
Digital Object Identifier (DOI) 10.1007/s00220-008-0459-8
Commun. Math. Phys. 285, 1165–1182 (2009) Communications in

Mathematical
Physics

How to Remove the Boundary in CFT – An Operator
Algebraic Procedure

Roberto Longo1, Karl-Henning Rehren2

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1,
I-00133 Roma, Italy. E-mail: longo@mat.uniroma2.it

2 Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1,
D-37077 Göttingen, Germany. E-mail: rehren@theorie.physik.uni-goe.de

Received: 13 December 2007 / Accepted: 18 January 2008
Published online: 18 March 2008 – © The Author(s) 2008

Dedicated to Klaus Fredenhagen on the occasion of his 60th birthday

Abstract: The relation between two-dimensional conformal quantum field theories with
and without a timelike boundary is explored.

1. Introduction

In [18], the authors have formulated boundary conformal field theory (BCFT) in real
time (Lorentzian signature) in the algebraic framework of quantum field theory. BCFT
is a local Möbius covariant QFT B+ on the two-dimensional Minkowski halfspace M+
(given by x > 0), which contains a (given) local chiral subtheory A, e.g., the stress-
energy tensor. The reward of this approach was the surprisingly simple formula (1.2)
below, expressing the von Neumann algebras of local observables B+(O) in a double
cone O ⊂ M+ in terms of an (in general nonlocal) chiral conformal net B of localized
algebras associated with intervals along the boundary (the time axis x = 0). The net B
is Möbius covariant and contains the local chiral observables A:

A(I ) ⊂ B(I ) (1.1)

for each interval I ⊂ R.
The reduction to a single chiral net is responsible for a kinematical simplification,

explaining, e.g., Cardy’s observation [3] that in BCFT, bulk n-point correlation functions
are linear combinations of chiral 2n-point conformal blocks.

The algebra B+(O) is a relative commutant of B(K ) within B(L),

B+(O) = B(K )′ ∩ B(L), (1.2)

where K ⊂ L are a pair of open intervals on the boundary R such that the disconnected
complement L \ K = I ∪ J is the set of advanced and retarded times t ± x associated
with points in (t, x) ∈ O (see Fig. 1). Although the chiral net B is not necessarily local,
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Fig. 1. Intervals on the boundary and double cones in the halfspace

the intersections (1.2) do commute with each other when two double cones are spacelike
separated.

The main result in [18] is that every BCFT is contained in a maximal (Haag dual)
BCFT of the form (1.2).

This leads to a somewhat paradoxical conclusion: on the one hand, each local bulk
observable is defined as a (special) observable from a chiral CFT. Thus, superficially,
the “degrees of freedom” of a BCFT are not more than those of a chiral CFT, containing
only a single chiral component of the stress-energy tensor (Virasoro algebra). One might
argue that such a “reduction of degrees of freedom” is a characteristic feature of QFT
with a boundary. But this point of view cannot be maintained, because on the other hand,
it was shown in [18] that the resulting BCFT B+ is locally equivalent to another CFT
B2D on the full two-dimensional (2D) Minkowski spacetime, which has all the degrees
of freedom of a 2D QFT, and in particular contains a full 2D stress-energy tensor (two
commuting copies of the Virasoro algebra). Even in the simplest case, when the chiral
net B on the boundary coincides with A (sometimes known as “the Cardy case”), the
associated bulk QFT contains apart from the full 2D stress-energy tensor more (“non-
chiral”) local fields that factorize into chiral fields with braid group statistics. Locally,
also the BCFT contains the same fields.

This paradoxical situation is not a contradiction; it rather shows that “counting degrees
of freedom” of a QFT is an elusive task. Trivially, there is no obstruction against a proper
inclusion of the form B(H) ⊗ B(H) ⊂ B(H) if H is an infinite-dimensional Hilbert
space. But “counting degrees of freedoms”, e.g. by entropy arguments, requires the
specification of the Hamiltonian. The BCFT shares the Hamiltonian and ground state
(vacuum) of the chiral CFT, while the associated 2D CFT has a different Hamiltonian
and a different ground state. Thus, with respect to different Hamiltonians, the spacetime
dimension (measured through some power law behaviour of the entropy) may assume
different values (1 or 2, in the present case).

Looking at the issue from a different perspective, we may start from a vacuum
representation of the Virasoro algebra. The latter integrates to a unitary projective
representation of the diffeomorphism group of the circle Diff (S1), which contains
the diffeomorphism group of an interval Diff (I ) as a subgroup. For two open inter-
vals with disjoint closures, there is a canonical identification between Diff (I ∪ J ) and
Diff (I )× Diff (J ). In terms of the stress-energy tensor T , this amounts to an isomor-
phism between exp iT ( f + g) and exp iT ( f )⊗ exp iT (g), when f and g have disjoint
support. It would be hard to see this local isomorphism directly in terms of the Virasoro
algebra.
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The mathematical theorem underlying these facts is the well-known Split Property
[6], which can be derived in local QFT in any dimension under a suitable phase space
assumption. In chiral local CFT, a sufficient assumption is the existence of the conformal
character Tr exp −βL0.

In the algebraic framework, the chiral observables of a BCFT (e.g., the stress-energy
tensor) localized in a double cone O are operators belonging to the von Neumann algebra
A+(O) = A(I )∨ A(J ), where I and J are two open intervals of the time axis (“advanced
and retarded times”) such that t + x ∈ I , t − x ∈ J for (t, x) ∈ O (this justifies the
notation O = I × J ), and A(I ) are the von Neumann algebras generated by the unitary
exponentials of chiral fields smeared within I . In contrast, the chiral observables in a 2D
CFT are operators in the algebra A2D(O) = AL(I )⊗ AR(J )where I and J are regarded
as two open intervals of the lightcone axes, and AR(I ) and AL(J ) are generated by left
and right chiral fields. Our present association between BCFT and 2D CFT applies to
the case when AL(I ) = AR(I ) = A(I ), i.e., the left chiral observables AL(I )⊗ 1 are
isomorphic with the right chiral observables 1 ⊗ AR(I ), and both are isomorphic with
the chiral observables A(I ) of the BCFT.

Let H0 denote the vacuum Hilbert space for the chiral CFT described by the algebras
A(I ). The split property states that if I and J are two intervals with disjoint closures,
there is a canonical unitary V : H0 → H0 ⊗ H0 implementing an isomorphism

V (A(I ) ∨ A(J ))V∗ = A(I )⊗ A(J ). (1.3)

The split isomorphism does not preserve the vacuum vector, i.e., the canonical “split
vector”Ξ = V∗(Ω⊗Ω) is an excited state in H0. By construction, the split state (Ξ, ·Ξ)
on A(I )∨ A(J ) has the property that its expectation values for either subalgebra A(I ) or
A(J ) coincide with those in the vacuum state, but the correlations between observables
a1 ∈ A(I ) and a2 ∈ A(J ) are suppressed:

(Ξ , a1a2Ξ) = (Ξ , a1Ξ) (Ξ , a2Ξ) = (Ω , a1Ω) (Ω , a2Ω). (1.4)

The split isomorphism depends on the pair of intervals I and J . It trivially restricts
to algebras associated with subintervals, but it does not, in general, extend to larger
intervals. When the intervals touch or overlap, a split state and the split isomorphism
cease to exist.

While the split isomorphism is well known, we discuss in this paper its extension to
“non-chiral” local observables, which do not belong to A(I ) ∨ A(J ) in the BCFT, and
to A(I )⊗ A(J ) in the 2D CFT.

As a concrete demonstration for the resolution of the above “paradox”, we present
two simple but nontrivial models where the algebraic relations outlined can be easily
translated into the field-theoretic setting, i.e., we characterize the local algebras of the
various QFTs in terms of generating local Wightman fields.

Let us translate (1.2) into the field-theoretic language. The intervals I and J shrink to
the points t ± x when O = I × J shrinks to a point (t, x). Thus, we have to approximate
a fieldΦ(t, x) of the BCFT by observables in A(L) (where the interval L approximates
(t − x, t + x) from the outside), that commute with all fields localized in the interval
K (which approximates (t − x, t + x) from the inside). This will be done in Sect. 2.
A crucial point here is that generating the local algebra A(L) involves “non-pointwise”
operations, e.g., typical observables may be exponentials of smeared field operators, so
that an element of the relative commutant is not necessarily localized in the disconnected
set L \ K = I ∪ J .
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A second, somewhat puzzling feature of the algebraic treatment of BCFT is the fact
that the description of the local algebras B+(O) in terms of the chiral boundary net
(Eq. (1.2)) is much simpler than that of the local algebras B2D(O) of the associated 2D
conformal QFT without a boundary. The latter are (rather clumsily) defined as Jones
extensions of the tensor products A(I )⊗ A(J ) in terms of a Q-system constructed from
the chiral extension A ⊂ B with the help of α-induction [20].

One purpose of this work is to present a more direct construction of the 2D CFT
without boundary from the BCFT. The obvious idea is to take a limit as the boundary is
“shifted to infinity”. But we shall do more, and establish the covariant local isomorphism
between the subnets O 
→ B+(O) and O 
→ B2D(O) as O ⊂ O0, i.e., the restriction
of the AQFTs to any fixed double cone O0 within the halfspace x > 0, at finite distance
from the boundary.

The main problem here is, of course, the enhancement of the conformal symmetry, i.e.,
the reconstruction of the unitary positive-energy representation of the two-dimensional
conformal group Möb × Möb from that of the chiral conformal group Möb. This is
done by a “lift” of the chiral Möbius covariance of the local chiral net A, using the split
property which allows to “embed” the 2D chiral algebra A(I )⊗ A(J ) into a local BCFT
algebra B+(O). This will be done in Sect. 3. The point is that only a single local algebra
of the BCFT is needed for this reconstruction of the 2D conformal group and the full
2D CFT.

In Sect. 4, we show that the 2D CFT can also be obtained through a limit where the
boundary is “shifted to the left”, or equivalently, the BCFT observables are “shifted to
the right”. The translations in the spatial direction “away from the boundary” do not
belong to the chiral Möbius group of the BCFT. But they are at our disposal by the
previous lifting of the 2D Möbius group into the BCFT. Therefore, we can study the
behavior of correlation functions in the limit of “removing the boundary”. As we shift
the boundary, the retarded and advanced times are shifted apart from each other. The
convergence of the vacuum correlations of the BCFT to the vacuum correlations of the
2D CFT is therefore a consequence of the cluster behavior of vacuum correlations of
the chiral CFT A.

We add three appendices containing some related observations.

2. Models

The purpose of this section is to illustrate the construction (1.2) in a field-theoretic
setting. It is convenient to assume the trivial chiral extension B = A since even in this
case the construction (1.2) is nontrivial, i.e., non-chiral local BCFT fields that factorize
into nonlocal chiral fields can be constructed from local chiral fields only. We exhibit
local BCFT fields in a region O = I × J ⊂ M+ as “neutral” chiral operators, that
behave like products of “charged” chiral operators localized in I and J in the limit of
large distance from the boundary. The limit of pointlike localization is also discussed,
and reproduces familiar vertex operators.

Consider the free U (1) current j with commutator [ j (x), j (y)] = 2π iδ′(x − y) and
charge operator Q = (2π)−1

∫
j (x)dx . The unitary Weyl operators W ( f ) = ei j ( f ) for

real test functions f satisfy the Weyl relation

W ( f )W (g) = e−iπσ( f,g) · W ( f + g) = e−2π iσ( f,g) · W (g)W ( f ) (2.1)

and have the vacuum expectation value

ω(W ( f )) = e−iπσ( f−, f+) = e− 1
2

∫
R+

k dk| f̂ (k)|2
, (2.2)
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where the symplectic form is

σ( f, g) = 1

2

∫

R

dx
(

f (x) g′(x)− f ′(x) g(x)
) = 1

2π i

∫

R

k dk f̂ (−k) ĝ(k), (2.3)

and f+ ( f−) correspond to the restrictions to positive (negative) values of k of the
Fourier transform f̂ (k) = ∫

R
dx eikx f (x). With these conventions, W ( f )Ω is a state

with charge density − f ′(x).
The vacuum correlations of Weyl operators are

ω(W ( f1) · · · W ( fn)) = e
−iπ

(∑
i σ( fi−, fi+)+2

∑
i< j σ( fi−, f j+)

)

. (2.4)

The Weyl operators W ( f )with supp f ⊂ I generate the local von Neumann algebras
of the chiral net I 
→ A(I ). We fix a double cone O = I × J ∈ M+. Let K ⊂ L be the
open intervals such that L\K̄ = I ∪ J , as before. If f is a test function that vanishes
outside L and is constant in K , then W ( f ) belongs to A(L) and commutes with A(K )
by (2.1) and (2.3), hence

W ( f ) ⊂ B+(O) = A(K )′ ∩ A(L). (2.5)

These are examples of operators that belong to B+(O) but (if f |K �= 0) not to A+(O) =
A(I ) ∨ A(J ).

Weyl operators can also be defined for smooth functions f such that f ′ has compact
support, and the relation (2.1) holds. Then q = f (−∞) − f (∞) is called the charge.
However, iσ( f−, f+) diverges, and the vacuum expectation value (2.2) vanishes unless
q = 0 (see below). This implies that correlation functions (2.4) of charged Weyl ope-
rators vanish whenever the total charge is non-zero (charge conservation), while the IR
divergences in each term in the exponent of (2.4) cancel for neutral correlations. The
neutral Weyl operators (2.5) in B+(O) are (up to a phase factor) products of charged
Weyl operators with charge densities localized in J and in I .

In the limit of sharp step functions Gu(x) = q · θ(x − u) (requiring a regularization
[4]), the regularized Weyl operators W (Gu) become the well-known vertex operators of
charge −q and scaling dimension 1

2 q2 [21], which are formally written as

V−q(u) = :exp

(

iq
∫ ∞

u
j (y)dy

)

:. (2.6)

Thus, as O shrinks to a point (t, x) ∈ M+, and I and J shrink to the points t + x and
t − x , the (regularised) Weyl operators W (Gt−x − Gt+x ) behave as

Φq(t, x) = Vq(t + x)V−q(t − x). (2.7)

The correlation functions of vertex operators are computed from (2.4), giving

〈. . . · Vqi (ui ) · . . .〉 = lim
ε↘0

∏

i< j

( −i

ui − u j − iε

)−qi q j
(2.8)

if
∑

i qi = 0, and = 0 otherwise, from which the well-known anyonic commutation
relations can be read off. It is then easily seen thatΦq1(t1, x1) commutes withΦq2(t2, x2)

when either t1 + x1 > t2 + x2 > t2 − x2 > t1 − x1 or when t2 + x2 > t1 + x1 > t1 − x1 >

t2 − x2, because in these cases the anyonic phase factors cancel. It also commutes with
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J                                          I

q

charge

f(x) = G(x)   H(x)

charge +qq

Fig. 2. A test function f such that W ( f ) belongs to B+(O), but not to A+(O). G and H are smooth step
functions, supp G′ ⊂ J , supp H ′ ⊂ I

j (t2 ± x2) if t2 ± x2 �= t1 ± x1. These are precisely the requirements for locality of the
fields Φq(t, x) among each other, and relative to the conserved current

j0(t, x) = j (t + x) + j (t − x), j1(t, x) = j (t + x)− j (t − x) (2.9)

defined for x > 0, i.e., Φq and jµ are local fields on the halfspace M+. The correla-
tion functions of n fields Φqi (ti , xi ) are correlations of 2n vertex operators (2n-point
conformal blocks).

After this digression to pointlike fields, let us resume the study of the correlation
functions (2.4) of the smooth Weyl operators W ( fi ) ∈ B+(O), and their behavior as O
is shifted away from the boundary. We choose n test functions of the form

fi = Gi − Hi , (2.10)

where Gi , Hi are smooth step functions with values 0 at −∞ and qi at +∞, such that
G ′

i = gi is supported in J and H ′
i = hi is supported in I (see Fig. 2).

The neutral states W ( fi )Ω carry the charge qi in I and the charge −qi in J .
The neutrality condition for each Weyl operator W ( fi ) can be written

∫

R

dx gi (x)−
∫

R

dx hi (x) = 0 ⇔ ĝi (0)− ĥi (0) = 0. (2.11)

The exponent in (2.4) is a linear combination of terms of the form (using
f̂i = i(ĝi − ĥi )/k)

2π i σ( fi−, f j+) =
∫

R+

dk

k

∫
dx (gi (x)− hi (x))

∫
dy

(
g j (y)− h j (y)

)
e−ik(x−y)

(2.12)

which are IR finite because of (2.11). The separate contributions from gi and hi ,
however, are IR divergent. Therefore, we first regularize at k = 0 by the subtraction
e−ik(x−y) → e−ik(x−y) − e−k/µ (µ > 0 arbitrary), which does not change the result
because of (2.11), and then compute the contributions from g and h separately.

We are interested in the behavior of the correlation function (2.4) as O is shifted
away from the boundary. This means that the functions gi are shifted by a distance a to
the left, and hi are shifted by the same distance to the right. The g-g contributions and
the h-h contributions to σ( fi−, f j+) are obviously invariant under this shift, while in
the mixed h-g contributions x − y is replaced by x − y + 2a:

2π i σhi ,g j (a) := −
∫

I
dx hi (x)

∫

J
dy g j (y)

∫

R+

dk

k

[
e−ik(x−y+2a) − e−k/µ

]
, (2.13)
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and similarly for the g-h contributions. The last integrand can be split into two parts:
(

e−ik(x−y+2a) − 1
)

e−k/µ + e−ik(x−y+2a)
(

1 − e−k/µ
)

(2.14)

so that the first contribution to the momentum integral equals

− log (1 + iµ(x − y + 2a)) (2.15)

while the second (distributional) contribution is of order O(a−1) in the limit of large a.
Because the remaining integrals have compact support, we obtain

lim
a→∞ σhi ,g j (a) = qi q j · log(2i aµ) + O(a−1). (2.16)

Together with the g-h contributions qi q j · log(−2i aµ), these terms in the exponent of
(2.4) cumulate up to the factor

∏

i

(2aµ)−q2
i
∏

i< j

(2aµ)−2qi q j = (2aµ)−q2
, (2.17)

where q = ∑
i qi is the total charge within I . Thus (2.4) vanishes in the limit a → ∞

if q �= 0, enforcing “chiral charge conservation” in the limit. If q = 0, the mixed
contributions give 1, and the remaining g-g and h-h contributions yield

lim
a→∞ω (W ( f1) · · · W ( fn))

= ω (W (G1) · · · W (Gn)) · ω (W (−H1) · · · W (−Hn)) (2.18)

involving charged Weyl operators. These expressions are well-defined (and independent
of µ) because

∑
i Gi and

∑
i Hi are neutral precisely due to q = 0.

The factorization of the vacuum correlations in the limit a → ∞ is the desired feature
we wanted to illustrate by this example. In the limit, W ( fi ) have the same correlations
as W (−Hi )⊗ W (Gi ), which are charged observables of the associated 2D CFT. Notice
that in the limit of sharp test functions (see above), one obtains

Vq(t + x)⊗ V−q(t − x), (2.19)

which are local fields in the entire two-dimensional Minkowski spacetime M2.

Remark. The above construction can be generalized to the SU (2) current algebra. The
Frenkel-Kac representation of SU (2) currents at level 1 is given by j3 ≡ j and j±(x) =
j1(x) ± i j2(x) = V±√

2(x). Then Vq(x) · V−q(y) commutes with Vq ′(w) at w �= x, y
provided qq ′ ∈ Z. Hence the field

Φ 1
2

√
2(t, x) = V 1

2

√
2(t + x) · V− 1

2

√
2(t − x) (2.20)

is local (as before) and relatively local w.r.t. the conserved currents ja (a = 1, 2, 3)

ja
0 (t, x) = ja(t + x) + ja(t − x), ja

1 (t, x) = ja(t + x)− ja(t − x). (2.21)

Φ 1
2

√
2(t, x) is a neutral combination of charged primary fields of dimension 1

4 , transfor-

ming in the spin- 1
2 representation of SU (2), localized at t + x and t − x . The description

of this model in terms of smooth Weyl operators is rather straightforward, see e.g., [2]:
Weyl operators with integer multiples of the charge

√
2 belong to A(I ), while operators

with half-integer multiples of the charge
√

2 in I and in J belong to A(K )′ ∩ A(L).
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The mechanism of “charge separation” described here for obtaining elements of
B+(O) that do not belong to A+(O) is very general [18], although in general it cannot be
formulated in terms of Weyl operators. In Sect. 4 we shall show that also the factorization
behavior far away from the boundary is a general feature, which allows to recover the
2D CFT from the BCFT.

3. Reconstruction of the 2D Symmetry

We work in this section with a fixed “chiral extension” A ⊂ B. Here, A is a Haag dual
Möbius covariant local net R ⊃ I 
→ A(I ) of von Neumann algebras on its vacuum
Hilbert space H0, satisfying the split property and having finitely many irreducible DHR
sectors of finite dimension (these properties together are called “complete rationality”
[14]; in the case of diffeomorphism covariant nets, Haag duality = strong additivity is a
consequence of the other properties [19]. The fact that the U (1)Weyl algebra in Sect. 2
is not completely rational, indicates that the results to be reported in this section hold
also in more general situations).

B is a Möbius covariant net R ⊃ I 
→ B(I ) on its vacuum Hilbert space HB
0 such that

for each I the inclusion A(I ) ⊂ B(I ) holds and is an irreducible subfactor, which has
automatically finite Jones index [13] equal to the statistical dimension of the (reducible)
representation of A on HB

0 [17]. The net B may be non-local, but is required to be
relatively local w.r.t. A.

If only A is specified, the irreducible chiral extensions B of A can be classified in
terms of Q-systems of A [17]. The complete classification has been computed for A
the Virasoro nets with central charge c < 1 (and implicitly also for the SU (2) current
algebras) in [15].

With A ⊂ B one can associate a boundary CFT B+ on the halfspace M+ and a
two-dimensional CFT B2D on Minkowski spacetime M2. To describe the former, we
introduce a convenient notation (see Fig. 1). For any quadruples of four real numbers
such a < b < c < d we define I = (c, d), J = (a, b), K = (b, c), L = (a, d), and
O = {(t, x) : t + x ∈ I, t − x ∈ J } ⊂ M+. Every double cone O ⊂ M+ is of this form
and determines I, J, K , L , and similarly every pair of open intervals J < I (“I is to the
right = future of J”) determines K , L , and O = I × J .

Then the BCFT associated with A ⊂ B is the net (1.2), i.e., O 
→ B+(O) =
B(K )′ ∩ B(L). We have shown in [18] that B+(O) contains A+(O) = A(I )∨ A(J ) as a
subfactor with finite index, B+ is local and Haag dual on M+, every Haag dual BCFT with
chiral observables A arises in this way (namely the chiral extension B can be recovered
from the BCFT), and every non-Haag-dual local BCFT net is intermediate between A+
and B+. If B = A, B+(O) equals the four-interval subfactor A(E) ⊂ A(E ′)′ on the
circle [14] (E = I ∪ J ).

The 2D CFT B2D associated with A ⊂ B has been constructed in [20]. Its local
algebras are extensions (with finite Jones index) of the tensor products A(I ) ⊗ A(J ),
specified in terms of a Q-system constructed from the chiral extension A ⊂ B with the
help of α-induction.

We know from [18] that B+ and B2D are locally isomorphic, i.e., for each O ⊂ M+
there is an isomorphism ϕO : B+(O) → B2D(O) such that

ϕO (B+(O1)) = B2D(O1) for all O1 ⊂ O. (3.1)

However, the Hilbert space and the vacuum state for the two theories are very different.
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In this section, we wish to understand the relation between these two nets, by giving
an alternative construction of the 2D CFT directly from the BCFT. The crucial point is
the construction of the enhanced Möbius symmetry of the 2D CFT, and its ground state
(the 2D vacuum) which is different from the BCFT vacuum.

We first construct the Hilbert space H2D for the 2D CFT. We choose a fixed reference
double cone O0 = I0 × J0 ⊂ M+. The subfactor A+(O0) = A(I0)∨ A(J0) ⊂ B+(O0) =
B(K0)

′ ∨ B(L0) is irreducible with finite index [18], and hence has a unique conditional
expectation µ : B+(O0) → A+(O0), which is automatically normal and faithful. Let
Ξ ∈ H0 be the canonical split vector for A(I0) ∨ A(J0) as in (1.4). The split state
ξ = (Ξ, ·Ξ) on A+(O0) extends to the state ξ̂ = ξ ◦ µ on B+(O0). Let Ĥ, Ξ̂ and π̂
denote the GNS Hilbert space, GNS vector and GNS representation for (B+(O0), ξ̂ ).
We also write |b〉 for π̂(b)Ξ̂ . Let us analyze the structure of Ĥ.

The structure of B+(O0) has been described in [18]. By complete rationality, A has
finitely many irreducible superselection sectors [14]. Choose for each irreducible sector
of A a representative DHR endomorphism [7] σ localized in I0, and a representative τ
localized in J0. (For the vacuum sector,σ = τ = id. σ̄ and τ̄ are the representatives of the
conjugate sector.) Then the elements of B+(O0) are (weak limits of) sums of operators
of the form ι(a1a2) · ψ where ι is the injection A → B, a1 ∈ A(I0), a2 ∈ A(J0),
and ψ ∈ B(L0) generalize the Weyl operators W ( f ) (2.10) of Sect. 2: they are (for
each pair σ, τ ) “charged” intertwiners in Hom(ι, ισ τ̄ )∩ B(K0)

′. We may express these
intersections in a different way: Let α±

ρ denote the endomorphisms of B extending the
DHR endomorphisms ρ of A by “α-induction” [17], where α+

ρ (α−
ρ ) acts trivially on

b ∈ B localized to the right = future (left = past) of the interval where ρ is localized.
Thus α−

σ α
+
τ̄ acts trivially on B(K0), because J0 < K0 < I0. Hence

Hom (ι, ισ τ̄ ) ∩ B(K0)
′ = Hom

(
idB, α

−
σ α

+
τ̄

)
. (3.2)

(For an alternative characterization of the charged intertwiners by means of an eigenvalue
condition, see App. B.) If O1 ⊂ M+ is another double cone in the halfspace, the algebra
B+(O1) is generated by A(I1) ∨ A(J1) and charged intertwiners

ψ1 = ι (u × ū) · ψ ∈ Hom
(
idB, α

−
σ1
α+
τ̄1

)
(3.3)

with unitary charge transporters u ∈ Hom(σ, σ1) and ū ∈ Hom(τ̄ , τ̄1), where σ1 is
localized in I1 and τ̄1 is localized in J1.

E.g., if B = A (the “Cardy case”), the charged intertwiners (generalizing the Weyl
operators W ( f ) in (2.10) of Sect. 2) are of the form ψ ∈ Hom(id, σ τ̄ ). This implies
that τ and σ are representatives of the same sector. Thus, the charges of BCFT fields are
in 1:1 correspondence with the DHR sectors of A.

In the general case, when ψ and ψ ′ are two charged intertwiners, µ(ψ ′ψ∗) is an
intertwiner ∈ Hom(σ ′τ̄ ′, σ τ̄ ) ∩ (A(I0) ∨ A(J0)). This space is zero unless σ ′ = σ and
τ ′ = τ , and Hom(σ τ̄ , σ τ̄ ) ∩ (A(I0) ∨ A(J0)) = C · 1 [16]. Therefore, we may choose
(for each pair σ, τ ) a basis of charged intertwiners ψ which is orthonormal w.r.t. the
inner product µ(ψ ′ψ∗).

Lemma 1. The subspaces Ĥψ of Ĥ spanned by |ψ∗ · ι(A(I0) ∨ A(J0))〉 are mutually
orthogonal. Each subspace Ĥψ factorizes as a representation of A+(O0) according to

Ĥψ
∼= Hσ ⊗ Hτ̄ , (3.4)

where Hσ and Hτ̄ carry the representations σ and τ̄ of A(I0) and A(J0), respectively.
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Proof. The computation of matrix elements in a dense set of vectors

〈ψ∗ · ι(a′′
1 a′′

2 )| π̂ (ι(a1a2)) |ψ∗ · ι(a′
1a′

2)〉
= (

Ξ , a′′
1
∗a′′

2
∗ µ

(
ψ ι(a1a2) ψ

∗) a′
1a′

2Ξ
)

= (
Ξ , a′′

1
∗a′′

2
∗ σ τ̄ (a1a2) a′

1a′
2Ξ

)

= (
a′′

1 Ω , σ(a1) a′
1Ω

) · (
a′′

2 Ω , τ̄ (a2) a′
2Ω

)
(3.5)

proves the claim. ��
We may therefore identify the vectors |ψ∗ι(a′

1a′
2)〉 with a′

1Ω ⊗ a′
2Ω ∈ Hσ ⊗ Hτ̄ in

the representation σ ⊗ τ̄ under the split isomorphism, such that in particular, the GNS
vector Ξ̂ = |1〉 ∈ Ĥ corresponds to the 2D vacuum vector Ω ⊗ Ω ⊂ H0 ⊗ H0. We
write the extended Hilbert space Ĥ in the form

Ĥ ≡ H2D ∼=
⊕

σ,τ
Zσ,τ Hσ ⊗ Hτ̄ (3.6)

(the “2D Hilbert space”). The nonnegative integer multiplicities are

Zσ,τ = dim Hom(α+
τ , α

−
σ ) (3.7)

by the above characterization (3.2) of the spaces of charged intertwiners. The chiral
factorization (3.6) of the GNS construction from the extended state ξ ◦µmay be viewed
as the remnant of the original “splitting behavior” of the split vector Ξ .

As shown in [18] by comparison of the Q-system, the local subfactor π̂(A+(O0))

⊂ π̂(B+(O0)) on Ĥ is isomorphic to A(I0) ⊗ A(J0) ⊂ B2D(O0) constructed in [20].
We may therefore consistently denote also the former by A2D(O0) ⊂ B2D(O0).

Next, we construct the action of the 2D Möbius group on H2D , by a “lift” of the
Möbius transformations of the chiral net A, using the split isomorphism and the condi-
tional expectation µ. The action of Möb × Möb on H2D will then be used to define
B2D(O) as the images of the reference algebra B2D(O0) under a 2D Möbius transfor-
mation g = (g1, g2) taking O0 to O .

The 2D Möbius group Möb × Möb is unitarily represented in the vacuum Hilbert
space H0 of the chiral net A by U+U−, the preimage of U0 ⊗ U0 on H0 ⊗ H0 under
the split isomorphism. (See App. A, how U+ and U− can be obtained by modular theory
directly on the boundary Hilbert space.) We need to lift U+U− to H2D .

LetΣI ⊂ Möb denote the connected semigroup taking the interval I into itself, gene-
rated by the one-parameter subgroup preserving I and two one-parameter semigroups
fixing either of its endpoints. Then Σ = ΣI0 × ΣJ0 ⊂ Möb × Möb is the connected
semigroup taking the reference double cone O0 into itself.

For g = (g1, g2) ∈ Σ , the adjoint action of U+(g1)U−(g2) on a1 ∈ A(I0),
a2 ∈ A(J0) is given by the independent (= product) action of the chiral Möbius trans-
formations given by geometric automorphisms αg of the chiral net A:

α+
g1
α−

g2
(a1 · a2) = αg1(a1) · αg2(a2). (3.8)

We extend these endomorphisms of A+(O0) to endomorphisms of B+(O0) by

β+
g1
β−

g2
(ι(a1a2) · ψ) := ι

(
αg1(a1)αg2(a2)

) · ι
(

zσ (g1)z
τ̄ (g2)

)
· ψ. (3.9)

Here zρ(g) ∈ Hom(ρ, αgρα
−1
g ) are the unitary cocycles zρ(g) = U0(g)Uρ(g)∗ ∈ A

[10,16], where U0 and Uρ are the representations of the Möbius group in the vacuum
representation and in the DHR representation ρ.
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Proposition 1. (i) The maps β+
g1
β−

g2
defined by (3.9) for g ∈ Σ are homomorphisms

from B+(O0) onto B+(g O0) ⊂ B+(O0).
(ii) For O1 ⊂ O0 we have β+

g1
β−

g2
(B+(O1)) = B+(g O1), i.e., β+

g1
β−

g2
“act geometri-

cally inside B+(O0)”.
(iii) β+

g1
β−

g2
respect the group composition law within the semigroup Σ .

(iv) The conditional expectation µ intertwines β+
g1
β−

g2
with α+

g1
α−

g2
.

Proof. (i) The homomorphism property follows from the composition and conju-
gation laws of charged intertwiners [18] and the intertwining and localization
properties of the operators and endomorphisms involved. The statement about the
range is just a special case of (ii).

(ii) It is sufficient to show that a charged intertwiner ψ1 ∈ B+(O1) is mapped to a
charged intertwiner in B+(g O1). By virtue of (3.3), we compute

β+
g1
β−

g2
(ψ1) = ι

(
αg1(u)z

σ (g1)αg2(ū)z
τ̄ (g2)

)
· ψ. (3.10)

Then the claim follows, because αg1(u) zσ (g) ∈ Hom(σ, αg1σ1α
−1
g1
), and αg1

σ1α
−1
g1

is localized in g1 I1, and similarly αg2 τ̄1α
−1
g2

is localized in g2 J1.
(iii) The group composition law follows from the cocycle properties [10,16] of zρ .
(iv) The intertwining property of µ is due to the fact that µ annihilates all charged

intertwiners except the neutral one (σ = τ̄ = id).
��

Next, we adapt a well-known lemma about the implementation of (groups of) auto-
morphisms to the case of (semigroups of) endomorphisms.

Lemma 2. Let M be a von Neumann algebra on a Hilbert space H with a cyclic and
separating vector Ψ . Let β be an endomorphism of M, preserving the state (Ψ, ·Ψ ).
Then the closure of the map mΨ 
→ β(m)Ψ is an isometry Uβ . If Ψ is cyclic also for
β(M), then Uβ is unitary. For two endomorphisms β, β ′ with the same properties, such
that Ψ is cyclic for β(M), one has Uβ ′β = Uβ ′Uβ .

Proof. That Uβ is an isometry is an obvious consequence of the invariance of the state.
Since β(M)Ψ is a dense subset, Uβ is surjective, hence unitary. For the last statement it
is sufficient to notice that Uβ ′ is densely defined on β(M)Ψ . ��

We apply the lemma to the endomorphisms β+
g1
β−

g2
of B+(O0). Using (iv) of Prop. 1,

we see that β+
g1
β−

g2
leave the GNS state (Ξ̂ , ·Ξ̂) invariant because the split state (Ξ, ·Ξ)

on A+(O0) is invariant under α+
g1
α−

g2
. The vector Ξ̂ is cyclic and separating for each

π̂ (B+(O1)) (O1 ⊂ O0) because µ is faithful and Ξ is cyclic and separating for each
A+(O), which in turn follows by the split isomorphism becauseΩ is cyclic and separating
for A(I1) and for A(J1). Thus, lemma 2 applies:

Corollary 1. The homomorphismsβ+
g1
β−

g2
induce unitary operators on Ĥ = H2D, which

satisfy the group composition law within the semigroup Σ . Together with the inverse
unitary operators, they generate a covering representation Û (g1, g2) = Û+(g1)Û−(g2)

of Möb × Möb on H2D.

The last statement is due to the fact thatΣ and its inverse generate Möb × Möb, and
the group law within Σ secures the commutation relations of the Lie algebra.
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By construction, for g = (g1, g2) ∈ Σ , Û (g1, g2) on the subspace Hψ is equivalent
to Uσ (g1)⊗ Uτ̄ (g2) on Hσ ⊗ Hτ̄ under the isomorphism (3.4). By (ii) of Prop. 1, the
adjoint action of Û (g1, g2) takes B+(O1) to B+(g O1) for O1 ⊂ O0.

By constructing U+U−, we have thus furnished the local subnet O0 ⊃ O1 
→ B+(O1)

of the BCFT with a covariant “two-dimensional re-interpretation”. In the representation
π̂ on Ĥ = H2D , this is precisely the local isomorphism ϕO0 referred to in (3.1). The
present discussion shows that ϕO0 intertwines the global 2D Möbius covariance with a
“hidden” symmetry of the BCFT, which is induced by the extended split state ξ̂ and acts
locally geometric.

We now define for arbitrary double cones O ⊂ M2 the associated local algebras of
the 2D conformal net on H2D by varying g = (g1, g2) ∈ Möb × Möb in the connected
neighborhood of unity for which g O0 ⊂ M2, and putting

B2D(O) := Û (g1, g2) B2D(O0) Û (g1, g2)
∗ if O = g O0 ⊂ M2. (3.11)

For O ⊂ O0, this coincides with π̂
(
β+

g1
β−

g2
(B+(O0))

)
= π̂ (B+(O)) by virtue of (ii) of

Prop. 1. Notice that B2D(g O0) is uniquely defined as long as O = g O0 ⊂ M2 because
in this case any two g with the same image g O0 differ by an element of Σ , while it
requires the passage to a covering space when M2 is conformally completed.

Theorem 1. The net of von Neumann algebras O 
→ B2D(O) defined by (3.11) is
covariant, isotonous, and local.

Proof. The covariance is by construction. Isotony and locality of the 2D net follow from
the geometric action inside O0, (ii) of Prop. 1, and the fact that every pair of double cones
in M2 such that either O1 ⊂ O2 are O1 ⊂ O ′

2 can be moved inside O0 by a Möbius
transformation, where we know (from the boundary CFT) that isotony and locality hold.
��
Corollary 2. The extension A2D ⊂ B2D is isomorphic to the extension constructed in
[20].

Proof. Since the local subfactor A2D(O0) ⊂ B2D(O0) constructed in [20] is isomorphic
to A+(O0) ⊂ B+(O0), and the isomorphism intertwines the representations of the 2D
Möbius group, the global isomorphism follows. ��

We have associated with the BCFT a 2D local CFT, that is locally isomorphic. The
association is intrinsic in the sense that it requires only the subnet O0 ⊃ O1 
→ B+(O1)

together with the covariance of the DHR sectors of the underlying chiral CFT A.
It should be noticed that the construction is up to unitary equivalence independent

of the choice of the reference double cone O0 ⊂ M+. The reason is essentially that
the charge structure of B(K )′ ∩ B(L) exhibited by the multiplicities Zσ,τ in (3.6) is
independent of the pair K ⊂ L .

We conclude this section with an observation concerning diffeomorphism covariance:

Proposition 2. If A ⊂ B is a chiral extension of a diffeomorphism covariant chiral net
A, then the (possibly non-local) chiral net B, the BCFT net B+ defined by (1.2), and the
2D net B2D associated with B+ by Thm. 1 are also diffeomorphism covariant.
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Proof. The chiral net A is diffeomorphism covariant if for a diffeomorphism γ of S1

there is a unitary operator wγ on H0 such that uγ A(I )u∗
γ = A(γ I ). Haag duality of A

implies that if γ is localized in an interval I (i.e., acts trivially on the complement), then
wγ is an observable in A(I ).

For a chiral extension A ⊂ B we claim that if γ is localized in I0, then for I1 ⊂ I0
one has ι(wγ )B(I1)ι(w

∗
γ ) = B(γ I1), i.e., ι(wγ ) implement the local diffeomorphisms.

Namely, B(I1) is generated by ι (A(I1)) and v1 = ι(u) · v, where v ∈ B(I0) is the
canonical charged intertwiner v ∈ Hom(ι, ιθ) for the canonical DHR endomorphism
θ localized in I0 [17] (see also App. B), and θ1 is an equivalent DHR endomorphism
localized in I1. We find

ι(wγ ) v1 ι(w
∗
γ ) = ι(wγ uθ(w∗

γ )) · v. (3.12)

Now, wγ uθ(w∗
γ ) ∈ Hom(θ, γ θ1γ

−1), and γ θ1γ
−1 is localized in γ I1. This proves the

claim. The diffeomorphism covariance of the chiral net B follows because the diffeo-
morphisms localized in I0 together with the Möbius group generate the diffeomorphism
group of S1.

The argument for the boundary CFT and for the 2D CFT are very similar: we first
show that for diffeomorphisms γ = γ1γ2 where γ1 is localized in I0 and γ2 localized in
J0, the adjoint action with ι(wγ1wγ2) takes B+(O1) to B+(γ O1) if O1 ⊂ O0. Again, it
is sufficient to verify the action on the charged intertwiners (3.3) of B+(O1):

ι(wγ1wγ2) · ψ1 · ι(wγ1wγ2)
∗ = ι

(
(wγ1 uσ(w∗

γ1
))(wγ2 ūτ̄ (w∗

γ2
))

)
· ψ, (3.13)

where wγ1uσ(w∗
γ1
) ∈ Hom(σ, γ1σ1γ

−1
1 ) and wγ2 ūτ̄ (w∗

γ2
) ∈ Hom(τ̄ , γ2τ̄1γ

−1
2 ), and

γ1σ1γ
−1
1 is localized in γ1 I1 and γ2τ̄1γ

−1
2 is localized in γ2 J1. Hence (3.13) is a charged

intertwiner of B+(γ O1). This proves the claim. Then the diffeomorphism covariance of
B+ and B2D follow because the diffeomorphisms localized in O0 together with the
Möbius group generate all diffeomorphisms. ��

4. Cluster Limit

Let b1, . . . , bn ∈ B+(O) be BCFT observables localized within any fixed double cone
O = I × J ⊂ M+. We wish to consider the behavior of a vacuum correlation

(Ω , βx (b1 · · · bn)Ω) , (4.1)

where βx = β+
x β

−−x is the one-parameter semigroup of “right shifts” (x > 0, away from
the boundary), that take I to I + x and J to J − x , represented as homomorphisms from
B+(O) to B+(I + x × J + x), see (3.9).

In Sect. 3 (with O as the fixed reference double cone) we have given the
re-interpretation of bi in the GNS representation π̂ of the state ξ ◦ µ as observables
of the associated 2D CFT, with the 2D vacuum Ω2D given by the GNS vector. We shall
show

Theorem 2. Let each bi ∈ B+(O) (i = 1, . . . , n) be of the form ι(a(i)1 a(i)2 ) · ψ(i) with

charged intertwinersψ(i) and a(i)1 ∈ A(I ) and a(i)2 ∈ A(J ). As x goes to +∞, the BCFT
vacuum correlations (4.1) converge to the 2D vacuum correlations

(
Ω2D , π̂(b1 · · · bn)Ω2D

) = ξ ◦ µ(b1 · · · bn). (4.2)
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Proof. We compute the limit and the 2D vacuum expectation value separately.
Using the decomposition of products ψ1ψ2 into finite sums of operators of the form

ι(T1T2) ·ψ [18], where Ti are intertwiners between DHR endomorphisms of A, we see
that the product b1 · · · bn is a finite sum of operators of the same form ι(a1a2) · ψ .

For the present purpose, it is more convenient to write the charged intertwiners as
ψ = t · ι(r̄), where r ∈ Hom(id, τ τ̄ ) ⊂ A(J ) and t ∈ Hom(α+

τ , α
−
σ ) ⊂ Hom(ιτ, ισ )

(Frobenius reciprocity). Then, because a2 = σ(a2), we get ι(a2) · ψ = t · ι(τ (a2)r̄).
Hence, the product b1 . . . bn is a finite sum of operators of the form

ι(a1) · t · ι(a2). (4.3)

Thus, the above vacuum correlation function is a finite sum of expectation values

F(x) = (Ω , βx (ι(a1) · t · ι(a2)) Ω)

= (
Ω , ι(αx (a1)z

σ (x)) · t · ι(zτ (−x)∗α−x (a2))Ω
)

(4.4)

= (
Ω , αx (a1)z

σ (x) · ε(t) · zτ (−x)∗α−x (a2)Ω
)
.

Here, ε is the global conditional expectation B → A, which preserves the vacuum state
[17]. In particular, ε(t) ∈ Hom(τ, σ ). Therefore, the expression vanishes identically
unless σ and τ belong to the same sector.

In the latter case, we express the cocycles as zρ(g) = U0(g)Uρ(g)∗, and
αg = AdU0(g), giving

F(x) = (
Ω , a1Uσ (x)

∗ · ε(t) · Uτ (x)
∗a2Ω

) = (Ω , a1 · Uσ (−2x) · ε(t)a2Ω) , (4.5)

because the intertwiners between DHR endomorphisms also intertwine the representa-
tions of the Möbius group [10]. By the spectrum condition, F(x) has a bounded analytic
continuation to the lower complex halfplane. Uσ (−z) weakly converges in every direc-
tion z = reiϕ (−π < ϕ < 0, r → ∞) to the projection onto the zero eigenspace of the
generator, and the latter projection is nonzero only if σ = id is the vacuum representa-
tion; in this case t = ε(t) = 1. Thus, F(z) converges in these directions to the vacuum
expectation value

δσ,0δτ,0 (Ω, a1Ω) · (Ω, a2Ω). (4.6)

Next, we consider

F(x) = (
Ω , βx

(
ι(a∗

2) · t∗ · ι(a∗
1)

)
Ω

)
. (4.7)

Let rσ ∈ Hom(id, σ̄ σ ) ⊂ A(I ) and rτ ∈ Hom(id, τ̄ τ ) ⊂ A(J ). Then we can write
t∗ = ι(r∗

σ ) · t̄ · ι(rτ ), where t̄ ∈ Hom(α+
τ̄ , α

−
σ̄ ) ⊂ Hom(ιτ̄ , ισ̄ ). Using the locality

properties of a1 ∈ A(I ), a2 ∈ A(J ), we can rewrite

F(x) = (
Ω , βx

(
ι(r∗

σ σ̄ (a
∗
1)) · t̄ · ι(τ̄ (a∗

2)rτ )
)
Ω

)
. (4.8)

This expression can be computed in the same way as F(x) before, giving

F(x) = (
Ω , r∗

σ σ̄ (a
∗
1)) · Uσ̄ (−2x) · ε(t̄)τ̄ (a∗

2)rτ Ω
)
. (4.9)

Thus F(x) also has a bounded analytic continuation to the upper complex halfplane, and
converges to the same limit (4.6) also in the directions z = reiϕ (0 < ϕ < π , r → ∞).
From this, we may conclude the cluster limit

lim
x→∞ (Ω , βx (ι(a1) · t · ι(a2)) Ω) = δσ,0δτ,0 (Ω, a1Ω) · (Ω, a2Ω). (4.10)
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On the other hand, we now compute (4.2) and show that it coincides with the facto-
rizing cluster limit of (4.1). For each contribution of the form (4.3), we have

(Ω2D , π̂ (ι(a1) · t · ι(a2)) , Ω2D) = ξ ◦ µ (ι(a1) · t · ι(a2)) = ξ (a1 · µ(t) · a2) .

(4.11)

But µ(t) ∈ A(I ) ∨ A(J ) is an intertwiner in Hom(σ, τ ) which vanishes unless σ = id
and τ = id both belong to the vacuum sector. In the latter case, t = µ(t) = 1. Thus,

〈Ξ̂ |π̂ (ι(a1) · t · ι(a2)) |Ξ̂〉 = δσ,0δτ,0 ξ(a1a2) = δσ,0δτ,0 (Ω, a1Ω) · (Ω, a2Ω).

(4.12)

This coincides with the cluster limit (4.10) “far away from the boundary”. ��
Recall that a1 and a2 in (4.3) were obtained by multiplying b1 · · · bn and successively

decomposing the products of the charged intertwiners. Thus, the vacuum expectation
values (Ω, aiΩ) in (4.12) are precisely the chiral conformal blocks of the corresponding
2D correlation functions.

A variant of the conformal cluster theorem [8] should also give a quantitative estimate
for the rate of the convergence, depending on the charges of the operators involved
through the corresponding spectrum of L0.

5. Conclusion

We have studied the passage from a local conformal quantum field theory defined on the
halfspace x > 0 of two-dimensional Minkowski spacetime (boundary CFT, BCFT) to an
associated local conformal quantum field defined on the full Minkowski spacetime (2D
CFT). There are essentially two ways: the first is to consider BCFT vacuum correlations
of observables localized far away from the boundary. In the limit of infinite distance,
these correlations factorize into chiral correlations (conformal blocks) of charged fields.
We have traced this effect back to the cluster property of the underlying local chiral
subtheory.

The second method exploits the split property, i.e., the existence of states of the
underlying local chiral CFT in which correlations between observables in two fixed
intervals at a finite distance are suppressed. With the help of the split property one can
algebraically identify a fixed local algebra of the BCFT with a fixed local algebra of the
2D CFT, and one can generate a unitary representation of the 2D Möbius group in the
GNS Hilbert space of a suitable “extended split state” of this algebra. Its ground state,
the 2D vacuum, is different from the BCFT vacuum. Then, by acting with the 2D Möbius
group, one can obtain all local algebras of the 2D CFT in the same Hilbert space.

The converse question: can one consistently “add” a boundary in any 2D CFT (without
affecting the algebraic structure away from the boundary), is not addressed here. Howe-
ver, there arises a necessary condition from the discussion in App. C: the 2D partition
function should be either modular invariant, or at least it should be intermediate between
the vacuum partition function and some modular invariant partition function. We hope
to return to this problem, and find also a sufficient condition.

Acknowledgement. KHR thanks the Dipartimento di Matematica of the Università di Roma “Tor Vergata” for
hospitality and financial support, and M. Weiner and I. Runkel for discussions related to the subject.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.



1180 R. Longo, K.-H. Rehren

A. Modular Construction of Möb × Möb in the Split State

In [12] it was shown that a unitary representation of the Möbius group Möb is generated
by the modular groups of a “halfsided modular triple”, i.e., three von Neumann algebras
Ai (i = 0, 1, 2) with a joint cyclic and separating vector Ψ such that if σ i

t is the
modular group for (Ai , Ψ ), then σ i

t (Ai+1) ⊂ Ai+1 for t � 0. (Here, i + 1 is understood
mod 3.) Specifically, when I is an open interval and I1, I2 are the subintervals obtained
by removing an interior point from I , the three algebras A1 = A(I1), A2 = A(I2),
A3 = A(I )′ in a local chiral CFT together with the vacuum vectorΩ define a halfsided
modular triple. This means that the entire local net can be recovered from these data.
We want to show here how this construction can be applied to construct a unitary repre-
sentation of the 2D Möbius group Möb × Möb from six suitable algebras in the split
state Ξ associated with a pair of intervals I and J , see (1.4).
Let I1, I2 arise from I by removing a point, and similarly J1, J2 from J . Tensoring by
1, the two halfsided modular triples

(
A(I )′ ⊗ 1 , A(I1)⊗ 1 , A(I2)⊗ 1

)
,

(
1 ⊗ A(J )′ , 1 ⊗ A(J1) , 1 ⊗ A(J2)

)
(A.1)

in the state Ω ⊗ Ω generate U0 ⊗ U0. Under the split isomorphism, these triples turn
into

(
A(I )′ ∩ N , A(I1), A(I2)

)
,

(
A(J )′ ∩ N ′, A(J1), A(J2)

)
(A.2)

in the split state Ξ , where N is the canonical intermediate type I factor between A(I )
and A(J )′. Ξ is cyclic and separating for these algebras in the subspaces NΞ and
N ′Ξ , respectively. The latter halfsided modular triples thus generate the two commuting
representations U+,U− of Möb directly in H0.

B. Charged Intertwiners in BCFT

The charged intertwinersψ for a given chiral extension A ⊂ B, that together with A+(O)
generate B+(O), are elements of the finite-dimensional spaces Hom(ι, ισ τ̄ ) ∩B(K )′.
In [18, Eq. (5.12)] a linear condition on ϕ = ῑ(ψ) ∈ Hom(θ, θσ τ̄ ) was given which
guarantees that ϕ commutes with ῑ(B(K )). Here ῑ : B → A is a homomorphism
conjugate to the injection ι : A → B, such that γ = ιῑ on B(K ) is a canonical
endomorphism for A(K ) ⊂ B(K ) and θ = ῑι is the dual canonical endomorphism,
which is a DHR endomorphism of A localized in K [17].
Unfortunately, the condition displayed in [18] does not take into account that ϕ belongs
to ῑ(B(L)) (i.e., is in the range of ῑ). We want to reformulate this condition so that it is
equivalent to ψ belonging to B+(O) = B(K )′ ∩ B(L).
We first notice that every element of B(K ) is of the form ψ = ι(y) v, where
v ∈ Hom(idB, γ ) ⊂ B(K ) is the canonical isometry intertwining γ . Then ψ ∈
Hom(ι, ισ τ̄ ) if and only if y ∈ Hom(θ, σ τ̄ ) ⊂ A(L). This already secures that
ψ ∈ B(L), and since θ is localized in K ,ψ commutes with ι(A(K )). Hence it commutes
with B(K ) iff it also commutes with v ∈ Hom(idB, γ ). This is equivalent to the relation

y x
!= θ(y) x ≡ σ(εθ,τ̄ ) ε

∗
σ,θ θ(y) x, (B.1)
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where x = ῑ(v) ∈ Hom(θ, θ2). The statistics operators ε are trivial [9] due to the
localizations of σ in I , τ̄ in J , and θ in K , but we have displayed them in order to make
the condition covariant under unitary deformations of ῑ and v ∈ Hom(idB, ιῑ), possibly
changing the localization of θ and leading to nontrivial statistics operators.
The condition (B.1) can be equivalently written as the eigenvalue equation

Π(y) := λ
1
2 · (

1σ × r∗ × 1τ̄
) ◦ (

ε∗σ,θ × ε∗θ,τ̄
) ◦ (1θ × y × 1θ ) ◦ x2

!= y. (B.2)

Here r = x ◦w ∈ Hom(idA, θ
2), wherew ∈ Hom(idA, θ) ⊂ A(K ) is the dual canonical

isometry (such that (γ, v, ι(w)) form a Q-system); x2 = (1θ × x) ◦ x = (x × 1θ ) ◦
x ∈ Hom(θ, θ3), and λ � 1 is the index [B : A]. ◦ and × are the concatenation and
the monoidal product in the tensor category of DHR endomorphisms of A. The map
Π defined by (B.2) is a linear map Π : Hom(θ, σ τ̄ ) → Hom(θ, σ τ̄ ). Equation (B.2)
obviously follows from (B.1) by left multiplication with σ(r∗) and right multiplication
with x . To see that (B.2) implies (B.1), one may insert (B.2) into both sides of (B.1) and
repeatedly use the relations of the dual Q-system (θ, w, x) to get equality.
We thank I. Runkel who has pointed out to us that Π is in fact a projection. Hence the
charged intertwiners ψ are precisely given by ι(y) · v, where y is in the range ofΠ . The
multiplicities Zσ,τ in (3.7) equal the dimension of the range of these projections (for
each pair σ, τ ).

C. Haag Duality and Modular Invariance

If A is completely rational, the C* tensor category defined by its DHR superselection
sectors is modular [14], i.e., the unitary S and T matrices defined by the statistics [10]
generate a representation of the group SL(2,Z). By the Verlinde formula [22], these
matrices also describe the modular transformation behavior of chiral partition functions
(“characters”).
By [1], the matrix Z given by (3.7) is a modular invariant (it commutes with S and T ),
hence the partition function of the 2D CFT B2D on H2D is invariant under modular
transformations. We want to point out an interesting relation of this fact to Haag duality
of the associated BCFT.
As mentioned before, every BCFT defined by (1.2) is automatically Haag dual, and any
non Haag dual BCFT B̃+ with the same chiral observables is intermediate between A+
and B+ [18]. Therefore, the charged intertwiners ψ ∈ B̃+ constitute linear subspaces
of the spaces of charged intertwiners in B+. Let the dimensions of these spaces be
Z̃σ,τ � Zσ,τ , and at least one of them< Zσ,τ (i.e., B̃+ is strictly contained in B+). Then
the matrix Z̃ cannot be a modular invariant by the following simple argument: consider
the 00 component of S∗ Z̃ S. Because each Si0 is positive,

(
S∗ Z̃ S

)
00 =

∑

i j

S0i S0 j Z̃i j (C.1)

is strictly smaller than (S∗Z S)00 = Z00 = 1. If Z̃ were modular invariant, we would
conclude Z̃00 < 1, which is impossible.
We notice that the construction of a 2D CFT associated to a BCFT described in Sect. 3
takes an intermediate BCFT A+ ⊂ B̃+ ⊂ B+ to an intermediate 2D CFT A2D ⊂ B̃2D ⊂
B2D . Its Hilbert space is of the form (3.6) with Z replaced by Z̃ . Hence, we conclude
that the partition function of the associated 2D CFT is modular invariant if and only if
the BCFT is Haag dual.
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