64 research outputs found

    El mĂ rqueting als serveis lingĂŒĂ­stics. IntroducciĂł (I)

    Get PDF

    II Trobada de Serveis LingĂŒĂ­stics

    Get PDF

    El moment de Llengua i Ús

    Get PDF

    Neuronal induction and bioenergetics characterization of human forearm adipose stem cells from Parkinson's disease patients and healthy controls

    Full text link
    Neurodegenerative diseases, such as Parkinson's disease, are heterogeneous disorders with a multifactorial nature involving impaired bioenergetics. Stem-regenerative medicine and bioenergetics have been proposed as promising therapeutic targets in the neurologic field. The rationale of the present study was to assess the potential of human-derived adipose stem cells (hASCs) to transdifferentiate into neuronal-like cells (NhASCs and neurospheres) and explore the hASC bioenergetic profile. hASC neuronal transdifferentiation was performed through neurobasal media and differentiation factor exposure. High resolution respirometry was assessed. Increased MAP-2 neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 28-36 days of differentiation) and increased bIII-tubulin neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 6-28-36 days of differentiation) were found. The bioenergetic profile was detectable through high-resolution respirometry approaches in hASCs but did not lead to differential oxidative capacity rates in healthy or clinically diagnosed PD-hASCs. We confirmed the capability of transdifferentiation to the neuronal-like profile of hASCs derived from the forearms of human subjects and characterized the bioenergetic profile. Suboptimal maximal respiratory capacity trends in PD were found. Neuronal induction leading to positive neuronal protein expression markers is a relevant issue that encourages the suitability of NhASC models in neurodegeneration

    HIV-1 promonocytic and lymphoid cell lines: an in vitro model of in vivo mitochondrial and apoptotic lesion.

    Get PDF
    To characterize mitochondrial/apoptotic parameters in chronically human immunodeficiency virus (HIV-1)-infected promonocytic and lymphoid cells which could be further used as therapeutic targets to test pro-mitochondrial or anti-apoptotic strategies as in vitro cell platforms to deal with HIV-infection. Mitochondrial/apoptotic parameters of U1 promonocytic and ACH2 lymphoid cell lines were compared to those of their uninfected U937 and CEM counterparts. Mitochondrial DNA (mtDNA) was quantified by rt-PCR while mitochondrial complex IV (CIV) function was measured by spectrophotometry. Mitochondrial-nuclear encoded subunits II-IV of cytochrome-c-oxidase (COXII-COXIV), respectively, as well as mitochondrial apoptotic events [voltage-dependent-anion-channel-1(VDAC-1)-content and caspase-9 levels] were quantified by western blot, with mitochondrial mass being assessed by spectrophotometry (citrate synthase) and flow cytometry (mitotracker green assay). Mitochondrial membrane potential (JC1-assay) and advanced apoptotic/necrotic events (AnexinV/propidium iodide) were measured by flow cytometry. Significant mtDNA depletion spanning 57.67% (P < 0.01) was found in the U1 promonocytic cells further reflected by a significant 77.43% decrease of mitochondrial CIV activity (P < 0.01). These changes were not significant for the ACH2 lymphoid cell line. COXII and COXIV subunits as well as VDAC-1 and caspase-9 content were sharply decreased in both chronic HIV-1-infected promonocytic and lymphoid cell lines (<0.005 in most cases). In addition, U1 and ACH2 cells showed a trend (moderate in case of ACH2), albeit not significant, to lower levels of depolarized mitochondrial membranes. The present in vitro lymphoid and especially promonocytic HIV model show marked mitochondrial lesion but apoptotic resistance phenotype that has been only partially demonstrated in patients. This model may provide a platform for the characterization of HIV-chronicity, to test novel therapeutic options or to study HIV reservoirs

    Scouting for Climate Variable with Small Satellites

    Get PDF
    HydroGNSS is a small satellite mission under the new ESA Scout programme tapping into NewSpace, within ESA’s FutureEO programme. The mission will use an innovative GNSS-Reflectometry instrument to collect parameters related to the Essential Climate Variables (ECVs): soil moisture, inundation, freeze/thaw, biomass, ocean wind speed and sea ice extent. GNSS-Reflectometry is a type of bistatic radar utilizing abundant GNSS signals as signals of opportunity, empowering small satellites to provide measurement quality associated with larger satellites. The HydroGNSS instrument introduces novel measurements compared to its predecessors on UKSA TechDemoSat-1 and NASA CYGNSS missions. These include: the acquisition of Galileo(E1) reflections, and firsts such as dual- polarization, complex ‘coherent channel’ (amplitude/phase) and second frequency (L5/E5a) acquisitions. These measurements enable HydroGNSS to innovate the L2 products, e.g. improving the ground resolution and soil moisture measurement, as dual-polarized reflections allow the discrimination of vegetation effects from soil moisture. HydroGNSS will: ● Complement and potentially gap fill other missions sensing soil moisture e.g. ESA’s SMOS and NASA’s SMAP missions. ● Complement ESA’s Biomass mission addressing coverage restrictions over Europe, North and Central America. ● Expand GNSS-Reflectometry techniques. ● Lay the foundations for a future constellation capable of offering continuity in high spatial-temporal resolution observations of the Earth’s weather and climate
    • 

    corecore