8,487 research outputs found
Electromagnetic waves around dilatonic stars and naked singularities
We study the propagation of classical electromagnetic waves on the simplest
four-dimensional spherically symmetric metric with a dilaton background field.
Solutions to the relevant equations are obtained perturbatively in a parameter
which measures the strength of the dilaton field (hence parameterizes the
departure from Schwarzschild geometry). The loss of energy from outgoing modes
is estimated as a back-scattering process against the dilaton background, which
would affect the luminosity of stars with a dilaton field. The radiation
emitted by a freely falling point-like source on such a background is also
studied by analytical and numerical methods.Comment: 9 pages, 1 figur
Plataforma portátil de pesagem para bovinos: apresentação e funcionamento.
Características da Plataforma; Larguras ajustáveis da base e abas; Disposição e uso no brete; Medida do maior componente; Apoios no solo; Produto divisível ao meio; Sistema de regulagem de abertura das abas; Engenharia; Segurança e conforto animal.bitstream/item/31972/1/DT-104online.pd
Late-Time Tails of Wave Propagation in Higher Dimensional Spacetimes
We study the late-time tails appearing in the propagation of massless fields
(scalar, electromagnetic and gravitational) in the vicinities of a
D-dimensional Schwarzschild black hole. We find that at late times the fields
always exhibit a power-law falloff, but the power-law is highly sensitive to
the dimensionality of the spacetime. Accordingly, for odd D>3 we find that the
field behaves as t^[-(2l+D-2)] at late times, where l is the angular index
determining the angular dependence of the field. This behavior is entirely due
to D being odd, it does not depend on the presence of a black hole in the
spacetime. Indeed this tails is already present in the flat space Green's
function. On the other hand, for even D>4 the field decays as t^[-(2l+3D-8)],
and this time there is no contribution from the flat background. This power-law
is entirely due to the presence of the black hole. The D=4 case is special and
exhibits, as is well known, the t^[-(2l+3)] behavior. In the extra dimensional
scenario for our Universe, our results are strictly correct if the extra
dimensions are infinite, but also give a good description of the late time
behaviour of any field if the large extra dimensions are large enough.Comment: 6 pages, 3 figures, RevTeX4. Version to appear in Rapid
Communications of Physical Review
Electromagnetic radiation from collisions at almost the speed of light: an extremely relativistic charged particle falling into a Schwarzschild black hole
We investigate the electromagnetic radiation released during the high energy
collision of a charged point particle with a four-dimensional Schwarzschild
black hole. We show that the spectra is flat, and well described by a classical
calculation. We also compare the total electromagnetic and gravitational
energies emitted, and find that the former is supressed in relation to the
latter for very high energies. These results could apply to the astrophysical
world in the case charged stars and small charged black holes are out there
colliding into large black holes, and to a very high energy collision
experiment in a four-dimensional world. In this latter scenario the calculation
is to be used for the moments just after the black hole formation, when the
collision of charged debris with the newly formed black hole is certainly
expected. Since the calculation is four-dimensional, it does not directly apply
to Tev-scale gravity black holes, as these inhabit a world of six to eleven
dimensions, although our results should qualitatively hold when extrapolated
with some care to higher dimensions.Comment: 6 pages, 2 figure
Numerical analysis of quasinormal modes in nearly extremal Schwarzschild-de Sitter spacetimes
We calculate high-order quasinormal modes with large imaginary frequencies
for electromagnetic and gravitational perturbations in nearly extremal
Schwarzschild-de Sitter spacetimes. Our results show that for low-order
quasinormal modes, the analytical approximation formula in the extremal limit
derived by Cardoso and Lemos is a quite good approximation for the quasinormal
frequencies as long as the model parameter is small enough, where
and are the black hole horizon radius and the surface gravity,
respectively. For high-order quasinormal modes, to which corresponds
quasinormal frequencies with large imaginary parts, on the other hand, this
formula becomes inaccurate even for small values of . We also find
that the real parts of the quasinormal frequencies have oscillating behaviors
in the limit of highly damped modes, which are similar to those observed in the
case of a Reissner-Nordstr{\" o}m black hole. The amplitude of oscillating
as a function of approaches a non-zero
constant value for gravitational perturbations and zero for electromagnetic
perturbations in the limit of highly damped modes, where denotes the
quasinormal frequency. This means that for gravitational perturbations, the
real part of quasinormal modes of the nearly extremal Schwarzschild-de Sitter
spacetime appears not to approach any constant value in the limit of highly
damped modes. On the other hand, for electromagnetic perturbations, the real
part of frequency seems to go to zero in the limit.Comment: 9 pages, 7 figures, to appear in Physical Review
Quasinormal modes for the SdS black hole : an analytical approximation scheme
Quasinormal modes for scalar field perturbations of a Schwarzschild-de Sitter
(SdS) black hole are investigated. An analytical approximation is proposed for
the problem. The quasinormal modes are evaluated for this approximate model in
the limit when black hole mass is much smaller than the radius of curvature of
the spacetime. The model mirrors some striking features observed in numerical
studies of time behaviour of scalar perturbations of the SdS black hole. In
particular, it shows the presence of two sets of modes relevant at two
different time scales, proportional to the surface gravities of the black hole
and cosmological horizons respectively. These quasinormal modes are not
complete - another feature observed in numerical studies. Refinements of this
model to yield more accurate quantitative agreement with numerical studies are
discussed. Further investigations of this model are outlined, which would
provide a valuable insight into time behaviour of perturbations in the SdS
spacetime.Comment: 12 pages, revtex, refs added and discussion expanded, version to
appear in Phys. Rev.
Truncated states obtained by iteration
Quantum states of the electromagnetic field are of considerable importance,
finding potential application in various areas of physics, as diverse as solid
state physics, quantum communication and cosmology. In this paper we introduce
the concept of truncated states obtained via iterative processes (TSI) and
study its statistical features, making an analogy with dynamical systems theory
(DST). As a specific example, we have studied TSI for the doubling and the
logistic functions, which are standard functions in studying chaos. TSI for
both the doubling and logistic functions exhibit certain similar patterns when
their statistical features are compared from the point of view of DST. A
general method to engineer TSI in the running-wave domain is employed, which
includes the errors due to the nonidealities of detectors and photocounts.Comment: 10 pages, 22 figure
Two arch criteria of the ilium for sex determination of immature skeletal remains: A test of their accuracy and an assessment of intra- and inter-observer error
Although the assignment of sex to immature skeletal remains is considered problematic, some traits have been considered useful for both forensic and bioarchaeological applications. One such trait is the arch criterion found in subadult ilia, which is defined relative to the greater sciatic notch-auricular surface area. In adults, the composite arch has also been described in relation to this area and has proven relatively successful in sex determination. This study offers an examination of the accuracy of the arch criterion and the composite arch in determining the sex of subadult skeletal remains, and an assessment of intra- and inter-observer scoring error. A sample of 97 skeletons of known sex and age (<15 years) from the Lisbon collection (Portugal) were selected and the traits were scored by three observers on orthogonal photos of each ilium. In general the agreement within (67.7-88.5%) and between (50.5-76.3%) examiners was poor and overall accuracy (26.7-52.6%) did not meet the expectations of that reported in previous studies. The authors suggest that this derives from great variation in morphology, difficulties in interpreting criteria and possibly a lack of association between the expression of the traits and sex. Careful examination of sex-related morphology in the immature skeleton and additional blind tests of so-called useful traits should continue to be carried out.http://www.sciencedirect.com/science/article/B6T6W-4S2VFY1-1/1/207963d293280dcfbc0bec484ebcc10
Quasinormal modes of d-dimensional spherical black holes with a near extreme cosmological constant
We derive an expression for the quasinormal modes of scalar perturbations in
near extreme d-dimensional Schwarzschild-de Sitter and Reissner-Nordstrom-de
Sitter black holes. We show that, in the near extreme limit, the dynamics of
the scalar field is characterized by a Poschl-Teller effective potential. The
results are qualitatively independent of the spacetime dimension and field
mass.Comment: 5 pages, REVTeX4, version to be published in Physical Review
- …