18 research outputs found

    Explicit Renormalization Group for D=2 random bond Ising model with long-range correlated disorder

    Full text link
    We investigate the explicit renormalization group for fermionic field theoretic representation of two-dimensional random bond Ising model with long-range correlated disorder. We show that a new fixed point appears by introducing a long-range correlated disorder. Such as the one has been observed in previous works for the bosonic (ϕ4\phi^4) description. We have calculated the correlation length exponent and the anomalous scaling dimension of fermionic fields at this fixed point. Our results are in agreement with the extended Harris criterion derived by Weinrib and Halperin.Comment: 5 page

    Correlation decay and conformal anomaly in the two-dimensional random-bond Ising ferromagnet

    Full text link
    The two-dimensional random-bond Ising model is numerically studied on long strips by transfer-matrix methods. It is shown that the rate of decay of correlations at criticality, as derived from averages of the two largest Lyapunov exponents plus conformal invariance arguments, differs from that obtained through direct evaluation of correlation functions. The latter is found to be, within error bars, the same as in pure systems. Our results confirm field-theoretical predictions. The conformal anomaly cc is calculated from the leading finite-width correction to the averaged free energy on strips. Estimates thus obtained are consistent with c=1/2c=1/2, the same as for the pure Ising model.Comment: RevTeX 3, 11 pages +2 figures, uuencoded, IF/UFF preprin

    How to remove the boundary in CFT - an operator algebraic procedure

    Get PDF
    The relation between two-dimensional conformal quantum field theories with and without a timelike boundary is explored.Comment: 18 pages, 2 figures. v2: more precise title, reference correcte

    Ising cubes with enhanced surface couplings

    Full text link
    Using Monte Carlo techniques, Ising cubes with ferromagnetic nearest-neighbor interactions and enhanced couplings between surface spins are studied. In particular, at the surface transition, the corner magnetization shows non-universal, coupling-dependent critical behavior in the thermodynamic limit. Results on the critical exponent of the corner magnetization are compared to previous findings on two-dimensional Ising models with three intersecting defect lines.Comment: 4 pages, 2 figures included, submitted to Phys. Rev.

    Order Parameters of the Dilute A Models

    Get PDF
    The free energy and local height probabilities of the dilute A models with broken \Integer_2 symmetry are calculated analytically using inversion and corner transfer matrix methods. These models possess four critical branches. The first two branches provide new realisations of the unitary minimal series and the other two branches give a direct product of this series with an Ising model. We identify the integrable perturbations which move the dilute A models away from the critical limit. Generalised order parameters are defined and their critical exponents extracted. The associated conformal weights are found to occur on the diagonal of the relevant Kac table. In an appropriate regime the dilute A3_3 model lies in the universality class of the Ising model in a magnetic field. In this case we obtain the magnetic exponent δ=15\delta=15 directly, without the use of scaling relations.Comment: 53 pages, LaTex, ITFA 93-1

    The Harris-Luck criterion for random lattices

    Get PDF
    The Harris-Luck criterion judges the relevance of (potentially) spatially correlated, quenched disorder induced by, e.g., random bonds, randomly diluted sites or a quasi-periodicity of the lattice, for altering the critical behavior of a coupled matter system. We investigate the applicability of this type of criterion to the case of spin variables coupled to random lattices. Their aptitude to alter critical behavior depends on the degree of spatial correlations present, which is quantified by a wandering exponent. We consider the cases of Poissonian random graphs resulting from the Voronoi-Delaunay construction and of planar, ``fat'' ϕ3\phi^3 Feynman diagrams and precisely determine their wandering exponents. The resulting predictions are compared to various exact and numerical results for the Potts model coupled to these quenched ensembles of random graphs.Comment: 13 pages, 9 figures, 2 tables, REVTeX 4. Version as published, one figure added for clarification, minor re-wordings and typo cleanu

    Fermionic SK-models with Hubbard interaction: Magnetism and electronic structure

    Full text link
    Models with range-free frustrated Ising spin- and Hubbard interaction are treated exactly by means of the discrete time slicing method. Critical and tricritical points, correlations, and the fermion propagator, are derived as a function of temperature T, chemical potential \mu, Hubbard coupling U, and spin glass energy J. The phase diagram is obtained. Replica symmetry breaking (RSB)-effects are evaluated up to four-step order (4RSB). The use of exact relations together with the 4RSB-solutions allow to model exact solutions by interpolation. For T=0, our numerical results provide strong evidence that the exact density of states in the spin glass pseudogap regime obeys \rho(E)=const |E-E_F| for energies close to the Fermi level. Rapid convergence of \rho'(E_F) under increasing order of RSB is observed. The leading term resembles the Efros-Shklovskii Coulomb pseudogap of localized disordered fermionic systems in 2D. Beyond half filling we obtain a quadratic dependence of the fermion filling factor on the chemical potential. We find a half filling transition between a phase for U>\mu, where the Fermi level lies inside the Hubbard gap, into a phase where \mu(>U) is located at the center of the upper spin glass pseudogap (SG-gap). For \mu>U the Hubbard gap combines with the lower one of two SG-gaps (phase I), while for \mu<U it joins the sole SG-gap of the half-filling regime (phase II). We predict scaling behaviour at the continuous half filling transition. Implications of the half-filling transition between the deeper insulating phase II and phase I for delocalization due to hopping processes in itinerant model extensions are discussed and metal-insulator transition scenarios described.Comment: 29 pages, 26 Figures, 4 jpeg- and 3 gif-Fig-files include

    Dynamically Driven Renormalization Group Applied to Sandpile Models

    Get PDF
    The general framework for the renormalization group analysis of self-organized critical sandpile models is formulated. The usual real space renormalization scheme for lattice models when applied to nonequilibrium dynamical models must be supplemented by feedback relations coming from the stationarity conditions. On the basis of these ideas the Dynamically Driven Renormalization Group is applied to describe the boundary and bulk critical behavior of sandpile models. A detailed description of the branching nature of sandpile avalanches is given in terms of the generating functions of the underlying branching process.Comment: 18 RevTeX pages, 5 figure

    Ising model on 3D random lattices: A Monte Carlo study

    Full text link
    We report single-cluster Monte Carlo simulations of the Ising model on three-dimensional Poissonian random lattices with up to 128,000 approx. 503 sites which are linked together according to the Voronoi/Delaunay prescription. For each lattice size quenched averages are performed over 96 realizations. By using reweighting techniques and finite-size scaling analyses we investigate the critical properties of the model in the close vicinity of the phase transition point. Our random lattice data provide strong evidence that, for the available system sizes, the resulting effective critical exponents are indistinguishable from recent high-precision estimates obtained in Monte Carlo studies of the Ising model and \phi^4 field theory on three-dimensional regular cubic lattices.Comment: 35 pages, LaTex, 8 tables, 8 postscript figure
    corecore