We calculate high-order quasinormal modes with large imaginary frequencies
for electromagnetic and gravitational perturbations in nearly extremal
Schwarzschild-de Sitter spacetimes. Our results show that for low-order
quasinormal modes, the analytical approximation formula in the extremal limit
derived by Cardoso and Lemos is a quite good approximation for the quasinormal
frequencies as long as the model parameter r1κ1 is small enough, where
r1 and κ1 are the black hole horizon radius and the surface gravity,
respectively. For high-order quasinormal modes, to which corresponds
quasinormal frequencies with large imaginary parts, on the other hand, this
formula becomes inaccurate even for small values of r1κ1. We also find
that the real parts of the quasinormal frequencies have oscillating behaviors
in the limit of highly damped modes, which are similar to those observed in the
case of a Reissner-Nordstr{\" o}m black hole. The amplitude of oscillating
Re(ω) as a function of Im(ω) approaches a non-zero
constant value for gravitational perturbations and zero for electromagnetic
perturbations in the limit of highly damped modes, where ω denotes the
quasinormal frequency. This means that for gravitational perturbations, the
real part of quasinormal modes of the nearly extremal Schwarzschild-de Sitter
spacetime appears not to approach any constant value in the limit of highly
damped modes. On the other hand, for electromagnetic perturbations, the real
part of frequency seems to go to zero in the limit.Comment: 9 pages, 7 figures, to appear in Physical Review