22 research outputs found

    Inter-varietal structural variation in grapevine genomes

    Get PDF
    Grapevine (Vitis vinifera L.) is one of the world's most important crop plants, which is of large economic value for fruit and wine production. There is much interest in identifying genomic variations and their functional effects on inter-varietal, phenotypic differences. Using an approach developed for the analysis of human and mammalian genomes, which combines high-throughput sequencing, array comparative genomic hybridization, fluorescent in�situ hybridization and quantitative PCR, we created an inter-varietal atlas of structural variations and single nucleotide variants (SNVs) for the grapevine genome analyzing four economically and genetically relevant table grapevine varieties. We found 4.8 million SNVs and detected 8% of the grapevine genome to be affected by genomic variations. We identified more than 700 copy number variation (CNV) regions and more than 2000 genes subjected to CNV as potential candidates for phenotypic differences between varieties. � 2016 The Authors The Plant Journal � 2016 John Wiley & Sons Lt

    Grapevine adaptation to drought: New candidate genes for the genotype-dependent response

    Get PDF
    Grapevine requires irrigation supply for its cultivation, especially in the arid and semiarid geographic areas. As consequence of the severe climatic changes, water consumption is becoming more and more important as environmental and cost factor that needs to be reduced. Water deficiency can affect berry and wine quality depending on the extent of plant perceived stress, which is a cultivar specific trait. In a four-year project, we tested the physiological and molecular responses to water deficiency of two different table grape cultivars, Italia and Autumn Royal, and we highlighted that they differently adapted to drought stress conditions. Physiological analyses on field-growth plants showed cultivar-specific variations in photosynthetic carbon assimilation and, stomatal conductance under water deficiency. We further combined “omic” analyses to identify candidate genes involved in drought stress response and adaptative traits. Microarray analyses revealed a broad response of cultivar Italia to drought stress conditions characterized by the modulation of 1037 genes involved in biological processes as cell wall organization, carbohydrate metabolism, ROS response, response to hormone and osmotic stress. On the contrary, Autumn Royal response was limited to the modulation of only 29 genes mainly involved in plant stress response, nitrogen metabolism and hormone signal transduction. Our data highlighted that ABA-perception and –signalling are key factors mediating the varietal-specific behavior of the early response to drought

    Grapevine adaptation to drought: New candidate genes for the genotype-dependent response

    No full text
    Grapevine requires irrigation supply for its cultivation, especially in the arid and semiarid geographic areas. As consequence of the severe climatic changes, water consumption is becoming more and more important as environmental and cost factor that needs to be reduced. Water deficiency can affect berry and wine quality depending on the extent of plant perceived stress, which is a cultivar specific trait. In a four-year project, we tested the physiological and molecular responses to water deficiency of two different table grape cultivars, Italia and Autumn Royal, and we highlighted that they differently adapted to drought stress conditions. Physiological analyses on field-growth plants showed cultivar-specific variations in photosynthetic carbon assimilation and, stomatal conductance under water deficiency. We further combined “omic” analyses to identify candidate genes involved in drought stress response and adaptative traits. Microarray analyses revealed a broad response of cultivar Italia to drought stress conditions characterized by the modulation of 1037 genes involved in biological processes as cell wall organization, carbohydrate metabolism, ROS response, response to hormone and osmotic stress. On the contrary, Autumn Royal response was limited to the modulation of only 29 genes mainly involved in plant stress response, nitrogen metabolism and hormone signal transduction. Our data highlighted that ABA-perception and –signalling are key factors mediating the varietal-specific behavior of the early response to drought.</jats:p

    Inter-varietal structural variation in grapevine genomes.

    Get PDF
    Grapevine (Vitis vinifera L.) is one of the world's most important crop plants, which is of large economic value for fruit and wine production. There is much interest in identifying genomic variations and their functional effects on inter-varietal, phenotypic differences. Using an approach developed for the analysis of human and mammalian genomes, which combines high-throughput sequencing, array comparative genomic hybridization, fluorescent in situ hybridization and quantitative PCR, we created an inter-varietal atlas of structural variations and single nucleotide variants (SNVs) for the grapevine genome analyzing four economically and genetically relevant table grapevine varieties. We found 4.8 million SNVs and detected 8% of the grapevine genome to be affected by genomic variations. We identified more than 700 copy number variation (CNV) regions and more than 2000 genes subjected to CNV as potential candidates for phenotypic differences between varieties

    New Insights into Centromere Organization and Evolution from the White-Cheeked Gibbon and Marmoset

    Get PDF
    The evolutionary history of α-satellite DNA, the major component of primate centromeres, is hardly defined because of the difficulty in its sequence assembly and its rapid evolution when compared with most genomic sequences. By using several approaches, we have cloned, sequenced, and characterized α-satellite sequences from two species representing critical nodes in the primate phylogeny: the white-cheeked gibbon, a lesser ape, and marmoset, a New World monkey. Sequence analyses demonstrate that white-cheeked gibbon and marmoset α-satellite sequences are formed by units of ∼171 and ∼342 bp, respectively, and they both lack the high-order structure found in humans and great apes. Fluorescent in situ hybridization characterization shows a broad dispersal of α-satellite in the white-cheeked gibbon genome including centromeric, telomeric, and chromosomal interstitial localizations. On the other hand, centromeres in marmoset appear organized in highly divergent dimers roughly of 342 bp that show a similarity between monomers much lower than previously reported dimers, thus representing an ancient dimeric structure

    On the dark matter haloes inner structure and galaxy morphology

    No full text

    Internationale Markteintrittsstrategien – Eine State-of-the-Art-Betrachtung

    No full text
    corecore