4,494 research outputs found

    A review of current development in natural fiber composites for structural and infrastructure applications

    Get PDF
    Natural fiber composites (NFC) as the name implies is made of natural resources thus possesses environmentally beneficial properties such as biodegradability. With its natural characteristics, NFC is obtaining more attention in recent years in various application including automotive, merchandise, structural and infrastructure. Several studies have shown that NFC can be developed into a load-bearing structural member for applications in structural and infrastructure application. As an engineered material, similar with synthetic fiber composites, the properties of NFC can be tailored to meet certain requirements. The challenge in working with NFC is the large variation in properties and characteristics. The properties of NFC to a large extent influenced by the type of fibers, environmental condition where the plant fibers are sourced and the type of fiber treatments. However, with their unique and wide range of variability, natural fiber composites could emerge as a new alternative engineering material which can substitute the use of synthetic fiber composites

    Vibrational and Thermal Properties of ZnX (X=Se, Te): Density Functional Theory (LDA and GGA) versus Experiment

    Full text link
    We calculated the phonon dispersion relations of ZnX (X=Se, Te) employing ab initio techniques. These relations have been used to evaluate the temperature dependence of the respective specific heats of crystals with varied isotopic compositions. These results have been compared with mea- surements performed on crystals down to 2 K. The calculated and measured data are generally in excellent agreement with each other. Trends in the phonon dispersion relations and the correspond- ing densities of states for the zinc chalcogenide series of zincblende-type materials are discussed.Comment: 10 pages, submitted to PR

    Anharmonic Self-Energy of Phonons: Ab Initio Calculations and Neutron Spin Echo Measurements

    Full text link
    We have calculated (ab initio) and measured (by spin-echo techniques) the anharmonic self-energy of phonons at the X-point of the Brillouin zone for isotopically pure germanium. The real part agrees with former, less accurate, high temperature data obtained by inelastic neutron scattering on natural germanium. For the imaginary part our results provide evidence that transverse acoustic phonons at the X-point are very long lived at low temperatures, i.e. their probability of decay approaches zero, as a consequence of an unusual decay mechanism allowed by energy conservation.Comment: 8 pages, 2 figures, pdf fil

    Electroreflectance spectroscopy in self-assembled quantum dots: lens symmetry

    Get PDF
    Modulated electroreflectance spectroscopy ΔR/R\Delta R/R of semiconductor self-assembled quantum dots is investigated. The structure is modeled as dots with lens shape geometry and circular cross section. A microscopic description of the electroreflectance spectrum and optical response in terms of an external electric field (F{\bf F}) and lens geometry have been considered. The field and lens symmetry dependence of all experimental parameters involved in the ΔR/R\Delta R/R spectrum have been considered. Using the effective mass formalism the energies and the electronic states as a function of F{\bf F} and dot parameters are calculated. Also, in the framework of the strongly confined regime general expressions for the excitonic binding energies are reported. Optical selection rules are derived in the cases of the light wave vector perpendicular and parallel to % {\bf F}. Detailed calculation of the Seraphin coefficients and electroreflectance spectrum are performed for the InAs and CdSe nanostructures. Calculations show good agreement with measurements recently performed on CdSe/ZnSe when statistical distribution on size is considered, explaining the main observed characteristic in the electroreflectance spectra

    Electromagnetic response of a static vortex line in a type-II superconductor : a microscopic study

    Full text link
    The electromagnetic response of a pinned Abrikosov fluxoid is examined in the framework of the Bogoliubov-de Gennes formalism. The matrix elements and the selection rules for both the single photon (emission - absorption) and two photon (Raman scattering) processes are obtained. The results reveal striking asymmetries: light absorption by quasiparticle pair creation or single quasiparticle scattering can occur only if the handedness of the incident radiation is opposite to that of the vortex core states. We show how these effects will lead to nonreciprocal circular birefringence, and also predict structure in the frequency dependence of conductivity and in the differential cross section of the Raman scattering.Comment: 14 pages (RevTex

    Electron-phonon renormalization of the absorption edge of the cuprous halides

    Full text link
    Compared to most tetrahedral semiconductors, the temperature dependence of the absorption edges of the cuprous halides (CuCl, CuBr, CuI) is very small. CuCl and CuBr show a small increase of the gap E0E_0 with increasing temperature, with a change in the slope of E0E_0 vs. TT at around 150 K: above this temperature, the variation of E0E_0 with TT becomes even smaller. This unusual behavior has been clarified for CuCl by measurements of the low temperature gap vs. the isotopic masses of both constituents, yielding an anomalous negative shift with increasing copper mass. Here we report the isotope effects of Cu and Br on the gap of CuBr, and that of Cu on the gap of CuI. The measured isotope effects allow us to understand the corresponding temperature dependences, which we also report, to our knowledge for the first time, in the case of CuI. These results enable us to develop a more quantitative understanding of the phenomena mentioned for the three halides, and to interpret other anomalies reported for the temperature dependence of the absorption gap in copper and silver chalcogenides; similarities to the behavior observed for the copper chalcopyrites are also pointed out.Comment: 14 pages, 5 figures, submitted to Phys. Rev.

    A computer program for making tables of soil analytical data

    Get PDF
    3 páginas, 1 figura, 2 referencia.[ES]: Se describe brevemente un programa para elaborar, de forma automática, tablas de datos analíticos de suelos. El programa, implementado en el Centro de Cálculo, Universidad de Sevilla, con el nombre «ALBARlZA», se escribió en FORTRAN IV y procesó en un ordenador UNIVAC 1108.[EN]: This note describes briefly a computer program which was developed to produce printed tables of soil analytical data in conventional form. The program, nominated as «ALBARIZA», was written in FORTRAN IV and processed on an UNIVAC 1108 computer at Centro de Cálculo, Universidad de Sevilla.Peer reviewe

    Superconductivity-Induced Transfer of In-Plane Spectral Weight in Bi2Sr2CaCu2O8: Resolving a Controversy

    Full text link
    We present a detailed analysis of the superconductivity-induced redistribution of optical spectral weight in Bi2Sr2CaCu2O8 near optimal doping. It confirms the previous conclusion by Molegraaf et al. (Science 66, 2239 (2002)), that the integrated low-frequency spectral weight shows an extra increase below Tc. Since the region, where the change of the integrated spectral weight is not compensated, extends well above 2.5 eV, this transfer is caused by the transfer of spectral weight from interband to intraband region and only partially by the narrowing of the intraband peak. We show that the opposite assertion by Boris et al. (Science 304, 708 (2004)) regarding this compound, is unlikely the consequence of any obvious discrepancies between the actual experimental data.Comment: ReVTeX, 9 pages, 8 encapsulated postscript figures, several typo's correcte

    Interband electron Raman scattering in a quantum wire in a transverse magnetic field

    Full text link
    Electron Raman scattering (ERS) is investigated in a parabolic semiconductor quantum wire in a transverse magnetic field neglecting by phonon-assisted transitions. The ERS cross-section is calculated as a function of a frequency shift and magnetic field. The process involves an interband electronic transition and an intraband transition between quantized subbands. We analyze the differential cross-section for different scattering configurations. We study selection rules for the processes. Some singularities in the Raman spectra are found and interpreted. The scattering spectrum shows density-of-states peaks and interband matrix elements maximums and a strong resonance when scattered frequency equals to the "hybrid" frequency or confinement frequency depending on the light polarization. Numerical results are presented for a GaAs/AlGaAs quantum wire.Comment: 8 pages, 5 figure
    • …
    corecore