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Numerical analysis of quasinormal modes in nearly extremal Schwarzschildde Sitter spacetimes
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We calculate high-order quasinormal modes with large imaginary frequencies for electromagnetic and gravi-
tational perturbations in nearly extremal Schwarzschild—de Sitter spacetimes. Our results show that for low-
order quasinormal modes the analytical approximation formula in the extremal limit derived by Cardoso and
Lemos is quite a good approximation for the quasinormal frequencies as long as the model parameser
small enough, where; and k; are the black hole horizon radius and the surface gravity, respectively. For
high-order quasinormal modes, to which correspond quasinormal frequencies with large imaginary parts, on
the other hand, this formula becomes inaccurate even for small valugg 0fWe also find that the real parts
of the quasinormal frequencies have oscillating behaviors in the limit of highly damped modes, which are
similar to those observed in the case of a Reissner-Norddtack hole. The amplitude of oscillating Rej
as a function of Im{) approaches a nonzero constant value for gravitational perturbations and zero for
electromagnetic perturbations in the limit of highly damped modes, whedenotes the quasinormal fre-
guency. This means that for gravitational perturbations the real part of the quasinormal modes of the nearly
extremal Schwarzschild—de Sitter spacetime appears not to approach any constant value in the limit of highly
damped modes. On the other hand, for electromagnetic perturbations, the real part of the frequency seems to go
to zero in the limit.

DOI: 10.1103/PhysRevD.69.064025 PACS nuniger04.70.Bw, 04.30-w

I. INTRODUCTION wherek=2,3,4 ..., andM stands for the mass of the black
hole. Furthermore, they predicted the value kofo be k
The quasinormal mode®NMs) of spacetimes contain- =2, and suggested that this frequency should be equal to
ing black holes have been studied since the pioneering worklassical oscillation frequencies of the black hole. A few
of Vishveshward 1], who first observed quasinormal ringing years ago, Hod noticed, however, thakif 3, the frequency
of a Schwarzschild spacetime in his numerical calculationsgjyen by formula(1) is in quite good agreement with the
The main motivation to study the QNMs of a black hole is asymptotic frequency of the QNM of a Schwarzschild black
twofold: One is to answer the question of whether or not thenple in the limit of highly damped modes, and proposed to
spacetime is stable, and the other to know what kind of 0sapply Bohr's correspondence principle in order to determine
cillations will be excited in the spacetime when some perturthe value of the fundamental area unit in the quantum theory
bations are given. From an astrophysical point of view, theyf gravity, namely, the value of [6] (see alsd7]). Since
latter is quite important from the observational point of view Hod’s proposal, the QNMs with large imaginary frequencies
because we could determine the fundamental parameters ol spacetimes including black holes have attracted a lot of
black hole, such as the mass or the angular momentumttention, and many papers related to this subject have ap-
through the information of the QNMs. Thus, a large numberpeared in order to see whether Hod’s conjecture is applicable
of studies on the QNMs of spacetimes containing black holegot only for a Schwarzschild black hole but also for other
have been dongor a review, see, e.g[2,3]). black hole spacetimes. For example, Motl analytically ob-
There is another interesting aspect of the QNMs in a blackained an asymptotic constant value of the QNM frequencies
hole which is related to the quantum theory of gravity. Bek-of a Schwarzschild black hol&], which had been obtained
enstein and Mukhanov discussed the relationship betweefumerically by Nollerf9]. Motl and Neitzke[10], Berti and
the fundamental area unit in the quantum theory of gravitykokkotas[11], Neitzke[12], and Andersson and Howf43]
and the Bohr transition frequency, applying Bohr’s corre-studied the asymptotic behaviors of the QNMs in a Reissner-
spondence principle with a hydrogen atom to the quantunNordstran black hole. Bertiet al. [14] and Hod[15] dis-
theory of a black hol¢4,5]. For a Schwarzschild black hole, cussed the QNMs of a Kerr black hole in the limit of highly
they then derived the Bohr transition frequeney given by damped modes. As for a Schwarzschild—de Sit®dS
black hole, Cardoso and Lem$6] and Maassen van den
w=Ink/87M, (1)  Brink [17] analytically obtained the asymptotic form of the
QNM frequencies in almost the extremal limit, in which the
cosmological horizon becomes very close to the black hole
*Electronic address: yoshida@fisica.ist.utl.pt horizon (for the case of a Schwarzschild black hole in an
Electronic address: tof@astr.tohoku.ac.jp anti—de Sitter spacetime; see, €[d8,19).
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A large number of papers related to Hod’s conjectureHere,M and A stand for the mass of the black hole and the
which have recently appeared, suggest that Hod’s conjectumsmological constant, respectively. If a non-negative cos-
is not universal, at least as it stands, even though it is applimological constant is assumed, namely, de Sitter spacetime,
cable for Schwarzschild black holes in four and higher di-there are two horizons, whose radial coordinates are given as
mensions (for the higher-dimensional case, see, e.g.positive solutions of "*A=r—2M—3Ar3=0; one is the
[10,12,27,28. For example, a real part of the quasinormalblack hole horizorr =r; and the other the cosmological ho-
frequencies in a Reissner-Nordstrdlack hole appears not rizon r=r,, wherer,>r,;>0. Note that the equatiom
to go to any constant value in the limit of highly damped —2M — $Ar®=0 has one negative solutior=r;<0 for the
mode, but shows some periodic behaviors as the imaginargdS space. One of the important model parameters of the
part is increasefll0—13. This means that Hod’s conjecture SdS spacetime is the surface gravity, defined by
is not applicable in the Reissner-Nordstr&¢ase because a

real part of the quasinormal frequencies does not have a limit 1 dA
as the imaginary part goes to infinity. In such a situation, it is Sl L Rl (4)
necessary to explore the problem of whether or not there is =

another black hole spacetime in which Hod’s conjecture is . . _

applicable. The purpose of this paper is to improve our unIn terms of the nondimensional surface grawviy,, the

derstanding of this problem and we are concerned here witf'@ss and the cosmological constant can be written as

the QNMs of SdS spacetimes. SdS spacetime has no spatial 1

infinity but has a cosmological horizon, and if Hod’s conjec- _ - R

ture is applicable, it is interesting to see whether Hod’s con- M=3rrra+d), A=rf(1=2re), ®

jecture depends only on the black hole horizon, but not on

the cosmological horizon. Furthermore, recent observationghich shows that &r,«x,;<1/2 for the SdS spacetime. In

show that the universe does have a nonzero positive cosm¢his study, we employ the nondimensional parametey, to

logical constant. Therefore, SdS spacetimes are considered¢pecify the SdS spacetime.

be a good simple model of a black hole in the universe. By virtue of the symmetry properties of the SdS space-
In this study, in particular, we calculate numerically the time, the master equations for the scalse=Q), electromag-

QNMs of nearly extremal SdS spacetimes for reasons weetic (s=1), and gravitational=2) perturbations can be

describe below. We therefore assume the surface grayity cast into a wave equation of the simple form, givenpg—

at the black hole horizon to be;< 10‘2r1‘1, wherer,  24]

stands for the coordinate radius of the black hole horizon.

Note that the extremal limit of the SdS space corresponds to d2¢(r) )

the limit of xk;—0. In a nearly extremal SdS black hole, as dar2 o= V(N)]e(r)=0, ©)

mentioned before, an analytical formula for quasinormal fre- *

quencies can be derived6,17. One of the aims of thiS \yherer denotes the tortoise coordinate, defined dry,
paper is to examine whether this analytical formula is correct_ r2A~1dr, andw is the oscillation frequency of the pertur-

in the limit of highly damped modes. bations. Depending on the type of perturbation, here the ef-
The paper is organized as follows. In Sec. Il we presenty tive potential is explicitly given by

the basic equations for obtaining QNMs in the SdS space-

time using Leaver’s continued fraction technid@é], which

Ar?
was extended to the case of the SdS spacetime by Moss and I(I+1)+—- for s=0,
Norman[21]. Numerical results are given in Sec. lll, and ey r
Sec. IV is devoted to the conclusion. T I(1+1) for s=1, (7
M for s=2
Il. METHOD OF SOLUTIONS +1)—— or s=2,

In order to examine the QNMs of the SdS spacetime, we
make use of the same formalism as that derived by Moss anf{€rél means the angular quantum number of the perturba-
Norman[21], who obtained low-order quasinormal frequen- tions. Here, only the ax_lal_parlty perturbations have_ been
cies of the SdS spacetime for a wide range of the modefonsidered for the gravitational case because quasinormal

parameter. The line element of the SdS spacetime is given g\zequencies of the polar parity perturbations are the same as
those of the axial parity perturbatioff®r the proof, see the

A 2 Appendix.
ds?= — —dt?+ —dr2+r3(d62+sirtede?),  (2) The QNMs of the SdS spacetime are characterized by the
r A boundary conditions of incoming waves at the black hole
horizon and outgoing waves at the cosmological horizon,
where given by

1 e '« asr, o,
A=r2—2Mr—§Ar4. (3 o(r)— (8)

e asr,——o»,
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where the time dependence of perturbations has been a$herefore, we solve this algebraic equation to obtain the qua-

sumed to bee'®!. In general, it is impossible to adapt the sinormal frequency.

boundary condition8) in a straightforward numerical inte-

gration to obtain quasinormal frequencies. Some special IIl. NUMERICAL RESULTS

technique is therefore required for computations of QNMs. ] ] ] )

In the present investigation, we employ a standard technique, I this study, we are concerned with asymptotic behaviors

devised by Leaver, namely, the continued fraction methof high-order QNMs, namely, quasinormal frequencies with

[20,21]. large imaginary parts, in almost the extremal Ilmlt, in which
To apply the continued fraction method to the SdS spaceT-WO horizons are gune near. We therefore consider only the

time, it is convenient to introduce a new independent varicase ofr1x;<10"°. For these small values df;«,, the

able, defined byx=r~1. With this new variablex, the continued fraction$16) converge very quickly and Leaver’s

asymptotic form of the perturbations ag— can be re- method works quite well even when quasinormal frequencies
have quite large imaginary parts. Note that for moderate val-

written as )
ues ofr x4, however, the convergence of the continued frac-
e 1Tk =(x—X;) "PH(X—Xp) “P2(X—X3) 3, (9)  tions gets worse and Leaver's method is applicable only for
modes with smaller imaginary frequencies. For those cases,
wherex;= rifl andp;=iw/(2k;) for i=1,2,3, where thus, some other technigues such as Nollert's mefbdr a
phase integral metho®26] should be used to obtain high-
K1=M(X1—X2)(X1—X3), order QNMs.
In order to check our numerical code, we have calculated
k2= M(X2=X1)(X2=X3), (10  fundamental frequencies of the QNMs for several values of
r,k, and have fitted the mode frequencies as a function of
K3=M (Xa—X1)(Xa—X5). ryx, with the polynomials defined by

The perturbation functiorp is expanded around the black Re(wry) =rixabo(1=biraky),

hole horizon as

Im(a)rl)=I’1K100(1—C1r1K1). (17)
_ _ . X=X \" Recently, Cardoso and Lem¢46] and Maassen van den
= — p — p. — P - ’
b= (X=X1)PHX=Xp) " F2(X=X3) 320 an XZ_Xl) ' Brink [17] analytically obtained the expansion coefficients,

(11)  which are given by

whereag=1 and thea,’s for n=1 are determined by the /I 4+1)— } for s=0.1
three-term recurrence relation, given by ( ) 4 "
bo= 5 (18)
ap@n+1t Bnant Ynan-1=0, (12 |(|_|_1)_Z for s=2,
where
1 2
an=2M(X;—x3){n?+2(p;+1)n+2p,;+1}, (13 Co=n+3, bi=ci=3, (19
Bn=—2M(2x;—X,—X3){n?+ (4p,+1)n wheren is the mode number. It is found that the numerically

2 5 obtained coefficients are in good agreement with the coeffi-
+a4p1+2pp—1(1+1)+2Mxy(s°~1), (14 (jents given by Eqs(18) and (19). Note that our numerical
results for the mode frequencies are consistent with those
Yn=2M(X1—X)(n*+4p;n+4pi—s?). (15  obtained by Moss and Normd@1], who studied low-order
QNMs of the gravitational perturbations for the full range of
Here,s=2 for the gravitational perturbations ase=1 for  the parameter;«;.
the electromagnetic perturbations. Note that in the present First, let us discuss the properties of the quasinormal fre-
study we do not consider the scalar perturbations becausgiencies for the low-order modes. In Fig. 1, we show the real
Leaver's method cannot be directly applied to the scalaparts of the frequencies for the low-order QNMs versus the
case. Comparing the expanded eigenfunctith with Eq.  imaginary parts of the frequencies for the gravitational per-
(9), we can see that the eigenfunctid) satisfies the QNM  tyrbations withl = 2. In this figure, the nondimensional fre-
boundary condition(8) if the power series in Eq(11) con-  quencies Ref/x;) have been plotted as a function of
verges forx,<x<x;. This convergence condition is equiva- |m(w/«,) for rix;=10"2% and r;x;=5x%10"3, and the
lent to the condition written in terms of continued fractions dashed curve indicates the approxima‘[e frequencyf@&
[25], which is given by —0, derived by Cardoso and Lemds] (see als¢17]). For
low-order modes, Fig. 1 illustrates how the frequencies of
%Y1 *1Y2 (16) the QNMs behave when the mode number and/or the value

0=Po~ Bi— Bo— of rixq is altered. The basic properties of the low-order
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()] = - - _ |
5000 | s=2
& i i r 1=2 A
1.7 — _ rie,=5x1073%" - L rx,=10"3 |
: ]s__22 : 0 _I 111 I 1111 | 111 1 | 111 I_
L N A 0 5000 104 1.5x1042x104
1'6 _I 111 I | | | | | L1 1 I 11 | I_ n
0 50 100 150 200 250 FIG. 3. Imaginary parts of the nondimensional QNM frequen-
Im(w/x,) ciesw/ k4, given as a function of the mode numbrefor the gravi-

tational perturbations associated witk2. The model parameter
FIG. 1. Real parts of the nondimensional QNM frequenciesr, «, is taken to be ;x;=10"3.

wl k4, given as a function of the imaginary parts of the frequencies
for thel =2 gravitational perturbations. The model parameters QNM frequencies are also seen in the case of electromag-
are taken to bex;=10"% andr x;=5x10"°. The frequencies atic perturbations.

obtained with the approximation formula in the limit ofx;—0

Now we explain our numerical results for the asymptotic
are also shown as the dashed curve.

behavior of the QNM of nearly extremal SdS spacetimes in
the limit of large imaginary frequencies. In Fig. 3, we plot
QNMs are summarized as follows: For the modes associatetthe imaginary parts of the nondimensional QNM frequen-
with a small mode number, the real parts of the frequenciesies, w/«,, of the gravitational perturbations withk=2 as a
decrease with the increase of the imaginary parts of the frefunction of the mode numben. In this figure, the model
quency, even though the real parts of the frequency are coparameter isr;x;=10 3. The figure shows that an
stant in the approximation formula€l7)—(19). In other  asymptotic form of Imf/«,)~n, which is similar to the
words, the analytical approximation formula in the extremalanalytical formulas(17)—(19), is a good approximation for
limit (17)—(19) is quite good for the fundamental modes asthe imaginary parts in the limit of large imaginary frequen-
long asr ; k; is small enough, while, as expected 7], this  cies. The same asymptotic form is inferred in all other
approximation formula gets worse as the mode number i®)NM's we have calculated in the present study, regardless of
increased even for small values ofx;. This means that the values of x4, |, ands.
formulas(17)—(19) do not give a correct asymptotic value of  Let us next focus on the behaviors of the real part of the
the QNM frequencies in the limit of large imaginary frequen- QNM frequencies in the limit of highly damped modes. In
cies. Similar properties can be seen for other perturbationsigs. 4 and 5, the real parts of the nondimensional mode
having differents andl. In Fig. 2, we show the same results frequenciesw/x, are plotted as a function of the imaginary
as those in Fig. 1 but for the electromagnetic perturbationparts of the frequencies up to sufficiently high-order modes
having I=1. It is observed that similar behaviors of the for the | =2,3 gravitational and for thé=1,2 electromag-
netic perturbations, respectively. The results for the model
A B e parameter ofr;x;=10"2 are shown in both figures. It is
found that the real parts of the frequencies show oscillating
behaviors as the imaginary parts of the frequencies are in-
creased. It is important to note that similar oscillating behav-
iors have been observed in the QNMs of a Reissner-
Nordstran black hole.[The quasinormal frequencies with
large imaginary frequency of a Reissner-Nordstrblack
hole can be given in terms of a solution of the algebraic
equation[10,12,13,

13— 7 ..

1.2

Re(w/x,)

o, =5x1078
™ efot 2+ 3ek o=, (20)

~
(LT
Ll SN

T I T T T I LI | L
1 l[ 11 1 1 I 11 1 1 | L1 1 1 |

e where 8 and k are constants determined by the mass and
50 100 150 200 charge of the black holésee[10]). As shown by Neitzke
Im(w/x,) [12] and Anderson and Howlgl3], Eq. (20) has an infinite
number of solutions and some solutions of E20) show
FIG. 2. Same as Fig. 1 but for the=1 electromagnetic pertur- periodicity] The behavior of the amplitude of the oscillating
bations. Re(w/kq) as a function of Im{/«,) resembles that of the

o
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FIG. 4. Real parts of the nondimensional QNM frequencies
wl k4, given as a function of the imaginary parts of the frequenciesh
for the gravitational perturbations havihg-2 andl=3. The fre-
quencies of the QNMs associated with differdntl=2,3, are

shown in each panel. The model parametere; is taken to be these parameters. In summary, our numerical results suggest
rik,=1073. that for the gravitational perturbations the real parts of the

QNM frequencies of nearly extremal SdS spacetimes do not
QNM frequencies of a Schwarzschild black hole. For thego to any constant value in the limit of large imaginary fre-
gravitational perturbations, the amplitude decreases for smafluencies, because they show oscillating behaviors in the
values of Im@/k,), approaches the imaginary axis of the limit. For the electromagnetic perturbations, on the other
complex frequency plane, increases again, and finally aphand, the real parts of the QNM frequencies seem to go to
proaches some constant value. The asymptotic value of th&ero in the limit of large imaginary frequencies.
amplitude in the limit of highly damped modes seems to be a
nonzero constant, which is inferred to be0.4. Therefore
the limit of Re(w/k4) as Im(w/ k1) — appears not to exist
for the gravitational perturbations. For the electromagnetic We have calculated the high-order QNMs with large
perturbations, on the other hand, the amplitude of oscillatingmaginary frequencies for the electromagnetic and gravita-
Re(w/k;) decreases monotonically as la(k;) is in-  tional perturbations in nearly extremal SdS spacetimes using
creased. Its asymptotic value in the limit of highly dampedLeaver’s continued fraction methd@0]. Our results show
modes seems to be zero. This means that, for the electromatipat for low-order QNMs the analytical formulas in the ex-
netic perturbations, the limit of Re{ «;) as Im(w/«x;) goes  tremal limit derived by Cardoso and Lempks] and Maas-
to infinity seems to exist and to be zero. It is important tosen van den Brink17] are a quite good approximation for
note that in a nearly extremal SdS black hole the asymptotithe QNM frequencies as long as the model paramagtey is
behaviors of the quasinormal frequencies in the limit ofsmall enough. For high-order QNMs, whose imaginary fre-
highly damped modes are independent of the angular quamfuencies are sufficiently large, on the other hand, this for-
tum numbel of the perturbations. Although we do not show mula becomes inaccurate even for small values of;.
the results for other values of x; andl, the asymptotic Therefore, the approximation derived by Cardoso and Lemos
behavior of the QNM frequencies is not highly dependent orcannot give correct asymptotic behaviors of the QNMs in the

FIG. 5. Same as Fig. 3 but for the electromagnetic perturbations
avingl=1 andl=2.

IV. CONCLUSIONS
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limit of large imaginary frequenciesee alsq17]). We also 2A

found that the real parts of the quasinormal frequencies have V(_)=r—5[(C+ L)r—6M], (A3)
oscillating behaviors in the limit of highly damped modes.
(Similar behaviors have been found in the quasinormal fre

quenpies in a Rgissner-Nord'shrdolack hole[10-13.) The master equatiofAl), see, e.g.[22,24]. As shown first by
amplitude of oscillating Re{) approaches a nonzero con- Cardoso and Lemai24], two potentialsv(*) and V(™) are
stant value for the gravitational perturbations and zero for th%imply related through :che relation, given by

electromagnetic perturbations in the limit of highly damped
modes, regardless of values lodndr«;. This means that df
for the gravitational perturbations the real parts of the quasi- VE) =+ g——+ 22+ «f, (A4)
normal frequencies of nearly extremal SdS spacetimes ap- dr,
pear not to go to any constant value in the limit of highly
damped modes. Therefore our numerical results suggest thif'ere8=6M, k=4c(c+1), and
Hod’s conjecture is not applicable for nearly extremal SdS
black holes because the limit of Ref as Im(w)— does f= ;
not exist. 2r3(cr+3M)°
Although we computed high-order QNMs whose damping
rates are quite large, all the QNMs we obtained in this studylhis relation between two potentials is called the superpart-
are still associated with a finite mode number but not infinity,ner relationship. By virtue of the superpartner relationship,
because we investigated the properties of the QNMs witlihe perturbation functionp(*) (¢(~)) can be written in
straightforward numerical approach. Thus, we cannot exterms of¢(™) (¢(*)) and its first derivativg29], given by
clude the possibility that our numerical results do not show
correct asymptotic behaviors. Other approaches to examining
asymptotic behaviors of QNMs in the highly damping limit
are necessary, in order to confirm our results of the
asymptotic behaviors. As for high-order QNMs with large |t is worthwhile to note that the superpartner relationship
imaginary frequencies for moderate values pt;, Leaver's  (A4) and (A5) and the relations between two functioss
method cannot be applied straightforwardly. Therefore, othe(A6) in a SdS spacetime have the same functional form as
numerical techniques are needed to obtain QNMs with largénose in a Schwarzschild spacetime except for the definition

where c=(1+2)(I—-1)/2 [for detailed derivations of the

(A5)

dep(¥)
dr,

(k*+2iwB) ™) =(k+2p%F)pF)+2p . (AB)

imaginary frequencies. of the function A [29]. Since A=A(r—r)(ro,—r)(r
—r3)r/3, the asymptotic form of the functidrin the limit of
ACKNOWLEDGMENT r,— *o is given by
The authors are grateful to V. Cardoso for fruitful discus- A(ro=r)(ri—r3)
sions and a careful reading of the manuscript. They are also > e?lale asr, ——oo,
grateful to J. Bekenstein for correspondence regarding the 6ri(cri+3M)
early history of black hole thermodynamics. S.Y. acknowl- A(ro—rq)(ro—rs) 2l
edges financial support from Fun@acpara a Ciacia e a 6r2(cr,+3M) ' asr,—o,
Tecnologia(FCT) through project SAPIENS 36280/99. 22 (A7)
APPENDIX: SUPERPARTNER AND ISOSPECTRAL Then, it is easy to see that the functibimas three properties:
RELATIONSHIP BETWEEN AXIALAND POLAR (i) it is smooth for—oo<r, <oo, (ii) f and its derivatives of
PERTURBATIONS IN SDS SPACETIME all orders vanish as, — =<, and(iii) an integralf” .fdr,

exists. If the functionf appearing in Eq(A4) satisfies the

Shree conditions above, as showr{29], two potentials/(*)

give the same transmission amplitude and the same quasinor-

mal frequencies. In a SdS spacetime, therefore, axial and

+H 2= V()] =0, (A1) polar perturbations yield the same set of quasinormal mode

dri frequencies. This isospectral properties in a SdS spacetime
are attributed to the fact that gravitational perturbations as-

where (™) andV(") (¢(7) andV(7)) are the gauge invari- Sociated with a spis=—2 in a SdS spacetime can be de-

ant perturbation function and the effective potential for polarscribed with a single Weyl scala¥ , [23].

(axial) parity perturbations, respectively. The effective poten- In a Schwarzschild—anti—de Sitter spacetime, exactly the

Nonradial gravitational perturbations of a SdS spacetim
obey a Schrdinger-type wave equation, given by

d2¢(i)

tials are given by same relations between polar and axial perturbatidas—
(A6) obviously hold[24]. Yet there is no isospectral property
2A between polar and axial perturbations in a Schwarzschild—

V(H:rs(cr+—3|\/l)2[9M3+ 9MZcr+3c®Mr?+c*(c+1)r®  anti—de Sitter spacetime. In a Schwarzschild—anti—de Sitter
spacetime, the master equati¢Al) does not have an
—3M2Ar3], (A2)  asymptotic solution given bg='“’+ asr—o and, further-
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more,r, has a finite range. The boundary condition at spatiabt spatial infinity, in general, the transformatidéA6) be-

infinity therefore must be modified. One of the plausibletween polar and axial perturbations cannot hold this bound-
boundary conditions is that perturbation functions vanish atary condition. Therefore, the set of quasinormal frequencies
spatial infinity, even though there are other options for theof polar perturbations in a Schwarzschild—anti—de Sitter

boundary conditionf24]. If this boundary condition is taken

spacetime is not the same as that for axial perturbations.
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