26 research outputs found

    Spectroscopic Signatures for the Dark Bose-Einstein Condensation of Spatially Indirect Excitons

    Full text link
    We study semiconductor excitons confined in an electrostatic trap of a GaAs bilayer heterostructure. We evidence that optically bright excitonic states are strongly depleted while cooling to sub-Kelvin temperatures. In return, the other accessible and optically dark states become macroscopically occupied so that the overall exciton population in the trap is conserved. These combined behaviours constitute the spectroscopic signature for the mostly dark Bose-Einstein condensation of excitons, which in our experiments is restricted to a dilute regime within a narrow range of densities, below a critical temperature of about 1K.Comment: 7 pages and 5 figure

    Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot

    Get PDF
    We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase of the coherence time though not reaching the radiative limit. These charge controlled quantum dots act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon

    Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons

    Full text link
    The generation of nonclassical states of light in miniature chips is a crucial step towards practical implementations of future quantum technologies. Semiconductor materials are ideal to achieve extremely compact and massively parallel systems and several platforms are currently under development. In this context, spontaneous parametric down conversion in AlGaAs devices combines the advantages of room temperature operation, possibility of electrical injection and emission in the telecom band. Here we report on a chip-based AlGaAs source, producing indistinguishable and energy-time entangled photons with a brightness of 7.2×1067.2\times10^6 pairs/s and a signal-to-noise ratio of 141±12141\pm12. Indistinguishability between the photons is demonstrated via a Hong-Ou-Mandel experiment with a visibility of 89±3%89\pm3\%, while energy-time entanglement is tested via a Franson interferometer leading to a value for the Bell parameter S=2.70±0.10 S=2.70\pm0.10

    Topological nanophononic states by band inversion

    Full text link
    Nanophononics is essential for the engineering of thermal transport in nanostructured electronic devices, it greatly facilitates the manipulation of mechanical resonators in the quantum regime, and could unveil a new route in quantum communications using phonons as carriers of information. Acoustic phonons also constitute a versatile platform for the study of fundamental wave dynamics, including Bloch oscillations, Wannier Stark ladders and other localization phenomena. Many of the phenomena studied in nanophononics were indeed inspired by their counterparts in optics and electronics. In these fields, the consideration of topological invariants to control wave dynamics has already had a great impact for the generation of robust confined states. Interestingly, the use of topological phases to engineer nanophononic devices remains an unexplored and promising field. Conversely, the use of acoustic phonons could constitute a rich platform to study topological states. Here, we introduce the concept of topological invariants to nanophononics and experimentally implement a nanophononic system supporting a robust topological interface state at 350 GHz. The state is constructed through band inversion, i.e. by concatenating two semiconductor superlattices with inverted spatial mode symmetries. The existence of this state is purely determined by the Zak phases of the constituent superlattices, i.e. that one-dimensional Berry phase. We experimentally evidenced the mode through Raman spectroscopy. The reported robust topological interface states could become part of nanophononic devices requiring resonant structures such as sensors or phonon lasers.Comment: 21 pages, 7 figure

    Milliwatt terahertz harmonic generation from topological insulator metamaterials

    Get PDF
    Achieving efficient, high-power harmonic generation in the terahertz spectral domain has technological applications, for example in sixth generation (6G) communication networks. Massless Dirac fermions possess extremely large terahertz nonlinear susceptibilities and harmonic conversion efficiencies. However, the observed maximum generated harmonic power is limited, because of saturation effects at increasing incident powers, as shown recently for graphene. Here, we demonstrate room-temperature terahertz harmonic generation in a Bi2_2Se3_3 topological insulator and topological-insulator-grating metamaterial structures with surface-selective terahertz field enhancement. We obtain a third-harmonic power approaching the milliwatt range for an incident power of 75 mW - an improvement by two orders of magnitude compared to a benchmarked graphene sample. We establish a framework in which this exceptional performance is the result of thermodynamic harmonic generation by the massless topological surface states, benefiting from ultrafast dissipation of electronic heat via surface-bulk Coulomb interactions. These results are an important step towards on-chip terahertz (opto)electronic applications

    Clinical Heterogeneity of Pulmonary Arterial Hypertension Associated With Variants in TBX4

    Get PDF
    Background: The knowledge of hereditary predisposition has changed our understanding of Pulmonary Arterial Hypertension. Genetic testing has been widely extended and the application of Pulmonary Arterial Hypertension specific gene panels has allowed its inclusion in the diagnostic workup and increase the diagnostic ratio compared to the traditional sequencing techniques. This is particularly important in the differential diagnosis between Pulmonary Arterial Hypertension and Pulmonary Venoocclusive Disease. Methods: Since November 2011, genetic testing is offered to all patients with idiopathic, hereditable and associated forms of Pulmonary Arterial Hypertension or Pulmonary Venoocclusive Disease included in the Spanish Registry of Pulmonary Arterial Hypertension. Herein, we present the clinical phenotype and prognosis of all Pulmonary Arterial Hypertension patients with disease-associated variants in TBX4. Results: Out of 579 adults and 45 children, we found in eight patients from seven families, disease-causing associated variants in TBX4. All adult patients had a moderate-severe reduction in diffusion capacity. However, we observed a wide spectrum of clinical presentations, including Pulmonary Venoocclusive Disease suspicion, interstitial lung disease, pulmonary vascular abnormalities and congenital heart disease. Conclusions: Genetic testing is now essential for a correct diagnosis work-up in Pulmonary Arterial Hypertension. TBX4-associated Pulmonary Arterial Hypertension has marked clinical heterogeneity. In this regard, a genetic study is extremely useful to obtain an accurate diagnosis and provide appropriate management.This project was founded by Project "Bases Gene´tico Moleculares de la Medicina de Precisio´n en la Hipertensio´n Arterial Pulmonar". Funder: Instituto Carlos III. Ministerio de Economı´a y Competitividad. https://www.isciii.es/Paginas/Inicio.aspx Award number: PI 18/01233 Grant Recipient: P E-

    Oral contraceptives do not modify the risk of a second attack and disability accrual in a prospective cohort of women with a clinically isolated syndrome and early multiple sclerosis

    Get PDF
    Cohort study; Oral contraceptives; Second relapseEstudio de cohorte; Anticonceptivos orales; Segunda recaídaEstudi de cohorts; Anticonceptius orals; Segona recaigudaObjective: To evaluate whether oral contraceptive (OC) use is associated with the risk of a second attack and disability accrual in women with a clinically isolated syndrome (CIS) and early multiple sclerosis (MS). Methods: Reproductive information from women included in the Barcelona CIS prospective cohort was collected through a self-reported cross-sectional survey. We examined the relationship of OC exposure with the risk of a second attack and confirmed Expanded Disability Status Scale of 3.0 using multivariate Cox regression models, adjusted by age, topography of CIS, oligoclonal bands, baseline brain T2 lesions, body size at menarche, smoking, and disease-modifying treatment (DMT). OC and DMT exposures were considered as time-varying variables. Findings were confirmed with sensitivity analyses using propensity score models. Results: A total of 495 women were included, 389 (78.6%) referred to ever use OC and 341 (68.9%) started OC before the CIS. Exposure to OC was not associated with a second attack (adjusted hazard ratio (aHR) = 0.73, 95% confidence interval (CI) = 0.33–1.61) or disability accrual (aHR = 0.81, 95% CI = 0.17–3.76). Sensitivity analyses confirmed these results. Conclusion: OC use does not modify the risk of second attack or disability accrual in patients with CIS and early MS, once considered as a time-dependent exposure and adjusted by other potential confounders.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project was supported by FIS PI15/0070 from Ministry of Economy and Competitiveness of Spain

    Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI

    Get PDF
    Deep learning; Disability; Structural MRIAprendizaje profundo; Discapacidad; Resonancia magnética estructuralAprenentatge profund; Discapacitat; Ressonància magnètica estructuralThe application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of extracting image features not detectable through conventional methods. Additionally, the study of CNN-derived attention maps, which indicate the most relevant anatomical features for CNN-based decisions, has the potential to uncover key disease mechanisms leading to disability accumulation. From a cohort of patients prospectively followed up after a first demyelinating attack, we selected those with T1-weighted and T2-FLAIR brain MRI sequences available for image analysis and a clinical assessment performed within the following six months (N = 319). Patients were divided into two groups according to expanded disability status scale (EDSS) score: ≥3.0 and < 3.0. A 3D-CNN model predicted the class using whole-brain MRI scans as input. A comparison with a logistic regression (LR) model using volumetric measurements as explanatory variables and a validation of the CNN model on an independent dataset with similar characteristics (N = 440) were also performed. The layer-wise relevance propagation method was used to obtain individual attention maps. The CNN model achieved a mean accuracy of 79% and proved to be superior to the equivalent LR-model (77%). Additionally, the model was successfully validated in the independent external cohort without any re-training (accuracy = 71%). Attention-map analyses revealed the predominant role of frontotemporal cortex and cerebellum for CNN decisions, suggesting that the mechanisms leading to disability accrual exceed the mere presence of brain lesions or atrophy and probably involve how damage is distributed in the central nervous system.MS PATHS is funded by Biogen. This study has been possible thanks to a Junior Leader La Caixa Fellowship awarded to C. Tur (fellowship code is LCF/BQ/PI20/11760008) by “la Caixa” Foundation (ID 100010434). The salaries of C. Tur and Ll. Coll are covered by this award
    corecore