51 research outputs found

    Bacterial defences: mechanisms, evolution and antimicrobial resistance

    Get PDF
    Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution

    Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells

    Get PDF
    Bacteriophages can be trapped in the matrix of bacterial biofilms, such that the cells inside them are protected. It is not known whether these phages are still infectious and whether they pose a threat to newly arriving bacteria. Here, we address these questions using textitEscherichia coli and its lytic phage T7. Prior work has demonstrated that T7 phages are bound in the outermost curli polymer layers of the textitE. coli biofilm matrix. We show that these phages do remain viable and can kill colonizing cells that are T7-susceptible. If cells colonize a resident biofilm before phages do, we find that they can still be killed by phage exposure if it occurs soon thereafter. However, if colonizing cells are present on the biofilm long enough before phage exposure, they gain phage protection via envelopment within curli-producing clusters of the resident biofilm cells

    Biofilm Structure Promotes Coexistence of Phage-Resistant and Phage-Susceptible Bacteria

    Get PDF
    Encounters among bacteria and their viral predators (bacteriophages) are among the most common ecological interactions on Earth. These encounters are likely to occur with regularity inside surface-bound communities that microbes most often occupy in natural environments. Such communities, termed biofilms, are spatially constrained: interactions become limited to near neighbors, diffusion of solutes and particulates can be reduced, and there is pronounced heterogeneity in nutrient access and physiological state. It is appreciated from prior theoretical work that phage-bacteria interactions are fundamentally different in spatially structured contexts, as opposed to well-mixed liquid culture. Spatially structured communities are predicted to promote the protection of susceptible host cells from phage exposure, and thus weaken selection for phage resistance. The details and generality of this prediction in realistic biofilm environments, however, are not known. Here, we explore phage-host interactions using experiments and simulations that are tuned to represent the essential elements of biofilm communities. Our simulations show that in biofilms, phage-resistant cells-as their relative abundance increases-can protect clusters of susceptible cells from phage exposure, promoting the coexistence of susceptible and phage-resistant bacteria under a large array of conditions. We characterize the population dynamics underlying this coexistence, and we show that coexistence is recapitulated in an experimental model of biofilm growth measured with confocal microscopy. Our results provide a clear view into the dynamics of phage resistance in biofilms with single-cell resolution of the underlying cell-virion interactions, linking the predictions of canonical theory to realistic models and in vitro experiments of biofilm growth. IMPORTANCE In the natural environment, bacteria most often live in communities bound to one another by secreted adhesives. These communities, or biofilms, play a central role in biogeochemical cycling, microbiome functioning, wastewater treatment, and disease. Wherever there are bacteria, there are also viruses that attack them, called phages. Interactions between bacteria and phages are likely to occur ubiquitously in biofilms. We show here, using simulations and experiments, that biofilms will in most conditions allow phage-susceptible bacteria to be protected from phage exposure, if they are growing alongside other cells that are phage resistant. This result has implications for the fundamental ecology of phage-bacteria interactions, as well as the development of phage-based antimicrobial therapeutics

    Universality in Bacterial Colonies

    Full text link
    The emergent spatial patterns generated by growing bacterial colonies have been the focus of intense study in physics during the last twenty years. Both experimental and theoretical investigations have made possible a clear qualitative picture of the different structures that such colonies can exhibit, depending on the medium on which they are growing. However, there are relatively few quantitative descriptions of these patterns. In this paper, we use a mechanistically detailed simulation framework to measure the scaling exponents associated with the advancing fronts of bacterial colonies on hard agar substrata, aiming to discern the universality class to which the system belongs. We show that the universal behavior exhibited by the colonies can be much richer than previously reported, and we propose the possibility of up to four different sub-phases within the medium-to-high nutrient concentration regime. We hypothesize that the quenched disorder that characterizes one of these sub-phases is an emergent property of the growth and division of bacteria competing for limited space and nutrients.Comment: 12 pages, 5 figure

    Emergence of Spatial Structure in Cell Groups and the Evolution of Cooperation

    Get PDF
    On its own, a single cell cannot exert more than a microscopic influence on its immediate surroundings. However, via strength in numbers and the expression of cooperative phenotypes, such cells can enormously impact their environments. Simple cooperative phenotypes appear to abound in the microbial world, but explaining their evolution is challenging because they are often subject to exploitation by rapidly growing, non-cooperative cell lines. Population spatial structure may be critical for this problem because it influences the extent of interaction between cooperative and non-cooperative individuals. It is difficult for cooperative cells to succeed in competition if they become mixed with non-cooperative cells, which can exploit the public good without themselves paying a cost. However, if cooperative cells are segregated in space and preferentially interact with each other, they may prevail. Here we use a multi-agent computational model to study the origin of spatial structure within growing cell groups. Our simulations reveal that the spatial distribution of genetic lineages within these groups is linked to a small number of physical and biological parameters, including cell growth rate, nutrient availability, and nutrient diffusivity. Realistic changes in these parameters qualitatively alter the emergent structure of cell groups, and thereby determine whether cells with cooperative phenotypes can locally and globally outcompete exploitative cells. We argue that cooperative and exploitative cell lineages will spontaneously segregate in space under a wide range of conditions and, therefore, that cellular cooperation may evolve more readily than naively expected

    Cellular advective-diffusion drives the emergence of bacterial surface colonization patterns and heterogeneity

    No full text
    Microorganisms navigate and divide on surfaces to form multicellular structures called biofilms, the most widespread survival strategy found in the bacterial world. One common assumption is that cellular components guide the spatial architecture and arrangement of multiple species in a biofilm. However, bacteria must contend with mechanical forces generated through contact with surfaces and under fluid flow, whose contributions to colonization patterns are poorly understood. Here, we show how the balance between motility and flow promotes the emergence of morphological patterns in Caulobacter crescentus biofilms. By modeling transport of single cells by flow and Brownian-like swimming, we show that the emergence of these patterns is guided by an effective Peclet number. By analogy with transport phenomena we show that, counter-intuitively, fluid flow represses mixing of distinct clonal lineages, thereby affecting the interaction landscapes between biofilm-dwelling bacteria. This demonstrates that hydrodynamics influence species interaction and evolution within surface-associated communities

    Dynamic biofilm architecture confers individual and collective mechanisms of viral protection

    Get PDF
    In nature, bacteria primarily live in surface-attached, multicellular communities, termed biofilms; 1-6; . In medical settings, biofilms cause devastating damage during chronic and acute infections; indeed, bacteria are often viewed as agents of human disease; 7; . However, bacteria themselves suffer from diseases, most notably in the form of viral pathogens termed bacteriophages; 8-12; , which are the most abundant replicating entities on Earth. Phage-biofilm encounters are undoubtedly common in the environment, but the mechanisms that determine the outcome of these encounters are unknown. Using Escherichia coli biofilms and the lytic phage T7 as models, we discovered that an amyloid fibre network of CsgA (curli polymer) protects biofilms against phage attack via two separate mechanisms. First, collective cell protection results from inhibition of phage transport into the biofilm, which we demonstrate in vivo and in vitro. Second, CsgA fibres protect cells individually by coating their surface and binding phage particles, thereby preventing their attachment to the cell exterior. These insights into biofilm-phage interactions have broad-ranging implications for the design of phage applications in biotechnology, phage therapy and the evolutionary dynamics of phages with their bacterial hosts

    An Emerging Grip on the Growth of Grounded Bacteria

    No full text
    Understanding the mechanisms that are involved in determining bacterial growth rates is fundamental to infection biology, yet the factors that influence bacterial growth variation on surfaces are largely unknown. In this issue of ACS Nano, Lee et al. track individual bacteria on surfaces for several generations to discover systematic differences in growth rate variation between cells that disperse from surfaces and cells that remain attached to surfaces. These growth rate distributions were shown to be strongly influenced by extracellular motility appendages. We provide a perspective on these results and discuss prospects for future work on the interactions between bacteria and surfaces

    Spatial structure, cooperation and competition in biofilms

    No full text
    Bacteria often live within matrix-embedded communities, termed biofilms, which are now understood to be a major mode of microbial life. The study of biofilms has revealed their vast complexity both in terms of resident species composition and phenotypic diversity. Despite this complexity, theoretical and experimental work in the past decade has identified common principles for understanding microbial biofilms. In this Review, we discuss how the spatial arrangement of genotypes within a community influences the cooperative and competitive cell-cell interactions that define biofilm form and function. Furthermore, we argue that a perspective rooted in ecology and evolution is fundamental to progress in microbiology
    • …
    corecore