10,148 research outputs found

    Localization properties of a tight-binding electronic model on the Apollonian network

    Get PDF
    An investigation on the properties of electronic states of a tight-binding Hamiltonian on the Apollonian network is presented. This structure, which is defined based on the Apollonian packing problem, has been explored both as a complex network, and as a substrate, on the top of which physical models can defined. The Schrodinger equation of the model, which includes only nearest neighbor interactions, is written in a matrix formulation. In the uniform case, the resulting Hamiltonian is proportional to the adjacency matrix of the Apollonian network. The characterization of the electronic eigenstates is based on the properties of the spectrum, which is characterized by a very large degeneracy. The 2π/32\pi /3 rotation symmetry of the network and large number of equivalent sites are reflected in all eigenstates, which are classified according to their parity. Extended and localized states are identified by evaluating the participation rate. Results for other two non-uniform models on the Apollonian network are also presented. In one case, interaction is considered to be dependent of the node degree, while in the other one, random on-site energies are considered.Comment: 7pages, 7 figure

    Black hole particle emission in higher-dimensional spacetimes

    Get PDF
    In models with extra dimensions, a black hole evaporates both in the bulk and on the visible brane, where standard model fields live. The exact emissivities of each particle species are needed to determine how the black hole decay proceeds. We compute and discuss the absorption cross-sections, the relative emissivities and the total power output of all known fields in the evaporation phase. Graviton emissivity is highly enhanced as the spacetime dimensionality increases. Therefore, a black hole loses a significant fraction of its mass in the bulk. This result has important consequences for the phenomenology of black holes in models with extra dimensions and black hole detection in particle colliders.Comment: 4 pages, RevTeX 4. v3: Misprints in Tables correcte

    Instanton Corrected Non-Supersymmetric Attractors

    Full text link
    We discuss non-supersymmetric attractors with an instanton correction in Type IIA string theory compactified on a Calabi-Yau three-fold at large volume. For a stable non-supersymmetric black hole, the attractor point must minimize the effective black hole potential. We study the supersymmetric as well as non-supersymmetric attractors for the D0-D4 system with instanton corrections. We show that in simple models, like the STU model, the flat directions of the mass matrix can be lifted by a suitable choice of the instanton parameters.Comment: Minor modifications, Corrected typos, 38 pages, 1 figur

    Using state space differential geometry for nonlinear blind source separation

    Full text link
    Given a time series of multicomponent measurements of an evolving stimulus, nonlinear blind source separation (BSS) seeks to find a "source" time series, comprised of statistically independent combinations of the measured components. In this paper, we seek a source time series with local velocity cross correlations that vanish everywhere in stimulus state space. However, in an earlier paper the local velocity correlation matrix was shown to constitute a metric on state space. Therefore, nonlinear BSS maps onto a problem of differential geometry: given the metric observed in the measurement coordinate system, find another coordinate system in which the metric is diagonal everywhere. We show how to determine if the observed data are separable in this way, and, if they are, we show how to construct the required transformation to the source coordinate system, which is essentially unique except for an unknown rotation that can be found by applying the methods of linear BSS. Thus, the proposed technique solves nonlinear BSS in many situations or, at least, reduces it to linear BSS, without the use of probabilistic, parametric, or iterative procedures. This paper also describes a generalization of this methodology that performs nonlinear independent subspace separation. In every case, the resulting decomposition of the observed data is an intrinsic property of the stimulus' evolution in the sense that it does not depend on the way the observer chooses to view it (e.g., the choice of the observing machine's sensors). In other words, the decomposition is a property of the evolution of the "real" stimulus that is "out there" broadcasting energy to the observer. The technique is illustrated with analytic and numerical examples.Comment: Contains 14 pages and 3 figures. For related papers, see http://www.geocities.com/dlevin2001/ . New version is identical to original version except for URL in the bylin

    Electromagnetic radiation from collisions at almost the speed of light: an extremely relativistic charged particle falling into a Schwarzschild black hole

    Full text link
    We investigate the electromagnetic radiation released during the high energy collision of a charged point particle with a four-dimensional Schwarzschild black hole. We show that the spectra is flat, and well described by a classical calculation. We also compare the total electromagnetic and gravitational energies emitted, and find that the former is supressed in relation to the latter for very high energies. These results could apply to the astrophysical world in the case charged stars and small charged black holes are out there colliding into large black holes, and to a very high energy collision experiment in a four-dimensional world. In this latter scenario the calculation is to be used for the moments just after the black hole formation, when the collision of charged debris with the newly formed black hole is certainly expected. Since the calculation is four-dimensional, it does not directly apply to Tev-scale gravity black holes, as these inhabit a world of six to eleven dimensions, although our results should qualitatively hold when extrapolated with some care to higher dimensions.Comment: 6 pages, 2 figure

    Integração de bases de dados de clima e de solos via serviços web.

    Get PDF
    Nos últimos anos observou-se um crescimento, sem precedentes, de aplicações, sistemas e repositórios de informações que coexistem dentro das instituições de pesquisa agropecuária. Como conseqüência, a integração de dados agrícolas tem sido um grande desafio no desenvolvimento de aplicações para dar suporte à tomada de decisão no agronegócio. Para abordar este problema, este artigo apresenta uma solução, baseada em serviços Web, para integração de dados de clima e de solos. A solução é simples, do ponto de vista de implementação, e é independente da plataforma computacional. A partir da integração de dados de clima e de solos, serão desenvolvidas aplicações em diversas áreas do agronegócio, como, por exemplo, zoneamento agrícola, estimativa da produtividade de culturas, planejamento agrícola, recomendação de adubação de culturas, entre outras.SBIAgro 2009

    Genomic wide-selection for tick resistance in Hereford and Braford cattle via reaction norm model.

    Get PDF
    The objective of this study was to compare a conventional genomic model (GBLUP) and its extension to a linear reaction norm model (GLRNM) specifying genotype by environment interaction (G*E) for tick resistance in Brazilian cattle. Tick counts (TC) from 4,363 Hereford and Braford cattle from 146 contemporary groups (CG) were available of which 3,591 animals had BovineSNP50 Illumina v2 BeadChip genotypes. The reaction norm covariate was based on CG estimates of TC from a first-step model. Analysis was conducted based on adapting the single step GBLUP/REML procedure. Fivefold cross validation based on K-means and random partitioning was used to compare the fit of the two models. Cross validation correlations were strong and not significantly different between models for either partitioning strategy. Nevertheless, it seems apparent that G*E for tick infestation exists and can captured by GLRNM models
    corecore