.~(v ,m,x ,A°) (M(I) )  = m n p l ( M ) v ~ e x p ( - A + - ~ ) . ~  a+l/2, (21) 

where a depends on ,~ but satisfying 0 < a < 1. 
It is easily checked that, in terms of the parameters Yl and A1, defined by (12) 

and (17), we can rewrite the counting function for M~1) as a function of the Euler 

characteristic and of the RF-torsion according to 

a l  a Ba(v, m, X, A°) (M~I)) = x / ~ m n p l  (M) AO(Mo) ) 

x (A) x(M~')(~-2)/2+U2, exp(a/12A) (22) 

Note that we can rewrite M(k) as the disjoint union 

k 

m(k) = m~l) U (  M~j) \M(j-I~ ) (23) 
j=2 

and if we apply the cardinality laws for the Euler characteristic and the torsion, then it 

is straightforward to verify that we can rewrite B,~ ( v , m, X, A° ) ( M ~ 1 ~ ) as 

Ba(v,m,  x , A ° ) (  M(l)) 

= v / ~ m n p i  (M) A~ (A) x(M~k~)(~''-2)/2+U2, exp(a/12A) 
A°(M~k~) 

k 
× H  A°(M(J)) (A)--x(M~j'-x(M~-'~))(Yt-2)/2 (24) 

j=2 A°(M(J-I))  

On the other hand, from a combinatorial point of view, given the possible inequiv- 

alent ways of inserting M(k) in M, Ba (v, m, X, A°)(M(k)), we can define Ba (v, m, X, 

d °) (M(I))  according to 

k 

Ba(v ,m ,x ,A° ) (M(1) )  = Ba(v ,m ,x ,A° ) (M(k ) )  I-I Ba(M~j_I) --~ M(j)) , (25) 
j=2 

where Ba(M(j-1) ---+ M(j)) denotes the number of inequivalent ways of introducing the 

balls of M(j-I)  in the already inserted balls of M(j). Notice that such Ba(M(j-1) ---, 
M(j) ) of necessity must satisfy the recursive relation 

p--I 

Ba(M(k-p) --~ Mfk-q)) = H Ba(M(k-j- l)  ~ M(k-j)) (26) 
j=q 

for k > p > q, which says that the number of inequivalent ways of introducing the 
balls of M(k-p) into the (larger) balls of M(k-q) is equal to the number of ways of 
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introducing the balls of M(k-p) into the balls of M(k-p+l) times the number of ways 
of introducing those of M(k-p+l) into those of M(k_p+2 ) and so on. 

A direct comparison shows that (24), the explicit expression for Ba(v,m, X, 
AO)(M(1)) in terms of X, and A°(M(k)), is consistent with the combinatorial defi- 

nition (25) and the recursive relation (26) if and only if 

A a 
B,~(v, m, X, AO) (M(k)) = v ~ m n p l  (M) AO(M(k)) 

× (A) x(M¢k')(~''-2)/2+l/2, exp(a/12A) (27) 

with 

(AO(M(J)) ) (A) -x(M~j>-x(M~j-~)))(r'-2)/2 (28) 
B,~(M(j-1) -~ M(j)) = \ AO(M(j_I) ) 

Since as k --+ ~ ,  M(k) converges, in the Gromov-Hausdorff sense, to M we immediately 
get from (27) the required asymptotics for the one-skeleton graphs counting function 

on a manifold M E ~ ( n ,  r, D, V), namely 

DAD k"l"(l)t(m) (M), v, A°(M) ) = v/2"-~mnpl (M) AO(M ) 

x (A) x(M)(~/1-2)/2+l/2" exp(a /12A) ,  (29) 

and this completes the proof of the theorem. [] 

A few remarks are in order concerning the structure of (29). A first remark concerns 
the fact that given an orthogonal (in general not acyclic) representation O : ~rl ~ O(p), 
the counting function o ~ ,~0 ) (M) ,v ,  A°(M)) depends on the choice of measures in o)t~l(m) 
the twisted cochain complex C*(.A/', £0) and in the associated cohomology H* (.A/', £0). 

Notice in particular that, if we rescale, by a factor t = exp[ ( 2 -  Yl )/2ph], the flat 
density in R p yielding the volume form u~ in C k (A/', £0), then 

(d°(M) ) ~ (d°(M; v) ) (a )  x(M)(r'-2)/2 , (30) 

which shows that the entropy function Ba(Fllm~ (M), v, A°(M)) basically is a torsion 

evaluated for a suitable choice of the fiat volume density in the bundle £o. 
A second, related, remark concerns the role of the orthogonal representations of the 

fundamental group that have been introduced in order to compute the RF-torsion. It is 

obvious that (1) Ba ( F(m) ( M), v, A ° ( M) ) only counts the isomorphism classes of geodesic 
ball coverings coloured according to the chosen representation 0 : ~1 (M) ~ O(p). Thus 
we are also interested in carrying out a suitable sum of Ba(Fllm~ (M), v, A°(M)) over 
the conjugacy classes of inequivalent representations having the same Whitehead torsion 
(i.e., summing over all possible inequivalent colourings within a given simple homotopy 
class). Recall that the space of inequivalent representations is Hom(~rl (M), O(p) ) / 
O(p), namely the space of O(p)-orbits of Hom(qrl (M), O(p) ) with the quotient topol- 
ogy. This space can be geometrically interpreted in various equivalent ways, for instance, 
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as the moduli space of flat orthogonal bundles over M. Particularly suggestive is the in- 

terpretation, due to W. Goldman [ GI ], which characterizes Hom( ~'1 (M) ,  0 (p)  ) / 0 (p)  
as the deformation space of locally flat Euclidean structures on M (M has a locally 
Euclidean structure if every point has a neighborhood isometric to an open subset of 
Euclidean space). This latter interpretation very strongly suggests that locally Euclidean 
spaces have, not surprisingly, a distinguished role in determining the configurational en- 
tropy of the space of Riemannian structures of use in quantum gravity. Roughly speaking, 
infinitesimal deformations around a given Euclidean structure are already accounted for 

(1) "M) ,  u, A ° ( M ) ) ,  owing to the presence of the RF-torsion. This latter remark in Ba(F(m ) t 
can be more easily understood if we recall [Sc] that RF-torsion (or rather its smooth 

counterpart, the Ray-Singer analytic torsion), comes about as a stationary-phase ap- 

proximation of a formal path integral over fluctuations around a given flat connection. 

The characterization of the sum of (1) B a ( F ( m ) ( M ) , v, A° ( M ) ) over the representation 

variety Hom(1rl (M) ,  O ( p ) ) / O ( p ) ,  for each given simple homotopy class, is quite not- 

trivial. Since H o m ( q r l ( M ) , O ( p ) ) / O ( p )  is an algebraic variety, for each p there are 

only a finite number of connected components, which correspond to the finite number 
of distinct principal O(p)-bundles that have flat connections [Mor]. An example is 
afforded by the representations of surface groups in SL(2 ,R)  where it is possible to 
show [GI] that Hom(qrl (X) ,  SL(2, N))  has 228+1 + 2 g -  3 components, where g is the 

genus of the surface X. We do not know of any similar result on the relation between 

the topology of M and the number, ]Hom (re1 (M) ,  0 ( p ) ) / O ( p )  [~(w), of inequivalent 
connected components of Hom(Trl (M) ,  O ( p ) ) / O ( p )  for a given Whitehead torsion. 
Even less is known (at least to us) concerning the way of integrating over inequivalent 

representations in each connected component. We think that such a result would be very 

valuable for a deeper understanding of the structure of the entropy function (29). 
A final remark calls for a comment on the application of (29) to four-dimensional 

simplicial quantum gravity (implicitly, (29) has already been applied to 3-D simplicial 
quantum gravity in [CM3]; actually, this particular application suggested the proof of 

the entropy estimate presented here). The delicate point is a correct formulation of 
the regularized version of the Einstein-Hilbert action to be associated with geodesic 

ball nerve over four-manifolds. Recall that, in general, such a nerve is a polytope of 

dimension larger than the dimension of the underlying manifold, and thus a simple 
transcription, in the spirit of dynamically triangulated models, as a weighted sum of the 
orders of the various subskeletons, is not, a priori, the most proper choice. In dimension 
three, one overcomes this problem for reasons connected with the nature of simple 
homotopy theory. Basically, given the non-singular ZTrl-incidence matrix describing 

the nerve, one can shift to a three-dimensional complex which is in the same simple 
homotopy class of the original nerve. This construction is not trivially extended to the 
four-dimensional case: we have some preliminary results on how to take care of the 
excess topology of the nerve, but they are not yet in a simple geometrical form and will 

not be discussed here. 
At this point, a fairly civilized approach would be to use (29) for the asymptotics 

of the entropy function of standard dynamical triangulations of four dimensional man- 
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i folds,  and then proceed  wi th  a Peierls  en t ropy -versus -ac t ion  argument  to discuss the 

the rmodynamica l  and poss ib ly  the con t inuum l imit  o f  the theory. Detai ls  o f  our  results 

in this connec t ion  and some further developments  will  appear elsewhere.  
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