411 research outputs found

    Comparing sediment equilibrium partitioning and passive sampling techniques to estimate benthic biota PCDD/F concentrations in Newark Bay, New Jersey (U.S.A.)

    Get PDF
    Sediment and polyethylene sampler-based estimates of polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) concentrations in Newark Bay, New Jersey (USA) benthic biota were compared. Biota concentrations based on sediment were estimated using an organic carbon (OC)-water partitioning model and an OC and black carbon (BC)-water dual model. Biota concentrations based on polyethylene were estimated from samplers deployed in the Newark Bay water column and samplers immersed in a sediment/porewater slurry in the laboratory. Porewater samplers provided the best estimates of biota concentrations (within 3.1x), with best results achieved for deposit-feeders (within 1.6x). Polyethylene deployed in deep water also provided good estimates of biota concentrations (within 4x). By contrast, OC-water partitioning overestimated biota concentrations by up to 7x, while OC and BC combined underestimated biota concentrations by up to 13x. We recommend polyethylene for estimating concentrations of hydrophobic organic contaminants in field biota given its simplicity and relatively lower uncertainty compared to sediment equilibrium partitioning

    The Earth as an Engineering System: Addressing Sustainability through Science, Technology and Policy

    Get PDF
    We combine insights from the two emerging fields of engineering systems and sustainability science to develop an analytical approach for understanding and managing coupled natural and human systems. The Earth system is characterized with reference to the attributes of engineering systems (real-world existence, artificiality, dynamic properties, hybrid state, and some human control). We argue that human influences have become so overwhelming that it is impossible to understand global Earth systems without taking into account both technical and social dimensions. Aspects of sustainability systems that fulfill functional types of engineering systems are enumerated with reference to five processes (transporting, transforming, storing, exchanging and controlling) and operands (living organisms, matter, information, energy and money). Building on methods from sustainability science, we introduce the concept of Spatial-Temporal-Functional (STF) analysis for addressing sustainability problems in an engineering systems context. We illustrate this framework with reference to the case of global transport of hazardous chemicals. Our analysis suggests that efforts to address cross-scale problems should focus on enhancing mechanisms for transforming and exchanging in addition to controlling

    The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning

    Get PDF
    Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy

    Cellular shear adhesion force measurement and simultaneous imaging by atomic force microscope

    Get PDF
    This paper presents a sensitive and fast cellular shear adhesion force measurement method using an atomic force microscope (AFM). In the work, the AFM was used both as a tool for the imaging of cells on the nano-scale and as a force sensor for the measurement of the shear adhesion force between the cell and the substrate. After the cell imaging, the measurement of cellular shear adhesion forces was made based on the different positions of the cell on the nano-scale. Moreover, different pushing speeds of probe and various locations of cells were used in experiments to study their influences. In this study, the measurement of the cell adhesion in the upper portion of the cell is different from that in the lower portion. It may reveal that the cancer cells have the metastasis tendency after cultured for 16 to 20 hours, which is significant for preventing metastasis in the patients diagnosed with early cancer lesions. Furthermore, the cellular shear adhesion forces of two types of living cancer cells were obtained based on the measurements of AFM cantilever deflections in the torsional and vertical directions. The results demonstrate that the shear adhesion force of cancer cells is twice as much as the same type of cancer cells with TRAIL. The method can also provide a way for the measurement of the cellular shear adhesion force between the cell and the substrate, and for the simultaneous exploration of cells using the AFM imaging and manipulatio

    Galaxy Clustering in Early SDSS Redshift Data

    Get PDF
    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but narrow (2.5-5 degree) segments, covering 690 square degrees. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 Mpc/h. The two-dimensional correlation function \xi(r_p,\pi) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, \xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03}, for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is \sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5 Mpc/h. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r < 10 Mpc/h: subsamples with absolute magnitude ranges centered on M_*-1.5, M_*, and M_*+1.5 have real-space correlation functions that are parallel power laws of slope ~ -1.8 with correlation lengths of approximately 7.4 Mpc/h, 6.3 Mpc/h, and 4.7 Mpc/h, respectively.Comment: 51 pages, 18 figures. Replaced to match accepted ApJ versio

    The Luminosity Function of Galaxies in SDSS Commissioning Data

    Get PDF
    During commissioning observations, the Sloan Digital Sky Survey (SDSS) has produced one of the largest existing galaxy redshift samples selected from CCD images. Using 11,275 galaxies complete to r^* = 17.6 over 140 square degrees, we compute the luminosity function of galaxies in the r^* band over a range -23 < M < -16 (for h=1). The result is well-described by a Schechter function with parameters phi_* = 0.0146 +/- 0.0012 h^3 Mpc^{-3}, M_* = -20.83 +/- 0.03, and alpha = -1.20 +/- 0.03. The implied luminosity density in r^* is j = (2.6 +/- 0.3) x 10^8 h L_sun Mpc^{-3}. The surface brightness selection threshold has a negligible impact for M < -18. We measure the luminosity function in the u^*, g^*, i^*, and z^* bands as well; the slope at low luminosities ranges from alpha=-1.35 to alpha=-1.2. We measure the bivariate distribution of r^* luminosity with half-light surface brightness, intrinsic color, and morphology. High surface brightness, red, highly concentrated galaxies are on average more luminous than low surface brightness, blue, less concentrated galaxies. If we synthesize results for R-band or b_j-band using the Petrosian magnitudes with which the SDSS measures galaxy fluxes, we obtain luminosity densities 2.0 times that found by the Las Campanas Redshift Survey in R and 1.4 times that found by the Two-degree Field Galaxy Redshift Survey in b_j. We are able to reproduce the luminosity functions obtained by these surveys if we also mimic their isophotal limits for defining galaxy magnitudes, which are shallower and more redshift dependent than the Petrosian magnitudes used by the SDSS. (Abridged)Comment: 49 pages, including 23 figures, accepted by AJ; some minor textual changes, plus an important change in comparison to LCR

    The First Hour of Extra-galactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster

    Full text link
    On 26 May 1999, one of the Sloan Digital Sky Survey (SDSS) fiber-fed spectrographs saw astronomical first light. This was followed by the first spectroscopic commissioning run during the dark period of June 1999. We present here the first hour of extra-galactic spectroscopy taken during these early commissioning stages: an observation of the Coma cluster of galaxies. Our data samples the Southern part of this cluster, out to a radius of 1.5degrees and thus fully covers the NGC 4839 group. We outline in this paper the main characteristics of the SDSS spectroscopic systems and provide redshifts and spectral classifications for 196 Coma galaxies, of which 45 redshifts are new. For the 151 galaxies in common with the literature, we find excellent agreement between our redshift determinations and the published values. As part of our analysis, we have investigated four different spectral classification algorithms: spectral line strengths, a principal component decomposition, a wavelet analysis and the fitting of spectral synthesis models to the data. We find that a significant fraction (25%) of our observed Coma galaxies show signs of recent star-formation activity and that the velocity dispersion of these active galaxies (emission-line and post-starburst galaxies) is 30% larger than the absorption-line galaxies. We also find no active galaxies within the central (projected) 200 h-1 Kpc of the cluster. The spatial distribution of our Coma active galaxies is consistent with that found at higher redshift for the CNOC1 cluster survey. Beyond the core region, the fraction of bright active galaxies appears to rise slowly out to the virial radius and are randomly distributed within the cluster with no apparent correlation with the potential merger of the NGC 4839 group. [ABRIDGED]Comment: Accepted in AJ, 65 pages, 20 figures, 5 table

    The Fifth Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and represents the completion of the SDSS-I project (whose successor, SDSS-II will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 square degrees, and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 square degrees of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS Sixth Data Release (DR6) is now public, available from http://www.sdss.or

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction
    corecore