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Abstract 11 

Throughout their evolutionary history, bacteria have faced diverse threats from other 12 

microorganisms, including competing bacteria, bacteriophages and predators. In response to 13 

these threats, they have evolved sophisticated defence mechanisms that today also protect 14 

bacteria against antibiotics and other therapies. In this Review, we explore the protective 15 

strategies of bacteria, including the mechanisms, evolution and clinical implications of these 16 

ancient defences. We also review the countermeasures that attackers have evolved to 17 

overcome bacterial defences. We argue that understanding how bacteria defend themselves 18 

in nature is important for the development of new therapies, and for minimising resistance 19 

evolution.  20 
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[H1] Introduction 21 

Bacteria are amongst the most ancient organisms on Earth1, but across virtually every 22 

ecosystem, they are threatened by competitor [G] bacteria2–5, bacteriophages6 [G] and 23 

predators7 [G] , which are all equipped with a broad range of means to attack them. Whereas 24 

the widespread human use of antibiotics dates back a mere century, these three biotic threats 25 

have been shaping the evolution and physiology of bacteria for billions of years.  26 

 27 

Bacteria have evolved a panoply of defence mechanisms [G] to avoid or mitigate harm from 28 

biotic threats. Understanding these defences is important for several reasons. They offer 29 

insights into bacterial biology, illustrating ecological challenges that bacteria faced in the past 30 

and the mechanisms that evolved to overcome them. These mechanisms are phylogenetically 31 

widespread and influence the physiology of diverse bacterial species; some components of 32 

animal innate immune systems even trace their origins to bacterial defence mechanisms8. 33 

Ancient defences are also central to how modern bacteria respond to antimicrobial therapies. 34 

Many defences offer broad protection against various threats, which means that bacteria often 35 

have preadaptations [G] that potentiate resistance to antimicrobials in the clinic. Moreover, 36 

as we search for new biotherapeutic [G] alternatives to antibiotics, including probiotic 37 

bacteria and phage therapy, we face many of the same challenges from these preadaptations 38 

that render bacteria hard to kill9.  39 

 40 

In this Review, we explore bacterial defence mechanisms through an evolutionary lens and 41 

discuss their relevance for treating bacterial infections. We discuss the threats that bacteria 42 

face from microbial predators, competitors and viruses, and then identify common principles 43 

of defence that protect against these threats. The set of known bacterial defences is large and 44 

ever-growing, such that exhaustively cataloguing every mechanism is beyond the scope of 45 

this article. Instead, we select examples that illustrate different categories of defence, and 46 

discuss their regulation and their evolution. We close by examining how attackers have 47 

evolved to overcome bacterial defences, and discuss how the study of defences can inform 48 

on the treatment of bacterial disease (Box 1). 49 

 50 

[H1] Bacteria face myriad threats 51 

In a given environment, abiotic factors (for example, light, salinity or heat) produce stressors 52 

[G] , and for host-associated bacteria, immune cells and responses may contribute others (for 53 

example, antimicrobial peptides). In this Review, however, our focus centres on the biotic 54 

challenges presented by bacterial competitors, phages, and predation by eukaryotes and 55 

specialised bacteria (Figure 1). 56 

 57 
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[H2] Bacterial competitors. 58 

Most bacteria live in dense, multi-species communities, where competition for space and 59 

nutrient resources is severe2–4. Commensurately, bacteria have evolved diverse strategies for 60 

inhibiting and killing their competitors, many of which involve the use of specialised weaponry 61 

[G] (recently reviewed in Ref. 10). Antibacterial weapons are extraordinarily diverse, 62 

encompassing molecular toxins11, antimicrobial peptides12 and proteins13,14, toxin-injecting15 63 

and membrane-puncturing16 nanomachines, and even weaponized phages17. These myriad 64 

weapons harm a target bacterium by attacking its key cellular structures and processes, which 65 

results in growth inhibition or cell death. For example, diffusible peptide-based toxins 66 

(bacteriocins) often damage DNA and RNA18, or compromise cell envelopes via pore-67 

forming19 or wall-degrading activity20. Protein toxins injected via the type VI secretion system 68 

(T6SS) frequently attack the bacterial cell wall or membrane(s)21, lysing intoxicated cells 69 

quickly and thereby clearing a path to new targets22. Antibiotics, a diverse group of secondary 70 

metabolite toxins, have broad but overlapping activities, and common targets include gene 71 

transcription and protein translation, DNA synthesis and replication, and the cell envelope23,24. 72 

 73 

[H2] Bacteriophages. 74 

Phages are the most numerous biological entities in the biosphere25, and are a leading cause 75 

of bacterial mortality in many environments26 (for a recent review, see Ref. 6). Phages differ 76 

widely in their evolutionary relationships with hosts, spanning a continuum from parasitism 77 

[G] to mutualism [G] 27. To replicate all phages must inject their genetic material into bacterial 78 

hosts. For lytic phages, the injected genetic material is immediately copied and transcribed to 79 

assemble progeny phage particles, which kill and burst the host cell to disperse. Temperate 80 

phages (for example, λ-coliphages) also reproduce via host lysis under certain conditions, but 81 

have the additional ability to lysogenize host bacteria28, whereby the phage inserts its genome 82 

into the bacterial chromosome, which enables it to replicate vertically alongside its host as it 83 

grows and divides. A third class of phages (for example, filamentous phages) exhibit a chronic 84 

replicative cycle, whereby new phages are continuously extruded from the host29. Lysis of 85 

cells infected with lytic phages is triggered by envelope-degrading endolysins and holins30; 86 

temperate phages kill via similar mechanisms but may lie dormant for long periods before 87 

those mechanisms are induced. Cells with chronic phage infections are generally not killed29, 88 

but still suffer from reduced fitness owing to the diversion of cellular resources towards phage 89 

assembly31. 90 

 91 

[H2] Eukaryotic and bacterial predators. 92 

As well as viral infection, bacteria have long faced the threat of predation, particularly from 93 

free-living protozoa that feed via phagocytosis in soil and aquatic environments7. Some 94 
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bacteria are also facultative or obligate bacterial predators: the soil bacterium Myxococcus 95 

xanthus moves rapidly in large groups, digesting encountered prey with secreted hydrolytic 96 

enzymes32. Bdellovibrio and like organisms (BALOs) are small bacteria that burrow inside 97 

Gram-negative bacteria: once inside the periplasm, a BALO cell grows by digesting the 98 

cytosolic contents of the host with hydrolytic enzymes, fueling rapid growth33. Once the  99 

resources of the host are exhausted, the BALO cell divides to form multiple progeny cells, 100 

which are released via host-cell lysis34. Meanwhile, the Candidate Phyla Radiation, a diverse 101 

group of small-celled bacteria representing approximately 15% of all bacterial diversity35, may 102 

incorporate other new types of predatory or parasitic bacteria. Although the biology of this 103 

group remains poorly understood, members often have reduced genomes, and seem to rely 104 

on other bacteria to survive and reproduce36. 105 

 106 

[H1] Classes of bacterial defence 107 

Bacteria have a wide range of defensive mechanisms against competitors, phages and 108 

predators. These mechanisms operate at a range of spatial scales, from molecular and cellular 109 

defences, to those that require bacteria to work as a group (Figure 2). 110 

 111 

[H2] Molecular-scale defences. 112 

[H3] Target modification and protection. To kill a bacterium, attackers deploy harmful agents 113 

[G] that interact with specific molecular targets to disrupt  vital cellular processes of the target 114 

cell. Modification37 or protection38 of a target structure can attenuate these interactions and 115 

prevent or lessen harm. -lactam antibiotics, such as penicillin, kill bacteria by inhibiting cell-116 

wall cross-linking enzymes. In methicillin-resistant Staphylococcus aureus (MRSA), the genes 117 

mecA and mecC encode modified cross-linking enzymes that are insensitive to almost all -118 

lactam drugs39. Modification can be post-translational as well as genetic; for instance, the 119 

enzymatic methylation of bacterial ribosomes can prevent multiple classes of antibiotics from 120 

binding with this target37. 121 

 122 

[H3] Target repair and compensation. Cells can compensate for the presence of a harmful 123 

agent via generalized physiological responses that repair damaged targets. Exposure of 124 

bacteria to antibiotics, other competitor toxins, or phages, often results in oxidative DNA 125 

damage40,41. Subsequently, repair of oxidised DNA occurs via the base excision repair (BER) 126 

and nucleotide excision repair (NER) systems, which are both highly conserved and ancient 127 

pathways42,43. Apart from chromosomal repair, some species possess RNA ligases that can 128 

mend 16S rRNA damage caused by ribotoxic bacteriocins44. Similarly, the extrusion of 129 

filamentous phages can compromise the inner membrane of Escherichia coli, but the 130 

expression of membrane-binding phage-shock proteins suppresses proton leakage and 131 



 

 6 

maintains the proton-motive force45. Sometimes it suffices to simply replace lost targets: when 132 

intoxicated with cell-wall-degrading T6SS toxins, Vibrio cholerae responds by increasing 133 

peptidoglycan synthesis to compensate46.  134 

 135 

[H3] Agent modification, binding and degradation. Harmful agents can be neutralised before 136 

they inflict damage. Multiple classes of antibiotics are neutralized through modification, via the 137 

enzymatic addition of acetyl, phosphoryl or adenyl groups47. Toxic agents can also be 138 

inactivated via binding to other molecules: the expression of cognate immunity proteins 139 

confers resistance to many bacteriocins19, T6SS48 and Cdi49 effectors, and enables cells to 140 

safely use these toxic proteins as weapons10. In the same way, expression of orphan immunity 141 

proteins (that is, those for which a bacterium does not produce a cognate toxin) enables 142 

bacteria to survive attacks from non-kin cells50,51.  143 

 144 

Bacteria also have diverse systems to degrade harmful agents. -lactamases are ancient 145 

proteins that hydrolyse the ring structure of beta-lactam antibiotics, such as penicillin52. 146 

Restriction-modification (RM) systems encode restriction endonucleases, which bind to and 147 

cleave phage and other foreign DNA at specific recognition sites. Target modification also has 148 

a role here, but is directed at host DNA: recognition sequences on host DNA are modified 149 

(e.g. via methylation) to protect them from degradation, while unmodified phage DNA is 150 

destroyed by the endonuclease. Multiple classes of RM systems have been characterised 151 

across both bacteria and archaea53,54, providing innate immunity against a subset of phages. 152 

Recently-discovered antiviral defences, such as DISARM54 (defence island system associated 153 

with restriction–modification) and Dnd55 (DNA phosphorothioation) systems, function in a 154 

similar manner, respectively attacking foreign DNA that lacks methyl- or sulphur modification.  155 

 156 

The degradation of harmful agents reaches astonishing complexity in CRISPR–Cas systems, 157 

which provide bacteria with adaptive immunity against phages whose genomic signatures 158 

have previously been encountered. These systems store fragments of foreign DNA in the 159 

bacterial genome, which then guide Cas restriction enzymes to degrade DNA in the cell that 160 

resembles that of past phage infections56 or other mobile genetic elements57. The recently-161 

discovered prokaryotic Argonaute (pAgo) proteins operate on a similar principle, providing 162 

guided DNA interference against harmful genetic elements including plasmids, transposons 163 

and phages58.  164 

 165 

[H2] Cellular defences 166 

[H3] Membranes, capsules and extracellular vesicles. Most harmful agents must enter a cell 167 

before they can cause harm, and bacterial membranes are often pivotal in restricting this entry. 168 
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Indeed, the outer membrane of Gram-negative bacteria may have evolved in part to better 169 

protect cells from antimicrobial compounds59. The structures decorating a membrane are also 170 

crucial to barrier function: some structures (for example, transporters or surface 171 

polysaccharides) function as binding sites or entry points for phages and protein toxins, and 172 

bacteria that lack such structures, or have modified those structures, benefit from resistance. 173 

Other surface structures (for example, lipopolysaccharides60 and curli fibres61) confer 174 

protection by occluding phage- or toxin-binding sites, or by armouring the cell against 175 

mechanical insult. For example, bacterial capsules, which are protective sheaths of 176 

exopolysaccharides, can armour cells against penetration by the T6SS62,63. Similarly, a layer 177 

of interlocking surface proteins, known as the S-layer64, can protect bacteria from entry by 178 

Bdellovibrio bacteria65, as can certain lipopolysaccharides66. Beyond their barrier role, 179 

membranes can perform additional defensive functions when shed as bubble-like extracellular 180 

vesicles67. As well as enhancing envelope stability (by removing misfolded or mislocalised 181 

envelope components)67, vesicles can function as extracellular ‘decoys’, absorbing antibiotics, 182 

peptide toxins and phages, and carrying toxin-degrading enzymes68. Vesicle release is 183 

actively upregulated in response to envelope stress, and is thought to have intersecting roles 184 

in anti-phage and anti-toxin defence68. 185 

 186 

[H3] Efflux pumps. When the cell envelope fails to stop harmful molecules from entering, 187 

bacteria can instead force them back out. Efflux pumps are a diverse group of membrane 188 

transport proteins universal to bacteria, with a broad range of substrate specificities69 and 189 

physiological functions70. In particular, they are an effective and fast-acting antibiotic 190 

resistance mechanism71, sufficient in some cases to protect antibiotic-producing bacteria 191 

against their own toxins72. 192 

 193 

[H3] Motility. Using flagellae, type IV pili or other motility systems73, bacteria can evade threats 194 

that would otherwise kill them. In planktonic environments, bacteria with sufficiently high 195 

swimming speeds (>30 μm s-1) can avoid capture by protozoan predators, despite meeting 196 

them more often at high speeds74. Indeed, motility can be beneficial even if a bacterium cannot 197 

‘outrun’ a threat: Bdellovibrio predators swim approximately twice as fast as V. cholerae prey 198 

cells75, but the drag forces generated by prey motility impede predator attachment66. However, 199 

motility is not always a good defence: many phages bind to motility systems as part of their 200 

infection process76, and movement can also spread phage within bacterial groups77. 201 

 202 

[H2] Multicellular defences 203 

[H3] Biofilms. Clonal groups of bacteria often work together, collectively enduring threats 204 

which would kill single cells78. The most ubiquitous example of a multicellular defence in 205 



 

 8 

bacteria is the formation of biofilms [G]. Biofilms underlie a range of chronic infections, and 206 

often form in response to antibiotics and competition from other strains79–81. They can render 207 

bacteria extremely hard to kill, for multiple reasons. Diffusion limitation of solutes, such as 208 

oxygen or nutrients, means that many biofilms contain large numbers of slow-growing or 209 

dormant cells, which are more tolerant of toxins that target cell growth and division machinery 210 

than their fast-growing counterparts82. The outer regions of a biofilm can also protect cells 211 

deeper inside, collectively absorbing83 and degrading84 toxins and limiting their penetration 212 

into the community. Cells in biofilms also produce a slimy matrix of polysaccharides, proteins, 213 

DNA and other compounds: these surround cells and create an additional physical barrier that 214 

can inhibit the passage of antibiotics85, block T6SS attacks62,78 and screen cells from phages61 215 

and predators86. Matrix production can also function as an offensive strategy, which enables 216 

bacteria within the biofilm to spread out and smother competitors87. Matrix-trapped phage can 217 

even become weapons, protecting a biofilm from invasion by competing bacteria88. 218 

 219 

[H3] Phenotypic heterogeneity. Another collective defence [G] strategy displayed by bacteria 220 

is to maintain standing population variability in phenotype (for example, growth phase), such 221 

that not all individuals fare equally badly when conditions deteriorate. Such phenotypic 222 

heterogeneity is associated with clinical antibiotic tolerance89, and is also a route through 223 

which bacteria resist  toxins from competitors90. Sources of this variability include the gradients 224 

in nutrients and other solutes discussed above, which commonly occur in biofilms, and can 225 

drive differences in cell physiology across space91. However, phenotypic variation also 226 

emerges in the absence of environmental gradients, via stochastic mechanisms. A key 227 

example of this is the ability of bacteria to switch epigenetically to slow-growing antibiotic-228 

tolerant ‘persister’ states92, or to rapid growth modes that avoid antibiotic accumulation90. An 229 

evolutionary experiment showed that antibiotic treatment can select for E. coli point mutations 230 

that increase the rate of this switching, which results in high levels of multi-drug tolerance93. 231 

This result suggests that production of persister cells represents an evolved defence 232 

mechanism.  233 

 234 

[H3] Counterattacks. Sometimes offence is the best defence — true to this maxim, many 235 

bacterial species launch en-masse counterattacks [G] to eliminate perceived threats10. Of 236 

course, counterattack strategies can be protective at the individual level too: environmental V. 237 

cholerae cells use the T6SS as an anti-grazer defence94, whereas Pseudomonas aeruginosa 238 

cells respond to T6SS-mediated attacks by competitors with spatially coordinated T6SS 239 

firing95,96. However, for many secreted toxins, lethality is strongly dependent on producer cell 240 

density97,98, making counterattacks more effective when undertaken collectively99. Some 241 

bacteria regulate toxin counterattacks via autoinduction: when toxin concentration and 242 
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production are connected in a positive feedback loop, a minor aggression may be met with 243 

disproportionate retaliation83,100. In some cases, mass-counterattacks lead to runaway conflict 244 

escalation and even mutual destruction100,101. 245 

 246 

[H3] Suicide. Saving nearby clonemates via self-sacrifice is another striking form of defence 247 

shown by bacteria. Active cell suicide is both collective and cooperative by definition, as it kills 248 

the individual while benefiting neighbouring cells. Many bacteria protect their kin from the 249 

spread of a phage infection using a strategy called abortive infection102, whereby an infected 250 

cell pre-emptively triggers its own lysis, or growth arrest, before phage particle assembly is 251 

completed, thereby sparing kin from subsequent infection. Multiple anti-phage defences, 252 

including bacterial gasdermins103, the CBASS system104, and certain toxin–antitoxin105 and 253 

CRISPR systems106, function in this way; other recent discoveries (for example, RADAR107, 254 

Theoris108 and Zorya109 systems) may behave likewise. Interestingly, cell suicide is also at the 255 

heart of some striking examples of counterattack: colicin toxins produced by E. coli are too 256 

large to pass through standard secretion apparatus, necessitating destructive cell lysis for 257 

their release. Other large protein weapons, such as eCISs (extracellular contractile injection 258 

systems)110 and R tailocins14, are similarly constrained. However, it was shown that only E. 259 

coli cells that have already sustained lethal damage undergo the lytic toxin release pathway, 260 

which reduces the effective costs of suicide111. The result can be a massive counterattack by 261 

the doomed cells, paralleling suicidal stinging by honeybees. 262 

 263 

[H1] Competition sensing and defence regulation 264 

Bacteria use some defensive structures by default; for example, the outer membrane is a 265 

permanent protective feature of Gram-negative bacteria59. However, many defences are not 266 

fixed and are instead plastic responses [G] to perceived threats. These responses are 267 

distinct from evolutionary responses (population changes in genotype), which we discuss in 268 

the next section. Critical to using plastic defences is the ability to infer that a threat is present 269 

or likely to occur, and bacteria use a range of information sources (cues) to achieve this112 270 

when acclimating to new and hostile environments (Figure 3).  271 

 272 

[H2] Bacteria sense attacks through direct and indirect means. 273 

First, many bacteria regulate defences by sensing attack signatures; that is, cues that result 274 

directly from a biotic threat. Physiological stress is a primary indicator that a focal bacterium 275 

could be under attack, and bacteria detect stress using a wide range of stress responses [G] 276 
79,113. These regulatory networks respond to diverse forms of stress, of both biotic and abiotic 277 

origins. However, there is strong evidence that bacteria differentiate between different stress 278 

cues, deploying anti-competitor defences only in response to stressors that are likely to stem 279 
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from a biotic threat (Figure 3). This behaviour is known as competition sensing [G] 79, and 280 

is thought to regulate a wide range of defences. The clearest evidence for competition sensing 281 

comes from the upregulation of antibacterial toxins, because in that case one can infer that 282 

the likely function of the response is to cope with competitors. For other defences, such as 283 

DNA repair systems, it is more challenging to tell if the response evolved primarily due to biotic 284 

or abiotic stressors. However, multiple of the major stress responses are known to be activated 285 

by biotic threats, which is consistent with their use in competition sensing41,81. 286 

 287 

Antibacterial weapons often target vital structures such as the cell envelope or chromosome 288 

(Figure 1). Damage to these components, sensed via specific stress response pathways113, 289 

is frequently used to regulate counter-attacks and structure-specific repair pathways79. As 290 

cellular damage often results in the production of reactive oxygen species41, many bacteria 291 

also use oxidative stress as a cue to produce toxins79,114. General stress responses can also 292 

be used to regulate defences: when attacked by T6SS-armed competitors, Salmonella 293 

enterica serovar Typhimurium activates various damage responses, including the general 294 

stress response, to induce biofilm formation and efflux pump expression81. In some cases, 295 

cellular perturbation is sensed without a canonical stress response: P. aeruginosa bacteria 296 

directly sense oncoming T6SS attacks through the resulting perturbations to its membranes, 297 

likely via the TagQRST pathway95. By sensing the specific location of these strikes, defenders 298 

gain valuable information on the position of the attacker cells, helping them to more effectively 299 

counter-attack with their own T6SS weaponry115. There is also evidence that competition 300 

sensing by P. aeruginosa is induced by the cytotoxins of Staphylococcus aureus, which is a 301 

key ecological competitor during infections116.  302 

 303 

Competition sensing, therefore, enables bacteria to infer the presence of competitors, and the 304 

efficient activation of defences and counter-attacks. There is growing evidence that stress 305 

responses can play analogous roles in sensing and responding to cell damage stemming from 306 

other biotic threats. Envelope stress responses are frequently triggered during phage 307 

infection: filamentous phages compromise E. coli membrane integrity during chronic infection, 308 

triggering the so-called ‘phage shock’ cascade, and activating membrane repair pathways117. 309 

Likewise, lytic phages stimulate phage shock proteins in Lactococcus lactis, which responds 310 

by altering its metabolism to restore loss of proton-motive force118. Certain toxin–antitoxin 311 

systems sense phage infection via canonical stress responses, or via transcriptional changes 312 

caused by infection119. In a similar vein, cellular damage can warn of predator activity. 313 

Tetrahymena ciliates engulf bacteria to feed on them, but this can activate the bacterial SOS 314 

response. When Tetrahymena eat enterohemorrhagic E. coli, the result is that the engulfed 315 

bacteria retaliate by suicidally releasing shiga toxins, killing the predator from within, and 316 
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protecting kin cells from the predator120. Shiga toxins are the causative agents of 317 

enterohemorrhagic diarrhoea121, underscoring that anti-predator defences can be linked to 318 

human disease.  319 

 320 

Cell damage is a reliable indicator of an urgent threat79,112, but by the time a cell detects injury, 321 

it may already be too late for defensive action. For instance, E. coli cell invasion by Bdellovibrio 322 

predators prompts host upregulation of genes associated with osmotic, envelope and general 323 

stress responses, but these do not seem to confer any resistance to the predator122. In such 324 

cases, detecting alternative attack signatures, such as chemical cues that precede an attack, 325 

may provide an important alternative to damage sensing79. Through ‘danger sensing [G] ’123, 326 

bacteria intercept chemical signatures of the attacker: for example, peptidoglycan 327 

sheddings124, or signal molecules (Figure 3). Some bacteria express receptors for quorum 328 

sensing molecules that they themselves do not produce125, which enables them to ‘eavesdrop’ 329 

on the communications among competitor strains and thereby monitor their density79,123. 330 

Similarly, the perception of predator-associated chemical cues is widespread in planktonic 331 

microorganisms126; for instance, Pseudomonas fluorescens responds to diffusible cues 332 

produced by protozoan predators by producing membrane-disrupting biosurfactants that are 333 

toxic to protozoa127. Intriguingly, some bacteria are even capable of directly sensing attackers’ 334 

toxins (for example,  antimicrobial peptides123 and -lactam antibiotics128), and responding 335 

before the toxin takes its effect. In the sense that genetic material injected by phages is itself 336 

a harmful agent, anti-phage systems that detect foreign DNA (for example, CRISPR, 337 

restriction–modification and DISARM systems) fall into this sensing category.  338 

 339 

When attacked, bacteria can also forewarn their kin of danger, priming defences in advance 340 

of physiological harm. When attacked by phage or antibiotics, P. aeruginosa cells produce a 341 

quinolone signal that repels other clonemates from the affected area129. Similarly: in response 342 

to neighbour infection, non-infected Bacillus subtilis cells can modify phage binding sites (cell 343 

wall teichoic acid polymers) on their surface, adding analyl groups that hinder phage 344 

binding130. Cell lysate factors, such as DNA and other mislocalised cytoplasmic molecules131, 345 

often serve as danger cues for bacteria, eliciting toxin and exopolysaccharide production in 346 

kin cells. These cues are sensed via transduction pathways (for example, the Gac–Rsm and 347 

PhoPQ pathways in P. aeruginosa and other Gammaproteobacteria) that are often 348 

independent from classic response pathways131. As discussed, these enable cells to raise 349 

defences and launch counterattacks before they enter stress states123,132. 350 

 351 

[H2] Bacteria associate nutrient depletion with competition. 352 
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Short of direct threat, certain environmental changes can also imply the presence of 353 

competing organisms. Nutrient starvation may indicate exploitation competition [G] , driven 354 

by high numbers of clonemates, competitors or both112 (Figure 3). Consistent with their use in 355 

competition sensing, bacteria use starvation stress pathways to regulate the production of 356 

anti-competitor toxins79. For example, the stringent response is a ubiquitous signalling 357 

cascade that is triggered by limitations to key resources, such as amino-acids, fatty acids, 358 

inorganic phosphate or iron133. As well as triggering cell cycle arrest and the cessation of 359 

growth, the stringent response upregulates the production of toxins across diverse bacterial 360 

species134–136. 361 

 362 

[H2] Bacteria use kin density to forecast threats. 363 

A third important information source for defence regulation is quorum sensing [G] 112,137,138. 364 

By monitoring the concentration of density cues (both canonical quorum sensing autoinducers 365 

and other ‘quorum-related’ cues79; for example, peptidoglycan fragments124) bacteria can 366 

sense high kin densities and prepare for an expected attack (Figure 3). Recent work 367 

demonstrated that CRISPR–Cas activity and adaptation is regulated via quorum sensing, such 368 

that antiviral defences are primed when bacteria are at high density, and most vulnerable to 369 

virulent phage139. Density sensing also informs whether bacterial groups have sufficient 370 

members for collective defences to be effective. Biofilm defences are frequently regulated 371 

using quorum sensing137,140; various bacterial species also use quorum sensing to control 372 

collective counterattacks, using antibiotics141, bacteriocins142 or T6SSs143. For instance, when 373 

at high cell density, P. aeruginosa produces the phenazine pyocyanin in a quorum sensing-374 

dependent manner. Among a wealth of other potential functions, pyocyanin production was 375 

recently found to stimulate upregulation of multiple efflux pump systems, which means cells 376 

are better defended against a range of antibiotics144.  377 

 378 

[H1] Evolution of defences 379 

How did bacteria acquire their impressive defensive functions? At a fundamental level, the 380 

evolution of biological functions (‘adaptation’ in evolutionary biology) is driven by natural 381 

selection acting on variation145. In bacteria, two key processes generate the variation upon 382 

which natural selection depends. Mutation, stemming from DNA replication error or 383 

chromosomal rearrangements146, generates raw genetic sequence variation, and horizontal 384 

gene transfer (HGT) [G] adds further variation by mixing alleles and genes among different 385 

cells147. Phages, competitors and predators can then generate natural selection and favour 386 

bacterial variants with improved defences. In this section, we discuss how these processes 387 

enable the evolution of defensive traits, before examining how this impacts bacterial genomes 388 

(Figure 4). 389 
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 390 

[H2] Evolutionary processes. 391 

[H3] Mutations and other genetic changes. Compared with larger organisms, mutational 392 

variation often arises quickly in bacteria because of their short generation times and large 393 

population sizes148, which can enable the rapid emergence of protective phenotypes. Simple 394 

point mutations can drastically reduce toxin-binding affinities of their targets, generating 395 

resistance to antibiotics149, bacteriocins150 and phages151 (Figure 4a). Minor changes in 396 

regulatory genes can also provide protection against harmful agents. For example, inactivation 397 

of a repressor gene (ramR) in S. Typhimurium results in over-expression of the AcrAB efflux 398 

pump, conferring resistance to diverse quinolones, phenicol, and tetracycline antibiotics152. 399 

Likewise, alterations to regulators of lipopolysaccharide153 and cell wall synthesis154 have been 400 

shown to generate resistance to bacteriocins, antibiotics and phages. Mutation rates can also 401 

increase in times of stress155, or at low cell density156, potentially accelerating defensive 402 

adaptation157. 403 

 404 

[H3] Horizontal gene transfer. Bacteria can also acquire new defensive genes from other 405 

microorganisms via conjugation, natural transformation and transduction158 (Figure 4a). These 406 

HGT events have a central role in bacterial evolution159, and seem to be particularly important 407 

for defence evolution160. Importantly, HGT can provide a suite of new genes to a recipient cell 408 

in a single step159, which confers a complex protective phenotype much faster than would be 409 

possible through mutation alone. In parallel, HGT can rapidly generate novel and beneficial 410 

combinations of alleles via recombination161. HGT has facilitated the spread of defences 411 

against bacterial, viral and eukaryotic threats. Resistance to antibiotics is often conferred by 412 

plasmids162 and integrative conjugative elements163. Other antibacterial weapons and their 413 

cognate defences, including bacteriocins19, T6SS51 and Cdi164 systems, are frequently 414 

encoded on mobile elements, such that bacteria can gain both resistance and potentially 415 

counterattack capability through HGT. Many phage protection systems are also extensively 416 

shared via HGT165–167. Though less well-documented, anti-predator toxins can be acquired in 417 

the same manner: the biosynthetic operon for the toxin pyrrolnitrin seems to be mobile168, and 418 

confers protection against protozoa to various Gram-negative bacteria169.  419 

 420 

[H3] Natural selection and genetic drift. Natural selection can act on the genetic variation 421 

generated by mutation and HGT whenever a threat affects survival and reproduction, and so 422 

bacterial fitness. In some situations, low population sizes can introduce stochastic changes in 423 

the frequency of a given genotype, which can limit defence evolution via genetic drift and 424 

related processes170. Nevertheless, the potential strength of natural selection for bacterial 425 

defences is made clear by evolutionary experiments with competitors, phage and predators, 426 
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where the rapid evolution of defences has been observed154,171–173. This potential is further 427 

underlined by the current antimicrobial resistance crisis: the widespread use of antimicrobials 428 

by humans has created concerted selection for drug-resistant bacteria, making previously 429 

treatable infections deadly.  430 

 431 

However, even when a particular defence is under strong natural selection, it may not lead to 432 

the fixation of a given genotype. The utility of some defensive genes can diminish as they 433 

become more common (frequency-dependent selection172). For example, variability in  O-434 

antigen composition of a pathogen is thought to be driven by frequency-dependent selection 435 

for evasion of host immune cells174, intestinal protozoa175 or phages176, as rarer genotypes can 436 

have an advantage if they are less likely to be recognised. In other cases, pleiotropy [G] can 437 

limit, or enhance, selection for defensive attributes177. Many defensive adaptations have 438 

secondary phenotypic effects that are subject to evolutionary trade-offs (antagonistic 439 

pleiotropy). For instance, bacteria that gain resistance to a lytic phage might suffer enhanced 440 

susceptibility to another172. Alternatively, resistance to one threat might also enhance 441 

protection to another (synergistic pleiotropy, also referred to as a ‘trade-up’)177,178. Moreover, 442 

even strong trade-offs can be insufficient to drive the loss of a defensive adaptation. 443 

Compensatory mutations can substantially reduce the fitness costs of defensive genes, which 444 

enables them to persist even in the absence of a threat158. This has worrying consequences 445 

for the long-term maintenance of antibiotic resistance genes: once a bacterium gains 446 

resistance, it may not easily lose it179. 447 

 448 

[H2] Evolutionary consequences. 449 

[H3] Genomic organisation of defences. The evolution of defences can have major impacts 450 

on bacterial genomes. Across diverse environments and lifestyles, genomes are replete with 451 

genes that encode defensive functions180. These genes are often clustered together in 452 

specialised repositories (Figure 4b–d), each encoding protection against a particular class of 453 

threat. Perhaps best-known are bacterial ‘defence islands’: these mosaic-like chromosomal 454 

regions are enriched in diverse anti-viral defences, and have been the source of multiple 455 

recent defence system discoveries54,58,109. In addition to antiviral genes, bacteria retain 456 

clusters of toxin immunity and detoxification genes for use during anti-competitor warfare. 457 

Examples include the recently-discovered antagonism resistance (arc1-3) clusters in P. 458 

aeruginosa132, and the orphan immunity gene libraries (dubbed ‘acquired interbacterial 459 

defence’ (AID) arrays) widely found among human gut Bacteroides species50,51 (Figure 4b).  460 

 461 

Some clusters acquire new defensive genes in a highly ordered manner. Many of the AID 462 

immunity genes seem to be actively captured via recombinases, which enables gut bacteria 463 
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to expand into niches occupied by aggressive competitors51. CRISPR spacer libraries can 464 

likewise be regarded as gene capture systems, which generate arrays of phage DNA 465 

templates that guard against future infections56 (Figure 4c). Integrons, which are ancient DNA-466 

scavenging machines that capture mobile gene cassettes181, commonly confer antibiotic 467 

resistance, and are another example of active defence acquisition (Figure 4d). Multi-468 

resistance integrons (MRIs) that contain up to eight resistance cassettes have been 469 

reported182, and super-integrons with >200 cassettes are also known183. Integron gene 470 

expression is triggered by cellular stress, and bacteria also seem to alter the expression of 471 

different integron genes by shuffling their order184.  472 

 473 

Some defences are always found in a given species (that is; they form part of its core genome). 474 

Core defences include the outer membrane of Gram-negative bacteria (thought to be an 475 

adaptation to ancient antibiotic warfare59), some restriction–modification systems185, and 476 

multi-drug efflux pumps186. However, many defence genes are found in the accessory 477 

genome, and are a major contributor to intraspecific variation among bacteria187–189. Indeed, 478 

the content of the accessory genome can be overwhelming defensive160: in certain marine 479 

bacteria, anti-phage systems represent >90% of all accessory genes190. 480 

 481 

[H3] The impact of selfish genes. The beneficial acquisition of new defensive capacities 482 

through HGT can occur as a by-product of the infectious actions of mobile genetic elements159. 483 

This can blur the lines of what can be considered a ‘bacterial’ defensive adaptation: a mobile 484 

element may be the primary recipient of the benefit of the defensive system167. Consider 485 

superinfection exclusion, whereby phage infection of a bacterium prevents similar phages 486 

from infecting the same cell. While this may benefit the bacterium, superinfection exclusion 487 

presumably evolved due to benefits to the infecting phage, which then avoids competing with 488 

other phages for the hosts’ resources191. In a similar vein: some anti-phage or anti-plasmid 489 

systems may have first evolved not in bacterial chromosomes, but in mobile genetic elements, 490 

either as adaptations to fend off competing genetic parasites (using, for example, CRISPR 491 

and restriction-modification systems167), or as systems to ensure their own maintenance 492 

during host replication (for instance, some toxin–antitoxin modules192). Nevertheless, even if 493 

defence genes did not originate as bacterial adaptations, bacteria may still benefit from inter-494 

parasite conflict, or come to integrate and exploit selfish genes for their own ends. For 495 

example, CRISPR–Cas systems are often now part of the bacterial chromosome, and are no 496 

longer under the direct control of mobile elements193. 497 

 498 

[H1] Overcoming bacterial defences  499 
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Bacterial defences have the potential to coevolve with the offensive strategies of their 500 

aggressors. A new defence mechanism can generate natural selection on attackers for 501 

countermeasures [G] , examples of which are shown in Figure 5. Countermeasures may 502 

precipitate an evolutionary arms race, whereby attackers and defenders become 503 

progressively better-adapted to defeat each other194. However, such escalation is only one 504 

possibility; coevolutionary dynamics can also be cyclical, which may facilitate the coexistence 505 

of many different types of attack and defence strategy195. Coevolution can also be short-lived 506 

if antagonists diverge to the point of non-interaction: for instance, if a phage switches host 507 

preference away from a focal bacterium196. Alternatively, a defender might simply develop 508 

such a strong defence that an attacker is tolerated36 or driven to extinction197. Whichever the 509 

trajectory it takes, the coevolution of attack and defence, measure and countermeasure, 510 

seems to be a major driver of bacterial diversity198. 511 

 512 

[H2] Bacterial competitor countermeasures. 513 

Consistent with the prevalence of inter-bacterial warfare2,4,5, bacteria have numerous 514 

adaptations for thwarting the defences of competitors. One solution to the evolution of 515 

resistance is for an attacker to innovate new toxins; this selects for attackers with novel toxins, 516 

driving diversification of bacterial weapons199,200. Resistant targets may simply select for 517 

attackers that produce more toxin173, or for those that secrete cocktails of multiple toxins 518 

(Figure 5a). Of 102 bacteriocin-producing faecal E. coli isolates surveyed in a study in 2006, 519 

the majority (58%) produced two or more different bacteriocins201; similarly, P. aeruginosa 520 

releases multiple tailocins and other bacteriocins simultaneously202. A diverse cocktail of 521 

toxins may also maintain lethal function over a wider range of environmental conditions, and 522 

can benefit from synergistic interactions between toxins21. Mirroring antibiotic combination 523 

therapy, toxin cocktails may also make resistance less likely to evolve in the first place203 (Box 524 

1). 525 

 526 

A more sophisticated countermeasure is to directly inhibit a defensive mechanism, thereby 527 

negating resistance to a particular attack (Figure 5a). The adjuvant Clavulanic acid, which 528 

inhibits -lactamase enzymes, functions in this way: the soil bacterium Streptomyces 529 

clavuligerus co-regulates clavulanic acid production with the synthesis of the antibiotic 530 

cephamycin C, to destroy -lactamase-protected competitors204. A related approach is to 531 

deploy efflux pump inhibitors205 that limit the ability of target bacteria to remove toxins from the 532 

cell – another adjuvant countermeasure used in combination with antibiotic therapy206. 533 

 534 

Attackers have also evolved ways of surmounting barriers to cell entry (Figure 5b). For 535 

example, some bacteria produce ‘Trojan Horse’ toxins called sideromycins207, which comprise 536 
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an antibiotic covalently attached to a siderophore molecule. Siderophores are used by cells to 537 

scavenge iron and are imported via dedicated receptors, which enables sideromycins to enter 538 

the cell and deliver their antibiotic cargo via the same route208. Some bacterial weapons take 539 

a more direct route to toxin translocation: the bacterial T6SS physically punctures target cells, 540 

conveying toxins into the target cell without the need to rely upon specific surface receptors 541 

or transporter machinery. This direct approach to toxin delivery affords the T6SS a very broad 542 

range of target organisms, spanning both Gram-negative and Gram-positive bacteria, fungal 543 

cells and other eukaryotes209. Finally, attackers can thwart collective defences (Figure 5c), 544 

using proteases and surfactants to disperse biofilm-dwelling bacteria210, and quorum-545 

quenching molecules to disrupt intercellular signalling and collective responses, including 546 

biofilm formation211. Additionally, attackers can avoid mass retaliation by deploying ‘silent’ 547 

toxins that are poorly detected by stress responses, thereby suppressing alarm signalling101. 548 

 549 

[H2] Phage and predator countermeasures. 550 

Phages have a well-described set of counter-adaptions that enable them to bypass bacterial 551 

defences212. These adaptations include counter-modification of phage tail fibres, enabling 552 

binding of modified cell surface receptors213, and epigenetic modification of phage DNA to 553 

mimic the host DNA, thereby escaping degradation via restriction–modification systems214. 554 

Similarly, defence against restriction (Dar) proteins, injected into hosts by coliphage P1, mask 555 

the recognition sites used by restriction enzymes215. Some phages encode anti-CRISPR 556 

proteins that bind to and inhibit CRISPR–Cas complexes216; others boast tail sections with 557 

hydrolytic domains, which enables them to penetrate the thick polysaccharide capsules of host 558 

cells217. Phages also have evolved ways of bypassing bacterial abortive infection 559 

mechanisms, thus preventing hosts from interrupting construction of progeny phage102. For 560 

example, coliphage T4 encodes Dmd, an antitoxin ‘mimic’ that disarms suicide toxins during 561 

infection218. Finally, paralleling bacterial quorum sensing, some phages use their own 562 

‘arbitrium’ peptide signal to assess local phage density, transitioning from lytic to lysogenic 563 

lifestyles when uninfected hosts become scarce219. While not a counter-measure per se, this 564 

example underlines the sophistication of the responses of phages to their hosts. Meanwhile: 565 

though less well-studied, predator adaptations to bacterial defences are also known220. These 566 

include countermeasures to overcome toxin production by prey: mirroring P. aeruginosa, the 567 

free-living amoeba Acanthamoeba castellanii has modified cytochrome oxidases, which 568 

enable it to tolerate prey-produced cyanide169. Some eukaryote predators may also be able to 569 

suppress toxin production by prey169, including via quorum quenching mechanisms221. 570 

 571 

[H1] Conclusion 572 

 573 
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Bacteria have evolved a wide range of defensive adaptations that can make them difficult to 574 

kill. Knowledge of these defences has already driven technological revolutions in microbiology 575 

and beyond, providing researchers with new tools (restriction enzymes53, CRISPR gene-576 

editing56,222 and DNAi/RNAi silencing58) and therapeutic approaches (novel antivirals223, 577 

antimicrobials224 and biotherapeutics225). In addition to these applications, defence systems 578 

are also central to understanding bacterial biology: they are deeply integrated into their core 579 

regulatory networks79,81,123, and can determine which species will persist in a given 580 

environment4,51,94,172. Some defences protect only against a particular threat, but many are 581 

general and protect against a range of attacks144,154,226. Still others alter bacterial 582 

virulence120,121,186, with the potential to exacerbate disease transmission and severity.  583 

  584 

These are indeed exciting times for the study of bacterial defences. Spearheaded by 585 

bioinformatic165 and high-throughput227 approaches, the staggering diversity of bacteria has 586 

become clear and with this, the myriad ways they can defend themselves. The past 5 years 587 

alone have seen an explosion in the number of novel anti-phage systems identified in bacterial 588 

defence islands104,109,228 (>50 since 2018), with many more likely awaiting discovery. The 589 

diversity and spread of these anti-phage systems highlights how little, in comparison, we know 590 

of anti-competitor and anti-predator defences. What might these same approaches teach us 591 

about bacterial adaptations against ever-present predator or competitor threats? Early signs 592 

are promising: as with the bountiful phage defence islands, anti-competitor defence genes 593 

also form clusters in bacterial genomes51,132,184; mining these might therefore reveal novel 594 

routes through which bacteria evade rivals’ attacks.  595 

 596 

As well as examining survival mechanisms, we must understand their broader impact within 597 

microbial communities, and the conditions and pathways that trigger them. A major current 598 

goal is to control bacteria and their communities, both ecologically and evolutionarily3,229,230. 599 

Replacing a pathogen in a community with a biotherapeutic strain231, for example, will require 600 

us to understand both the attack and defence strategies of bacteria5,10. And whenever we 601 

attempt to eliminate bacteria, whether via antibiotics or one of the emerging alternatives, there 602 

is the potential for evolution9. As for antibiotic resistance evolution, therefore, the study of how 603 

bacterial defences evolve in nature and in the clinic is an important topic for the future.  604 
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 1224 

 1225 
Figure 1. Bacteria face diverse threats from competitors, viruses and predators. Most 1226 
attacks target select core cellular processes and functions of the bacterial target cell. Coloured 1227 
squares indicate whether a given threat type typically acts on a particular target. Bacterial 1228 
competitors antagonise a target bacterium via diverse mechanisms, including both contact-1229 
dependent weaponry (the type VI secretion system (T6SS); Cdi effectors) and diffusible 1230 
weaponry (small molecules, peptide toxins, and tailocins). The majority of clinical antibiotics 1231 
are also derived from bacteria and other microorganisms. Following infection of a bacterial 1232 
cell, phages attack cell walls and membranes to release their progeny via cell lysis. Some 1233 
bacterial predators, such as Bdellovibrio species and like organisms (BALOs), invade the host 1234 
cell periplasm, injecting toxins that digest various cytoplasmic components. Many eukaryotic 1235 
predators engulf and digest target bacteria whole in phagosome compartments.  1236 
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 1237 
Figure 2. Bacteria have evolved multiple lines of defence against biotic threats. At both 1238 
the individual and collective level, bacteria draw upon a plethora of defensive adaptations to 1239 
escape harm. Defences are arranged according to the spatial scale at which they operate. (a) 1240 
Molecular level: attacks by competitors, phages and predators are mediated by harmful agents 1241 
(for example, toxins, enzymes and genetic elements), which disrupt cellular functions by 1242 
interacting with diverse targets. Bacteria can mitigate disruption at a molecular level, by 1243 
altering the target or compensating for its disruption, or by destroying or binding the harmful 1244 
agent. (b) Cellular level: macromolecular barriers, including cell membranes, S-layers, 1245 
lipopolysaccharide (LPS) or capsules, prevent harmful agents from entering a bacterial cell. 1246 
Efflux pumps remove harmful molecules that overcome barriers, and motile bacteria can 1247 
escape harmful environments by repositioning themselves. Secreted membrane vesicles can 1248 
bind and inactivate toxins and phages. Stress responses and other regulatory pathways 1249 
enable these defences to be activated in response to specific or general threat cues. (c) 1250 
Multicellular level: bacteria also create collective barriers (production of extracellular polymeric 1251 
substances (EPS); biofilm formation) or resistant subpopulations (phenotypic heterogeneity), 1252 
launch en-masse counterattacks, and, in some circumstances (e.g. abortive infection), commit 1253 
suicide to protect kin cells.  1254 
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 1255 
Figure 3. Bacteria mount defences in response to diverse cues. Examples are ordered 1256 
according to the proximity of potential harm, and grouped according to type. Some cues 1257 
emanate from direct harm to a focal cell (harm from abiotic stressors; nutrient depletion or 1258 
attacks by competitors); bacteria identify and distinguish these cues via competition sensing, 1259 
and respond defensively. Bacteria can also respond to attacks before they themselves are 1260 
harmed, activating defences in response to danger cues (kin lysate, non-kin toxins, signals 1261 
and other molecular attacker signatures). Bacteria also use autoinducer-mediated quorum 1262 
sensing, and other density-sensing mechanisms, to raise defences in anticipation of attacks.  1263 
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 1264 
Figure 4: Bacteria innovate, acquire and accumulate defences. (a) Random mutations 1265 
alter bacterial susceptibility to threats (for example, via modification of target structures), 1266 
occasionally conferring survival benefits. Bacteria may also acquire new defence genes via 1267 
horizontal gene transfer: conjugation, natural transformation and phage transduction. (b) 1268 
Bacteria accumulate toxin-immunity pairs and orphan immunity genes in their genomes, 1269 
protecting them against the cognate toxins of both kin and competitor cells.  (c) CRISPR–Cas 1270 
systems remember past infections by storing phage and plasmid DNA samples in spacer 1271 
libraries. (d) Gene cassettes encoding antibiotic resistance and other defensive functions are 1272 
captured by integrons via site-specific recombination. Stress cues (lightning bolt) stimulate 1273 
expression of captured genes; stress-induced integrases also shuffle cassettes, resulting in 1274 
diverse gene expression profiles within a population.  1275 
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 1276 
Figure 5: Counter-adaptations to bacterial defences by competitors, phage and 1277 
predators. (a) Attackers prevent degradation of their toxins (or DNA, in the case of phages) 1278 
using adjuvants to inhibit defence enzyme function, or by modifying toxin structure. Toxin 1279 
cocktails may offer toxin synergy and delay resistance evolution. (b) Competitors bypass the 1280 
membranes of their target cells using toxin injection systems (the type VI secretion system 1281 
(T6SS)) or by disguising toxins as useful substrates (‘Trojan horses’). Some toxins kill without 1282 
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triggering key stress responses, suppressing defensive behaviour (‘Alarm suppression’). 1283 
Efflux pump inhibitors prevent expulsion of absorbed molecular toxins. Phages penetrate cell 1284 
capsules using tail-mounted hydrolases, and adapt to alterations in host receptor structure via 1285 
counter-modification or stochastic expression of receptor-binding proteins. (c) Competitors 1286 
degrade biofilms using dispersants and matrix hydrolases, and inhibit response coordination 1287 
using quorum quenching. Phages override collective immunity by bypassing abortive infection 1288 
mechanisms, using hijacked or surrogate immunity proteins to disarm suicide systems. 1289 
 1290 

 1291 

Box 1. Clinical implications of ancient bacterial defences 1292 

The study of bacterial defences can inform current and future antibacterial therapeutics. 1293 

 1294 

[bH1] Origins of drug resistance. Understanding where resistance genes come from can help 1295 

to predict and restrict antibiotic resistance proliferation232. Environmental reservoirs harbour 1296 

many old and diverse resistance genes233. For example, the methicillin-resistance genes 1297 

found in methicillin-resistant Staphylococcus aureus (MRSA) seem to have first emerged in 1298 

hedgehog-associated Staphylococcus  aureus, as a protection against fungal -lactam 1299 

antibiotics39. More generally, toxin-mediated competition among environmental bacteria is 1300 

widespread234, and, along with phages and predators41,61, can select for defences that 1301 

increase virulence120,121,186 or protect bacteria against multiple different threats144,154,226. 1302 

Studying and surveying bacterial defences in environments with strong competition and 1303 

conflict, therefore, may help to predict which resistance mechanisms are most likely to arise.  1304 

 1305 

[bH1] New strategies against resistance. Many bacteria use antimicrobials to eliminate 1306 

competitors10, which suggests they are often able to overcome the defences of their targets. 1307 

We might look to bacteria, therefore, for strategies that help to overcome drug resistance. 1308 

Evidence supporting this idea comes from the use of adjuvant therapy: Streptomyces 1309 

clavuligerus produces clavulanic acid, which inhibits -lactamase-based resistance 1310 

mechanisms204. This strategy forms the basis for Augmentin, a therapeutic that uses both a 1311 

-lactam antibiotic and clavulanic acid to combat -lactamase-based resistance235. Another 1312 

feature of bacterial attack strategies is that they commonly use multiple different toxins against 1313 

competitors10,201,236. This contrasts with classic mono-therapy, which remains the clinical norm, 1314 

but draws comparisons to a growing number of strategies that combine multiple antibiotics 1315 

with the goal of limiting resistance evolution237–239. In addition, many bacterial toxins are 1316 

polymorphic, with a modular structure that enables new variants to be readily innovated as 1317 

resistance emerges240. Adopting modular designs when developing new antimicrobials could 1318 

enable us to exploit this adaptability241.  1319 

 1320 
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[bH1] Targeting defences. The defensive responses of bacteria79,81,123 can increase virulence 1321 

and protect against antimicrobial treatment, thereby exacerbating disease81,242,243. Directly 1322 

targeting defensive mechanisms, therefore, has the potential to greatly improve treatment 1323 

efficacy when performed in combination with antibiotics or other bactericidal treatments. 1324 

Diverse bacteria respond to antibiotic treatment by forming biofilms, which are notoriously 1325 

difficult to treat80. However, physical disruption of biofilm structures can increase bacterial 1326 

exposure to antibiotics, sensitising recalcitrant infections244. Targeting defences also raises 1327 

the possibility of treatments with a minimised risk of resistance evolution. Biofilm inhibitors can 1328 

enhance antibiotic susceptibility while minimising resistance to the biofilm inhibitor, because 1329 

resistant genotypes pay the fitness costs of EPS production245. A related defence-targeting 1330 

strategy is to introduce strains of bacteria that do not contribute to collective defences (‘cheat 1331 

therapy’)246,247. Where cheater strains can outcompete the original strain, they have the 1332 

potential to undermine defences and improve treatment outcomes without strong natural 1333 

selection for resistance evolution. 1334 

 1335 

[bH1] Exploiting novel antimicrobials. Phages248, predators249 and competing bacteria5,224 all 1336 

have potential as alternative therapeutics for bacterial infections225. As we have discussed, 1337 

however, bacteria have already evolved many defences against these threats. As with 1338 

antibiotics, therefore, the rapid emergence of resistance in clinical settings seems to be 1339 

likely9,250. But these alternative antimicrobials share a potential major advantage over 1340 

antibiotics: being biological, they have the potential to coevolve with their targets, such that 1341 

resistance in a target is circumvented by countermeasures in the attacker. Although this 1342 

outcome is far from guaranteed (it requires, amongst other things, that the survival of the 1343 

therapeutic depends on defeating the target pathogen), it raises the possibility that evolution 1344 

can be directed to overcome pathogen resistance as it emerges. Moreover, by combining 1345 

therapies, one can exert contrasting selective pressures on pathogens, which may limit 1346 

resistance evolution more than via antibiotic therapy alone177,251,252.  1347 
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Glossary of terms 1348 

 1349 

Competitor 1350 

Another type of bacteria that competes with a focal bacterium for resources. Often this will be 1351 

a genetically similar, but non-identical bacterium (for example, a different strain), as similar 1352 

bacteria are most likely to have overlapping resource needs. Genetically identical organisms 1353 

compete in an ecological sense, but not in an evolutionary sense (as they have the same 1354 

evolutionary interests). In this Review, we use the term in the former sense.  1355 

 1356 

Bacteriophage (phage) 1357 

A virus that infects bacteria. 1358 

 1359 

Predator 1360 

An organism that consumes another for food, killing it in the process.   1361 

 1362 

Defence mechanisms  1363 

Traits that evolved, at least in part, to protect an organism against a threat. This term is often 1364 

used in the context of bacterial defences against viral threats, but in this Review, we expand 1365 

it to encompass protection against competitors and predators. 1366 

 1367 

Biotherapeutic 1368 

Medicine that is derived from (and often incorporating) biological entities. Phages are a 1369 

potential biotherapeutic for treating bacterial infections. 1370 

 1371 

Preadaptations 1372 

Evolutionary adaptation which serves a different purpose from the one for which it first evolved. 1373 

For instance, many modern efflux pumps function to remove antibiotics from bacterial cells, 1374 

but homologous structures likely served different functions (e.g. metabolite export) in ancestral 1375 

strains. 1376 

 1377 

Stressors 1378 

Changes in environmental or physiological conditions that perturb cell homeostasis. 1379 

 1380 

Weaponry 1381 

Cellular systems that evolved, at least in part, to harm other organisms. 1382 

 1383 

Parasitism  1384 
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An evolutionary relationship between two organisms, in which one benefits at the expense of 1385 

the other. In contrast to predators, parasites are generally smaller than and physically 1386 

associated with the organisms they exploit. 1387 

 1388 

Mutualism 1389 

A mutually beneficial evolutionary relationship between two organisms; that is, one in which 1390 

the fitness of the two parties are both improved by the presence of the other. 1391 

 1392 

Agents 1393 

Substances (particularly toxins and injected viral DNA) that, through interaction with targets, 1394 

produce harm to a bacterial cell. 1395 

 1396 

Biofilms 1397 

Densely-packed cell groups that can contain billions or trillions of cells, enveloped by secreted 1398 

extracellular matrix. 1399 

 1400 

Collective defence 1401 

Any defensive behaviour that becomes more effective when many individuals engage in it. 1402 

Collective defences benefit the social partners of a focal bacterium, but do not always evolve 1403 

for this reason.  1404 

 1405 

Counterattacks 1406 

Aggressions in response to aggression (apparent or actual). 1407 

 1408 

Plastic responses 1409 

‘Programmed’ alterations to bacterial phenotype in response to environmental change. 1410 

Plasticity does not result from genetic change (though it may be genetically encoded). 1411 

 1412 

Stress responses 1413 

A set of regulatory pathways found in bacteria, which alter gene expression and cell physiology 1414 

in response to harmful environmental changes and help the bacteria to survive stress. 1415 

 1416 

Competition sensing 1417 

The bacterial behaviour of discerning and responding to stress cues associated with 1418 

competitor activity, often via stress responses. This is often used to regulate defences, 1419 

especially counterattacks. 1420 

 1421 
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Danger sensing 1422 

Conceptually similar to competition sensing, but pertaining to cues other than those resulting 1423 

from direct harm to a focal cell.  1424 

 1425 

Exploitation competition 1426 

Mutually harmful interactions between bacteria, stemming from competition for contested 1427 

resources (for example, space or nutrients). Contrasts with interference competition, where 1428 

harm is inflicted directly via weaponry or other means. 1429 

 1430 

Quorum sensing 1431 

A widespread density-sensing mechanism found in bacteria and other microbes. Bacteria 1432 

probe their effective density by secreting small molecules (autoinducers), which stimulate their 1433 

own production. High autoinducer concentrations then become a proxy for high cell density or 1434 

for restrictive spatial constraints that limit autoinducer diffusion. Quorum sensing is often used 1435 

to regulate costly traits whose benefits depend on collective action.  1436 

 1437 

Horizontal gene transfer (HGT) 1438 

The flow of genetic information between two organisms, other than that which occurs via 1439 

reproduction (vertical gene transfer). 1440 

 1441 

Pleiotropy  1442 

Phenomenon whereby one gene simultaneously affects multiple traits. Through pleiotropy, a 1443 

defensive adaptation may affect the phenotype of a bacterium in unexpected ways (for 1444 

example, reducing its fitness in the absence of a threat).  1445 

  1446 

Table of content: 1447 

In this Review, Smith, Foster and colleagues explore the protective strategies of bacteria, 1448 

including the mechanisms, evolution and clinical implications of these ancient defences. They 1449 

also review the countermeasures that attackers have evolved to overcome bacterial defences.  1450 


